
Compiler Construction

Lecture 13: Semantic Analysis I
(Definition of Attribute Grammars)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/


Outline

1 Repetition: Expressiveness of LL and LR Grammars

2 LL and LR Parsing in Practice

3 Overview

4 Problem Statement

5 Attribute Grammars

6 Formal Definition of Attribute Grammars

Compiler Construction Summer semester 2008 2



Overview of Grammar Classes

LR(0) •G (Ex. 9.15)

SLR(1) •GAE (Ex. 11.5)

LL(1) •G′

AE (Ex. 7.8)

LR(1) •G (Ex. 12.11)

LALR(1) •GLR (Ex. 12.5)

LL(0)

(singletons)

Moreover:

LL(k) $ LL(k +1)
for every k ∈ N

LR(k) $ LR(k+1)
for every k ∈ N

LL(k) ⊆ LR(k)
for every k ∈ N

Compiler Construction Summer semester 2008 3



Overview of Language Classes

(cf. O. Mayer: Syntaxanalyse, BI-Verlag, 1978, p. 409ff)

REG

L(LL(0 ))

L(LR(0 ))

L(LL(1 ))

CFL

L(SLR(1 )) = L(LALR(1 )) =

unambiguous CFL

L(LR(1 )) = det . CFL

Moreover:

L(LL(k)) $
L(LL(k + 1)) $
L(LR(1))
for every k ∈ N

L(LR(k)) =
L(LR(1))
for every k ≥ 1

Compiler Construction Summer semester 2008 4



Outline

1 Repetition: Expressiveness of LL and LR Grammars

2 LL and LR Parsing in Practice

3 Overview

4 Problem Statement

5 Attribute Grammars

6 Formal Definition of Attribute Grammars

Compiler Construction Summer semester 2008 5



LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins
LL parsing technique easier to understand
recursive-descent parser easier to debug than LALR
action tables

Generality : LALR wins
“almost” LL(1) ⊆ LALR(1) (only pathological
counterexamples)
LL requires elimination of left recursion and left
factorization

Semantic actions : (see semantic analysis) LL wins
actions can be placed anywhere in LL parsers without
causing conflicts
in LALR: implicit ε-productions
=⇒ may generate conflicts

Error handling : LL wins
Compiler Construction Summer semester 2008 6



Outline

1 Repetition: Expressiveness of LL and LR Grammars

2 LL and LR Parsing in Practice

3 Overview

4 Problem Statement

5 Attribute Grammars

6 Formal Definition of Attribute Grammars

Compiler Construction Summer semester 2008 7



Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
Compiler Construction Summer semester 2008 8



Outline

1 Repetition: Expressiveness of LL and LR Grammars

2 LL and LR Parsing in Practice

3 Overview

4 Problem Statement

5 Attribute Grammars

6 Formal Definition of Attribute Grammars

Compiler Construction Summer semester 2008 9



Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

Are there identifiers that are not declared? Declared but not used?

Is x a scalar, an array, or a procedure? Of which type?

Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Where should the value of x be stored (register/stack/heap)?

Do p and q refer to the same memory location (aliasing)?

...

These cannot be expressed using context-free grammars!
(e.g., {ww | w ∈ Σ∗} /∈ CFLΣ)

Compiler Construction Summer semester 2008 10



Static Semantics

Static semantics refers to properties of program constructs

which are true for every occurrence of this construct in every
program execution (static) and

can be decided at compile time

but are context-sensitive and thus not expressible using
context-free grammars (semantics).

Example properties:

Static: type or declaredness of an identifier, number of registers
required to evaluate an expression, ...

Dynamic: value of an expression, size of runtime stack, ...

These properties are determined by

Scope rules: defines part of program where a declaration is valid

Visibility rules: defines part of scope where a declaration is visible
(overlapping of global and local declarations)

Typing rules: defines type consistency of expressions, statements, ...

Compiler Construction Summer semester 2008 11



Outline

1 Repetition: Expressiveness of LL and LR Grammars

2 LL and LR Parsing in Practice

3 Overview

4 Problem Statement

5 Attribute Grammars

6 Formal Definition of Attribute Grammars

Compiler Construction Summer semester 2008 12



Attribute Grammars I

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

=⇒ Semantic analysis = attribute evaluation

Result: attributed syntax tree

In greater detail:

With every nonterminal a set of attributes is associated.

Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leafs to the root)
Inherited: top-down computation (from the root to the leafs)

With every production a set of semantic rules is associated.

Compiler Construction Summer semester 2008 13



Attribute Grammars II

Advantage: attribute grammars provide a very flexible and broadly
applicable mechanism for transporting information throught the syntax
tree (“syntax-directed translation”)

Attribute values: symbol tables, data types, code, error flags, ...

Application in Compiler Construction:

static semantics
program analysis for optimization
code generation
error handling

Automatic attribute evaluation by compiler generators
(cf. yacc’s synthesized attributes)

Originally designed by D. Knuth for defining the semantics of
context-free languages (Math. Syst. Theory 2 (1968), pp. 127–145)

Compiler Construction Summer semester 2008 14



Example: Knuth’s Binary Numbers I

Example 13.1 (only synthesized attributes)

Binary numbers (with fraction):

GB : Numbers N → L v.0 = v.1
N → L.L v.0 = v.1 + v.3/2l.3

Lists L → B v.0 = v.1
l.0 = 1

L → LB v.0 = 2 ∗ v.1 + v.2
l.0 = l.1 + 1

Bits B → 0 v.0 = 0
Bits B → 1 v.0 = 1

Synthesized attributes of N,L,B: v (value; domain: V v := Q)
of L: l (length; domain: V l := N)

Semantic rules: equations with attribute variables
(index = position of symbol; 0 = left-hand side)

Compiler Construction Summer semester 2008 15



Example: Knuth’s Binary Numbers II

Example 13.1 (continued)

Syntax tree for 1101.01: N

L . L

L B

L B

L B

B

1

0

1

1

L B

B 1

0

v : 13.25

v : 13 v : 1 l : 2

v : 6 v : 1

v : 3 v : 0

v : 1 v : 1

v : 1

v : 0 l : 1 v : 1

v : 0

B → 0 : v.0 = 0B → 1 : v.0 = 1L → B :
v.0 = v.1L → B : l.0 = 1L → LB : v.0 = 2 ∗ v.1 + v.2L → LB : l.0 =
l.1 + 1N → L.L : v.0 = v.1 + v.3/2l.3Compiler Construction Summer semester 2008 16



Adding Inherited Attributes I

Example 13.2 (synthesized + inherited attributes)

Binary numbers (with fraction):
G′

B : Numbers N → L v.0 = v.1
p.1 = 0

N → L.L v.0 = v.1 + v.3
p.1 = 0
p.3 = − l.3

Lists L → B v.0 = v.1
l.0 = 1
p.1 = p.0

L → LB v.0 = v.1 + v.2
l.0 = l.1 + 1
p.1 = p.0 + 1
p.2 = p.0

Bits B → 0 v.0 = 0
Bits B → 1 v.0 = 2p.0

Synthesized attributes of N,L,B: v (value; domain: V v := Q)
of L: l (length; domain: V l := N)

Inherited attribute of L,B: p (position; domain: V p := Z)

Compiler Construction Summer semester 2008 17



Adding Inherited Attributes II

Example 13.2 (continued)

Syntax tree for 10.1:

N

L . L

L B

B

B

0

1

1

v : 2.5

v : 2 l : 2p : 0

v : 2 l : 1p : 1

v : 0.5 l : 1p : −1

v : 0p : 0

v : 2p : 1

v : 0.5p : −1

L → B : l.0 = 1L → LB : l.0 = l.1 +
1N → L.L : p.1 = 0N → L.L : p.3 = −l.3L → LB : p.1 = p.0 + 1L →
LB : p.2 = p.0L → B : p.1 = p.0B → 0 : v.0 = 0B → 1 : v.0 = 2p.0L →
B : v.0 = v.1L → LB : v.0 = v.1 + v.2N → L.L : v.0 = v.1 + v.3Compiler Construction Summer semester 2008 18



Outline

1 Repetition: Expressiveness of LL and LR Grammars

2 LL and LR Parsing in Practice

3 Overview

4 Problem Statement

5 Attribute Grammars

6 Formal Definition of Attribute Grammars

Compiler Construction Summer semester 2008 19



Formal Definition of Attribute Grammars I

Definition 13.3 (Attribute grammar)

Let G = 〈N, Σ, P, S〉 ∈ CFGΣ with X := N ⊎ Σ.

Let Att = Syn ⊎ Inh be a set of (synthesized or inherited) attributes, and
let V =

⋃
α∈Att

V α be a union of value sets.

Let att : X → 2Att be an attribute assignment, and let
syn(Y ) := att(Y ) ∩ Syn and inh(Y ) := att(Y ) ∩ Inh for every Y ∈ X .

Every production π = Y0 → Y1 . . . Yr ∈ P determines the set
Varπ := {α.i | α ∈ att(Yi), i ∈ {0, . . . , r}}

of attribute variables of π with the subsets of inner and outer variables:
Inπ := {α.i | (i = 0, α ∈ syn(Yi)) or (i ∈ [r], α ∈ inh(Yi))}

Outπ := Varπ \ Inπ

A semantic rule of π is an equation of the form
α.i = f(α1.i1, . . . , αn.in)

where n ∈ N, α.i ∈ Inπ, αj .ij ∈ Outπ, and f : V α1 × . . . × V αn → V α.

For each π ∈ P , let Eπ be a set with exactly one semantic rule for every
inner variable of π, and let E := (Eπ | π ∈ P ).

Then A := 〈G,E ,V 〉 is called an attribute grammar: A ∈ AG.
Compiler Construction Summer semester 2008 20



Formal Definition of Attribute Grammars II

Example 13.4 (cf. Example 13.2)

AB ∈ AG for binary numbers:

Attributes: Att = Syn ⊎ Inh with Syn = {v, l} and Inh = {p}

Value sets: V v = Q, V l = N, V p = Z

Attribute assignment: Y ∈ X N L B 0 1
syn(Y ) {v} {v, l} {v} ∅ ∅
inh(Y ) ∅ {p} {p} ∅ ∅

Attribute variables:

π ∈ P N → L N → L.L L → B
Inπ {v.0, p.1} {v.0, p.1, p.3} {v.0, l.0, p.1}
Outπ {v.1, l.1} {v.1, l.1, v.3, l.3} {v.1, p.0}

π ∈ P L → LB B → 0 B → 1

Inπ {v.0, l.0, p.1, p.2} {v.0} {v.0}
Outπ {v.1, v.2, l.1, p.0} {p.0} {p.0}

Semantic rules: see Example 13.2
(e.g., EN→L = {v.0 = v.1, p.1 = 0})

Compiler Construction Summer semester 2008 21



Attribution of Syntax Trees I

Definition 13.5 (Attribution of syntax trees)

Let A = 〈G,E ,V 〉 ∈ AG , and let t be a syntax tree of G with the set
of nodes K.

K determines the set of attribute variables of t:
Var t := {α.k | k ∈ K labelled with Y ∈ X,α ∈ att(Y )}.

Let k0 ∈ K be an (inner) node where production
π = Y0 → Y1 . . . Yr ∈ P is applied, and let k1, . . . , kr ∈ K be the
corresponding successor nodes. The attribute equation system Ek0

of k0 is obtained from Eπ by substituting every attribute index
i ∈ {0, . . . , r} by ki.

The attribute equation system of t is given by
Et :=

⋃
{Ek | k inner node of t}.

Compiler Construction Summer semester 2008 22



Attribution of Syntax Trees II

Corollary 13.6

For each α.k ∈ Var t except the inherited attribute variables at the root
and the synthesized attribute variables at the leafs of t, Et contains
exactly one equation with left-hand side α.k.

Assumptions:

The start symbol does not have inherited attributes: inh(S) = ∅.

Synthesized attributes of terminal symbols are provided by the
scanner.

Compiler Construction Summer semester 2008 23



Attribution of Syntax Trees III

Example 13.7 (cf. Example 13.2)

Attributed syntax tree for 10.1: k0 : N

k1 : L k7 : . k8 : L

k2 : L k5 : B

k3 : B

k9 : B

k6 : 0

k4 : 1

k10 : 1

v

v lp

v lp

v lp

vp

vp

vp

EN→L.L : v.0 = v.1 + v.3
p.1 = 0
p.3 = −l.3

subst
−→

Ek0
: v.k0 = v.k1 + v.k8

p.k1 = 0
p.k8 = −l.k8

EL→LB : v.0 = v.1 + v.2
l.0 = l.1 + 1 subst

−→

Ek1
: v.k1 = v.k2 + v.k5

l.k1 = l.k2 + 1Compiler Construction Summer semester 2008 24


	Repetition: Expressiveness of LL and LR Grammars
	LL and LR Parsing in Practice
	Overview
	Problem Statement
	Attribute Grammars
	Formal Definition of Attribute Grammars

