

Compiler Construction

Lecture 14: Semantic Analysis II (Circularity of Attribute Grammars)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/cc08/>

Summer semester 2008

- 1 Repetition: Attribute Grammars
- 2 Circularity of Attribute Grammars
- 3 Attribute Dependency Graphs
- 4 Testing Attribute Grammars for Circularity
- 5 The Circularity Test

Definition (Attribute grammar)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ with $X := N \uplus \Sigma$.

- Let $Att = Syn \uplus Inh$ be a set of (synthesized or inherited) attributes, and let $V = \bigcup_{\alpha \in Att} V^{\alpha}$ be a union of value sets.
- Let $att : X \rightarrow 2^{Att}$ be an attribute assignment, and let $syn(Y) := att(Y) \cap Syn$ and $inh(Y) := att(Y) \cap Inh$ for every $Y \in X$.
- Every production $\pi = Y_0 \rightarrow Y_1 \dots Y_r \in P$ determines the set

$$Var_{\pi} := \{\alpha.i \mid \alpha \in att(Y_i), i \in \{0, \dots, r\}\}$$

of attribute variables of π with the subsets of inner and outer variables:

$$In_{\pi} := \{\alpha.i \mid (i = 0, \alpha \in syn(Y_i)) \text{ or } (i \in [r], \alpha \in inh(Y_i))\}$$

$$Out_{\pi} := Var_{\pi} \setminus In_{\pi}$$

- A semantic rule of π is an equation of the form

$$\alpha.i = f(\alpha_1.i_1, \dots, \alpha_n.i_n)$$

where $n \in \mathbb{N}$, $\alpha.i \in In_{\pi}$, $\alpha_j.i_j \in Out_{\pi}$, and $f : V^{\alpha_1} \times \dots \times V^{\alpha_n} \rightarrow V^{\alpha}$.

- For each $\pi \in P$, let E_{π} be a set with exactly one semantic rule for every inner variable of π , and let $E := (E_{\pi} \mid \pi \in P)$.

Then $\mathfrak{A} := \langle G, E, V \rangle$ is called an attribute grammar: $\mathfrak{A} \in AG$.

Example: Knuth's Binary Numbers I

Example (synthesized + inherited attributes)

Binary numbers (with fraction):

G'_B : Numbers $N \rightarrow L$

$N \rightarrow L.L$

Lists $L \rightarrow B$

$L \rightarrow LB$

Bits $B \rightarrow 0$

Bits $B \rightarrow 1$

Example: Knuth's Binary Numbers I

Example (synthesized + inherited attributes)

Binary numbers (with fraction):

G'_B : Numbers	$N \rightarrow L$	$v.0 = v.1$
		$p.1 = 0$
	$N \rightarrow L.L$	$v.0 = v.1 + v.3$
		$p.1 = 0$
		$p.3 = -l.3$
Lists	$L \rightarrow B$	$v.0 = v.1$
		$l.0 = 1$
		$p.1 = p.0$
	$L \rightarrow LB$	$v.0 = v.1 + v.2$
		$l.0 = l.1 + 1$
		$p.1 = p.0 + 1$
		$p.2 = p.0$
Bits	$B \rightarrow 0$	$v.0 = 0$
Bits	$B \rightarrow 1$	$v.0 = 2^{p.0}$

Synthesized attributes of N, L, B : v (value; domain: $V^v := \mathbb{Q}$)

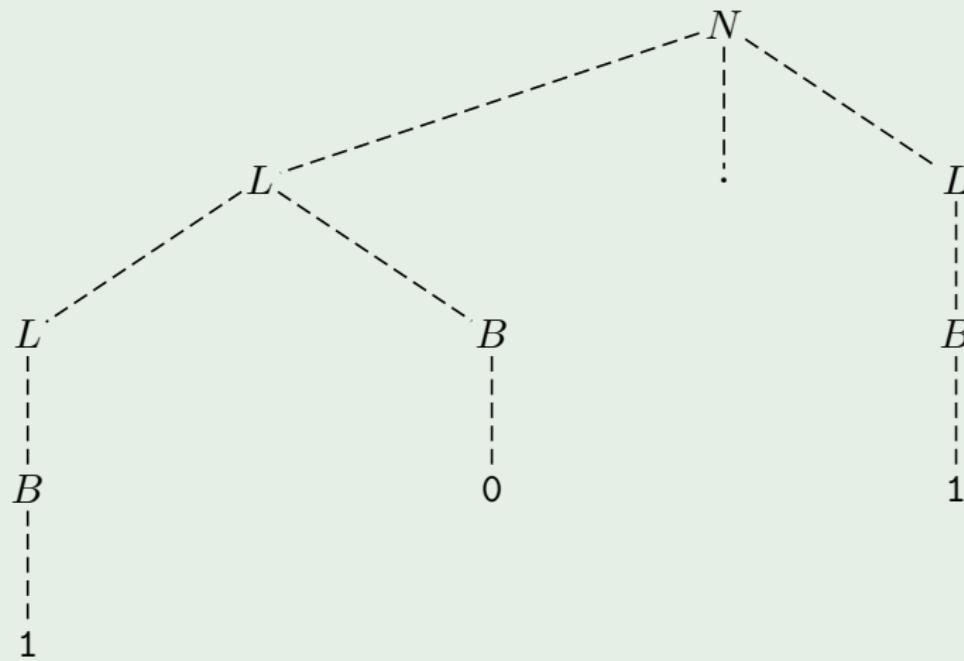
of L : l (length; domain: $V^l := \mathbb{N}$)

Inherited attribute of L, B : p (position; domain: $V^p := \mathbb{Z}$)

Example: Knuth's Binary Numbers II

Example (continued)

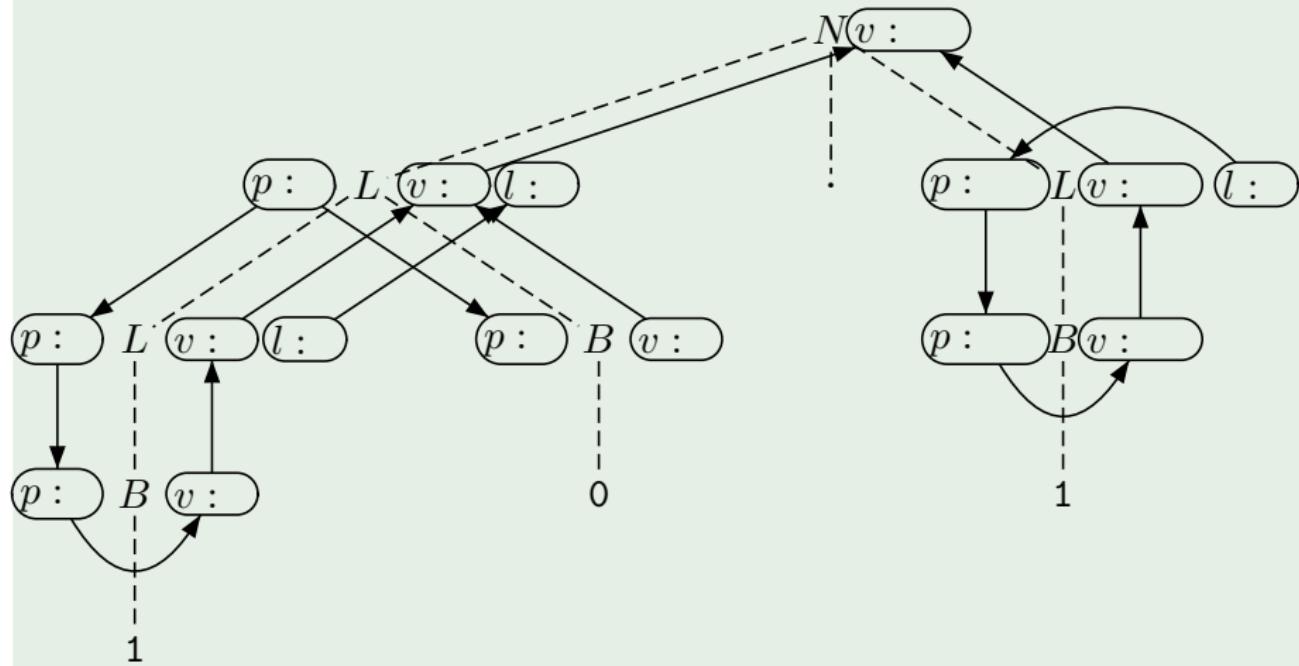
Syntax tree for 10.1:



Example: Knuth's Binary Numbers II

Example (continued)

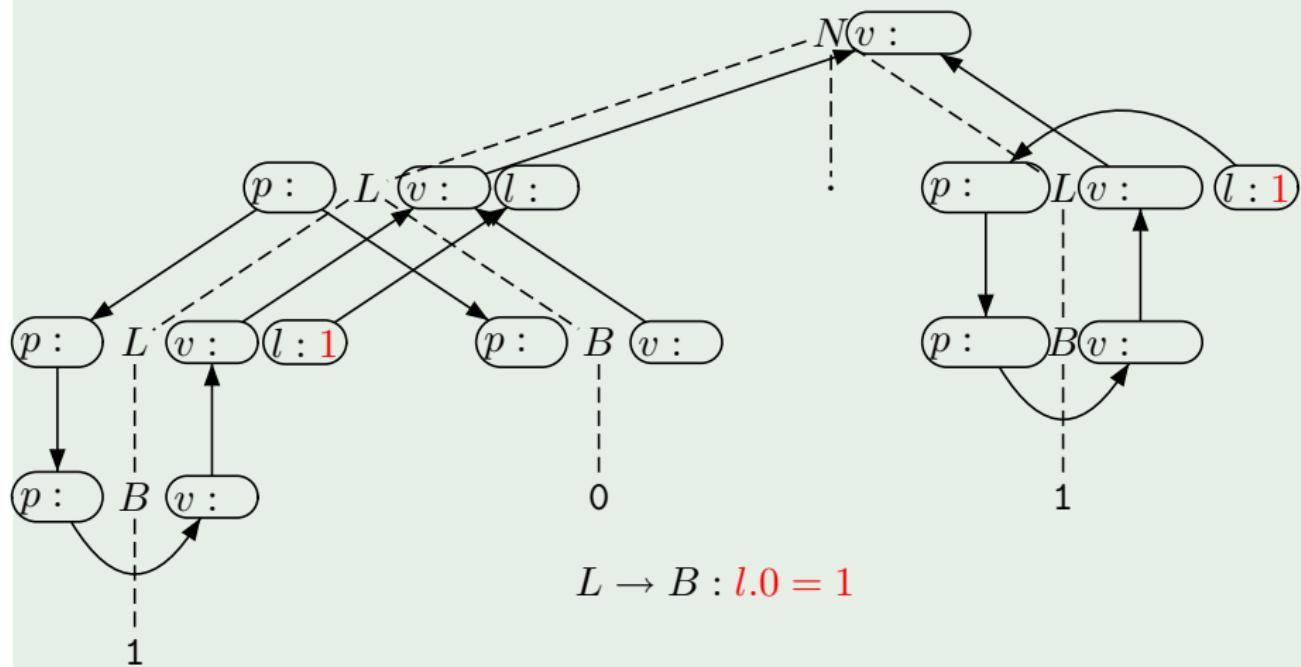
Attributed syntax tree for 10.1:



Example: Knuth's Binary Numbers II

Example (continued)

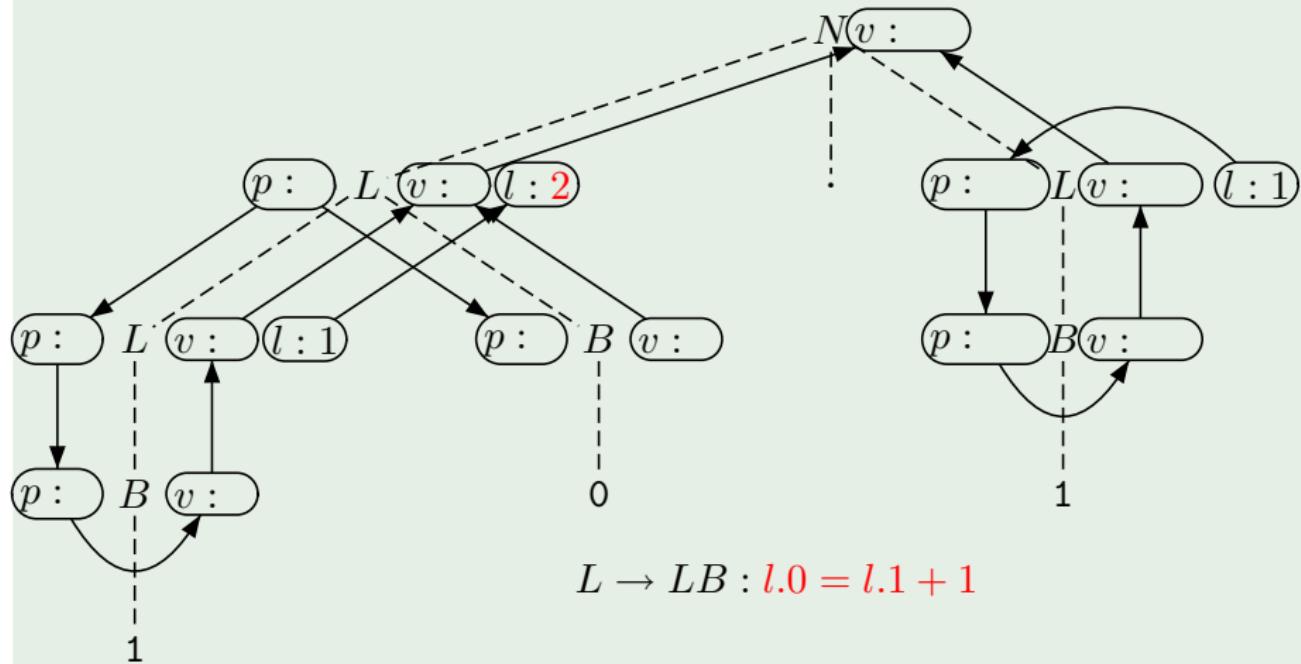
Attributed syntax tree for 10.1:



Example: Knuth's Binary Numbers II

Example (continued)

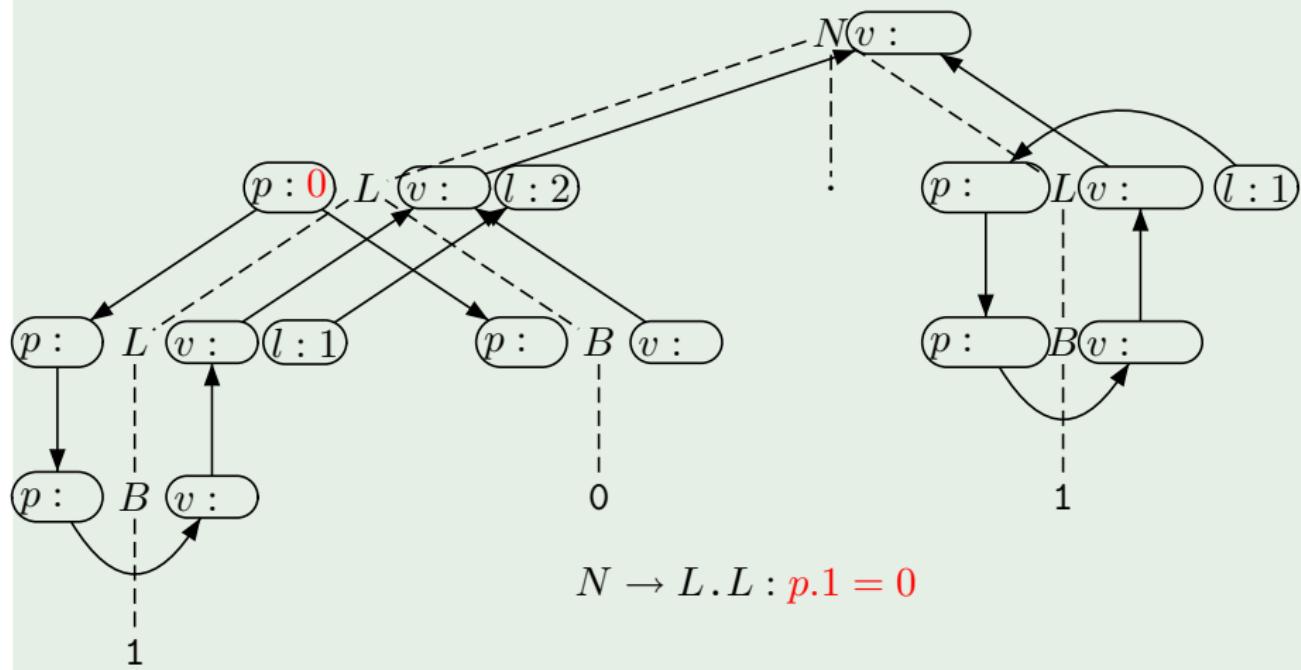
Attributed syntax tree for 10.1:



Example: Knuth's Binary Numbers II

Example (continued)

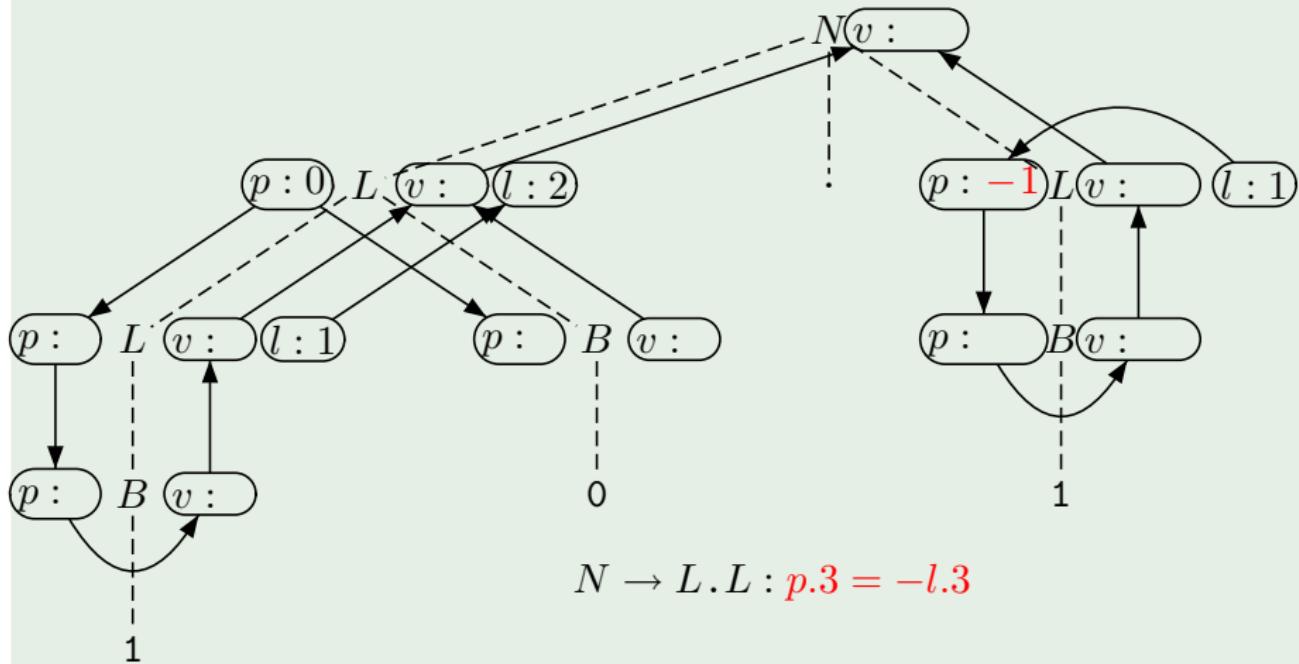
Attributed syntax tree for 10.1:



Example: Knuth's Binary Numbers II

Example (continued)

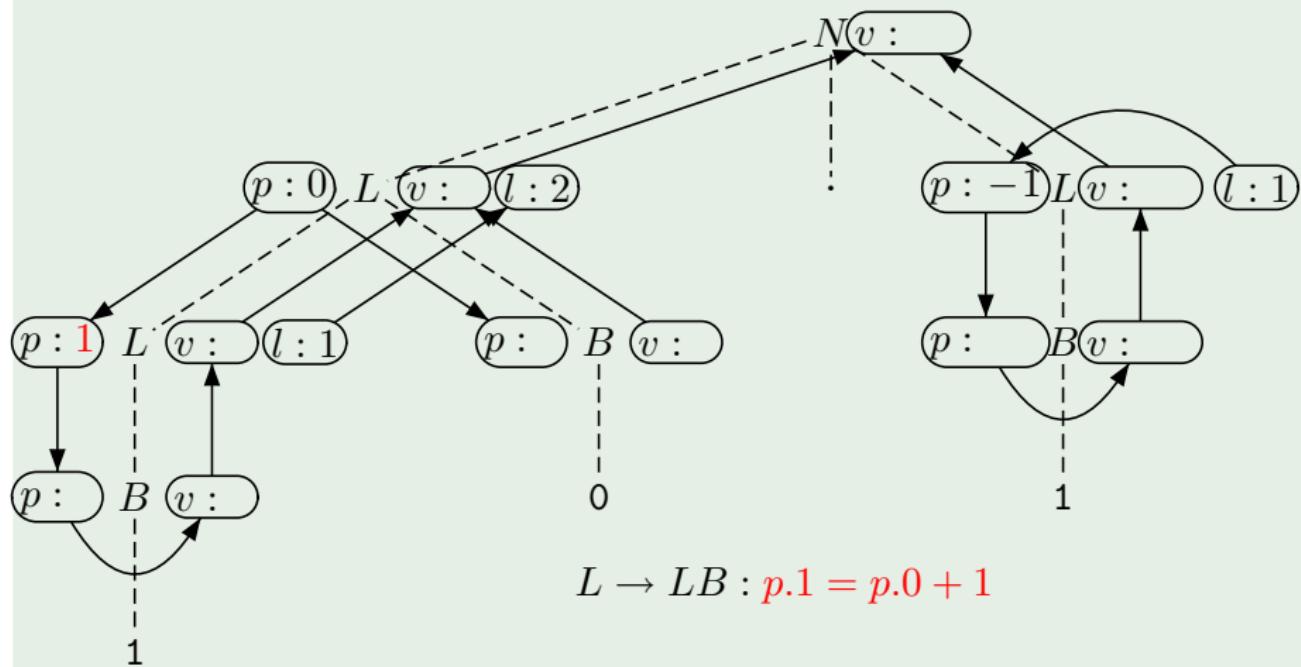
Attributed syntax tree for 10.1:



Example: Knuth's Binary Numbers II

Example (continued)

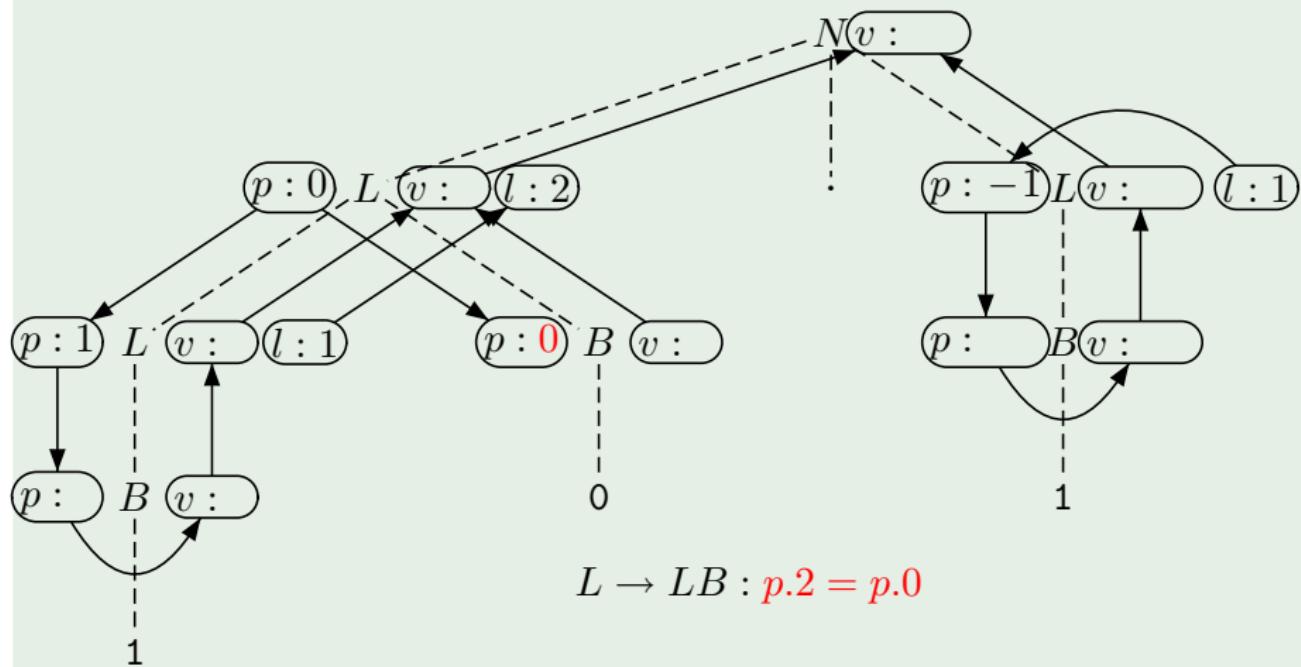
Attributed syntax tree for 10.1:



Example: Knuth's Binary Numbers II

Example (continued)

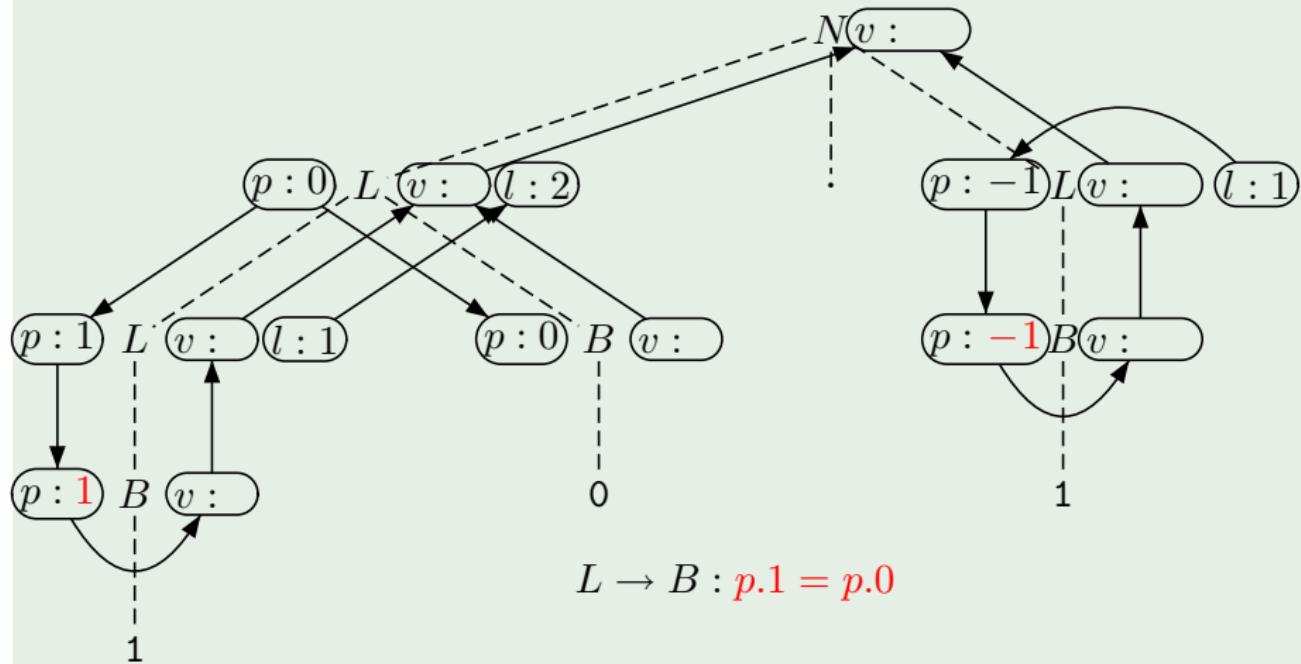
Attributed syntax tree for 10.1:



Example: Knuth's Binary Numbers II

Example (continued)

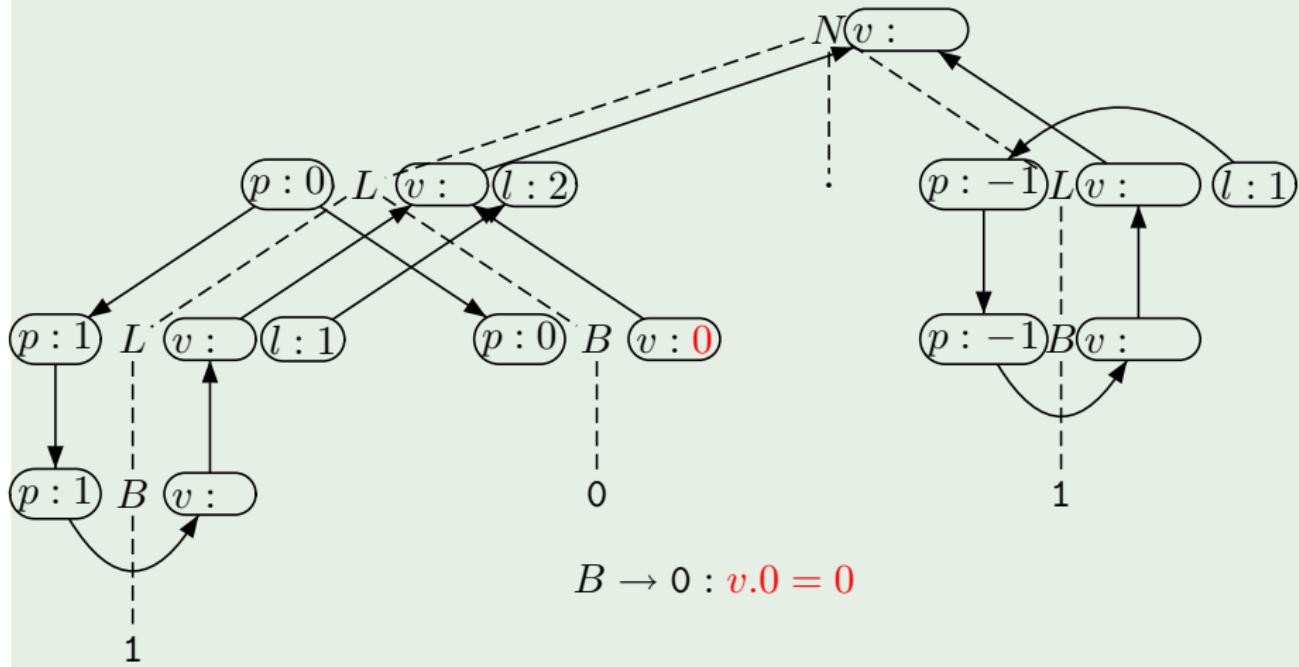
Attributed syntax tree for 10.1:



Example: Knuth's Binary Numbers II

Example (continued)

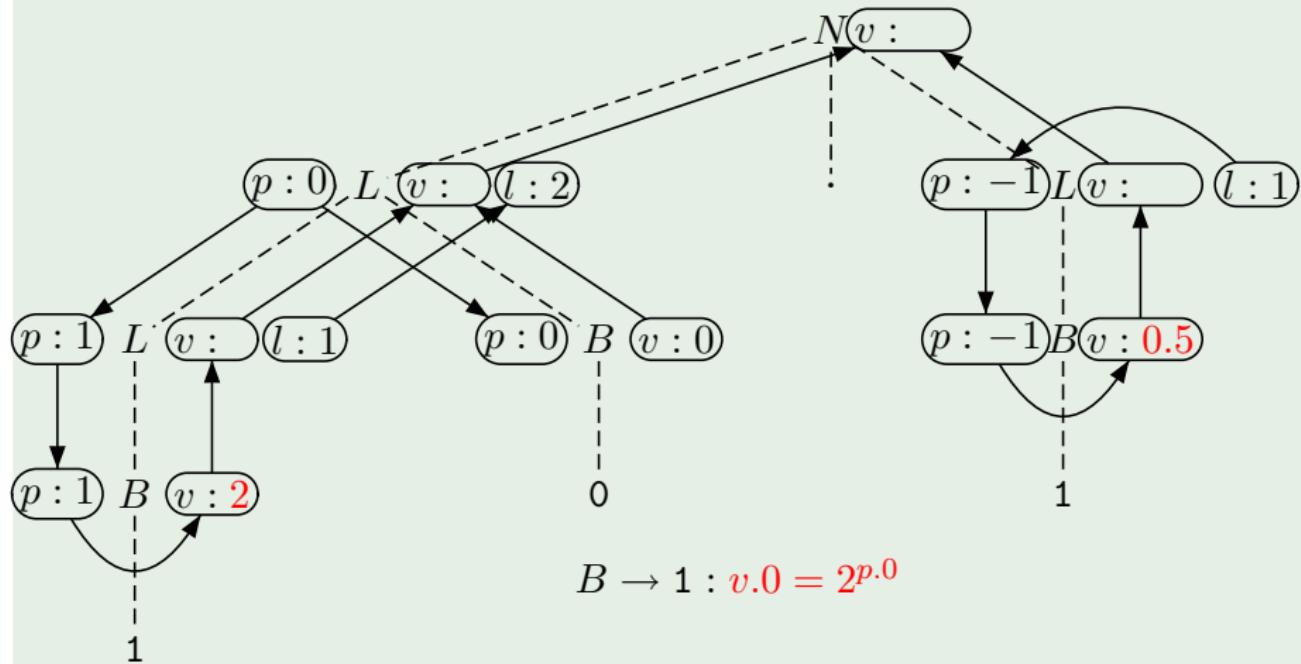
Attributed syntax tree for 10.1:



Example: Knuth's Binary Numbers II

Example (continued)

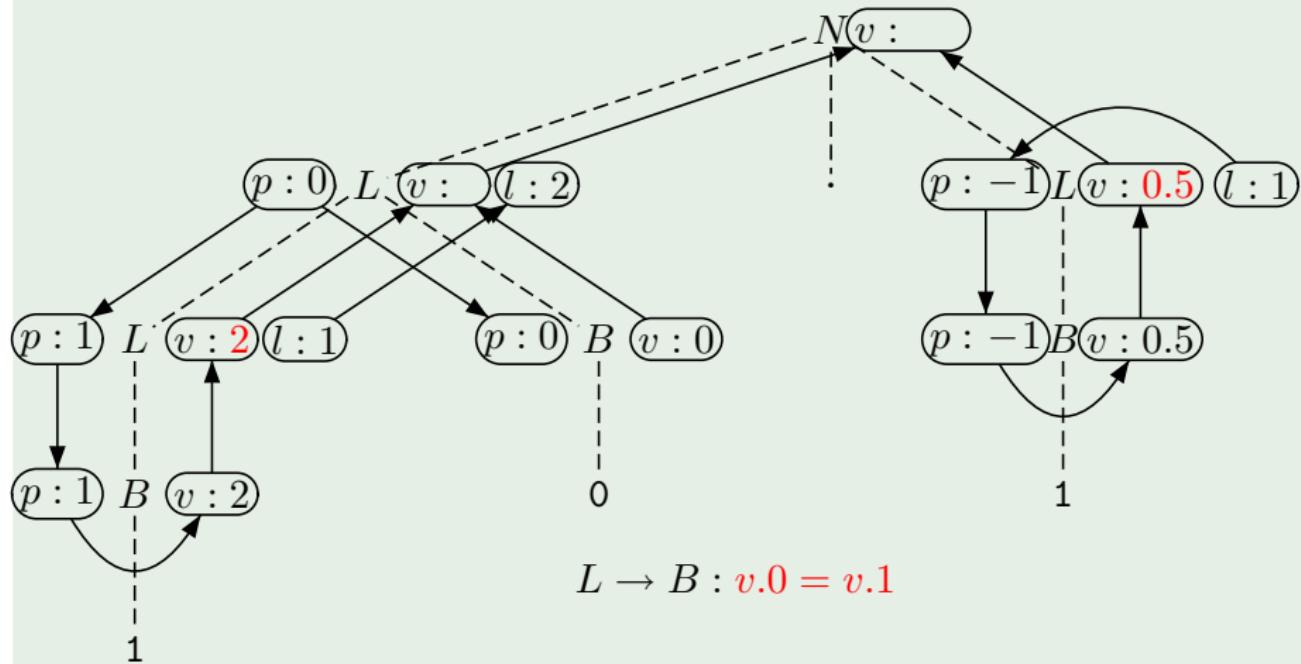
Attributed syntax tree for 10.1:



Example: Knuth's Binary Numbers II

Example (continued)

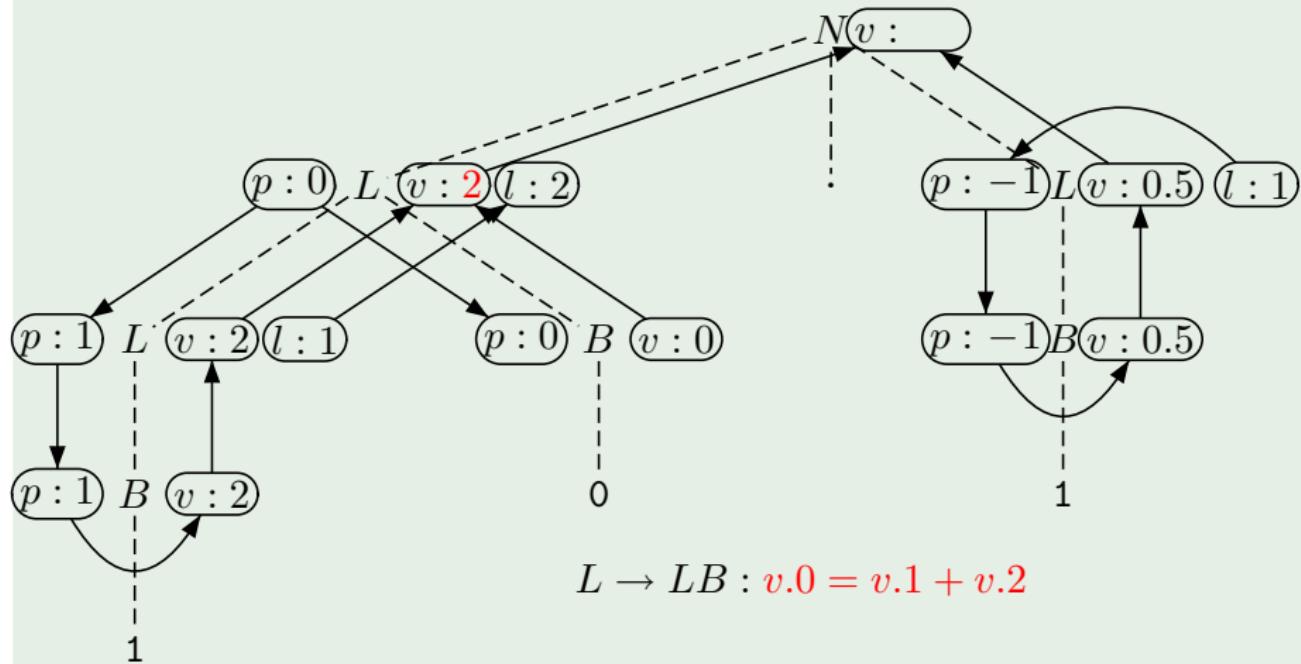
Attributed syntax tree for 10.1:



Example: Knuth's Binary Numbers II

Example (continued)

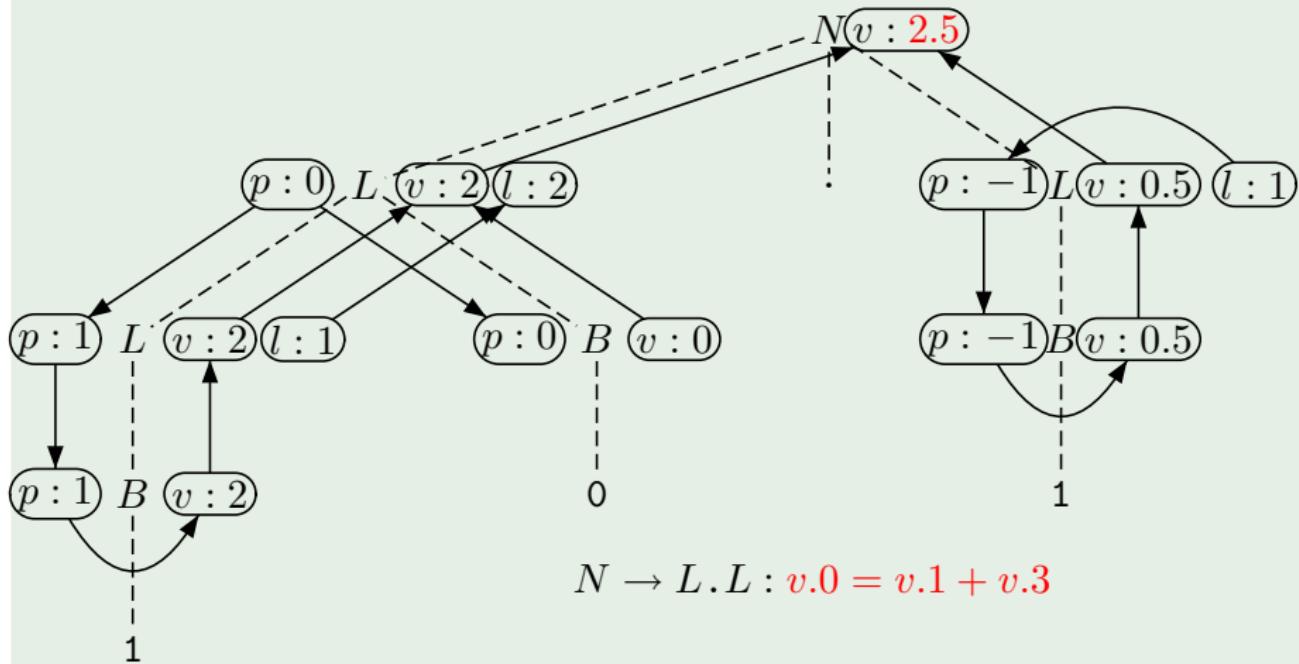
Attributed syntax tree for 10.1:



Example: Knuth's Binary Numbers II

Example (continued)

Attributed syntax tree for 10.1:



- 1 Repetition: Attribute Grammars
- 2 Circularity of Attribute Grammars
- 3 Attribute Dependency Graphs
- 4 Testing Attribute Grammars for Circularity
- 5 The Circularity Test

Definition 14.1 (Solution of attribute equation system)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G . A **solution** of E_t is a mapping

$$v : \text{Var}_t \rightarrow V$$

such that, for every $\alpha.k \in \text{Var}_t$ and $\alpha.k = f(\alpha.k_1, \dots, \alpha.k_n) \in E_t$,

$$v(\alpha.k) = f(v(\alpha.k_1), \dots, v(\alpha.k_n)).$$

Definition 14.1 (Solution of attribute equation system)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G . A **solution** of E_t is a mapping

$$v : \text{Var}_t \rightarrow V$$

such that, for every $\alpha.k \in \text{Var}_t$ and $\alpha.k = f(\alpha.k_1, \dots, \alpha.k_n) \in E_t$,

$$v(\alpha.k) = f(v(\alpha.k_1), \dots, v(\alpha.k_n)).$$

In general, the attribute equation system E_t of a given syntax tree t can have

- no solution,
- exactly one solution, or
- several solutions.

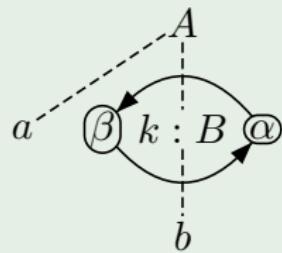
Example 14.2

- $A \rightarrow aB, B \rightarrow b \in P$
- $\alpha \in \text{syn}(B), \beta \in \text{inh}(B)$
- $\beta.2 = f(\alpha.2) \in E_{A \rightarrow aB}$
- $\alpha.0 = g(\beta.0) \in E_{B \rightarrow b}$

Example 14.2

- $A \rightarrow aB, B \rightarrow b \in P$
- $\alpha \in \text{syn}(B), \beta \in \text{inh}(B)$
- $\beta.2 = f(\alpha.2) \in E_{A \rightarrow aB}$
- $\alpha.0 = g(\beta.0) \in E_{B \rightarrow b}$

\implies **cyclic dependency:**

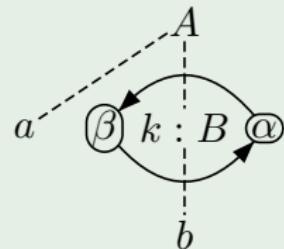


$$E_t : \begin{aligned} \beta.k &= f(\alpha.k) \\ \alpha.k &= g(\beta.k) \end{aligned}$$

Example 14.2

- $A \rightarrow aB, B \rightarrow b \in P$
- $\alpha \in \text{syn}(B), \beta \in \text{inh}(B)$
- $\beta.2 = f(\alpha.2) \in E_{A \rightarrow aB}$
- $\alpha.0 = g(\beta.0) \in E_{B \rightarrow b}$

⇒ cyclic dependency:



⇒ for $V^\alpha := V^\beta := \mathbb{N}$, $g(x) := x$, and

- $f(x) := x + 1$: no solution
- $f(x) := 2x$: exactly one solution
($v(\alpha.k) = v(\beta.k) = 0$)
- $f(x) := x$: infinitely many solutions
($v(\alpha.k) = v(\beta.k) = y$ for any $y \in \mathbb{N}$)

$$E_t : \begin{aligned} \beta.k &= f(\alpha.k) \\ \alpha.k &= g(\beta.k) \end{aligned}$$

Goal: **unique solvability** of equation system
⇒ avoid cyclic dependencies

Goal: **unique solvability** of equation system
⇒ avoid cyclic dependencies

Definition 14.3 (Circularity)

An attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$ is called **circular** if there exists a syntax tree t such that the attribute equation system E_t is recursive (i.e., some attribute variable of t depends on itself). Otherwise it is called **noncircular**.

Goal: **unique solvability** of equation system
⇒ avoid cyclic dependencies

Definition 14.3 (Circularity)

An attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$ is called **circular** if there exists a syntax tree t such that the attribute equation system E_t is recursive (i.e., some attribute variable of t depends on itself). Otherwise it is called **noncircular**.

Remark: because of the division of Var_π into In_π and Out_π , cyclic dependencies cannot occur at production level (see Corollary 14.5).

- 1 Repetition: Attribute Grammars
- 2 Circularity of Attribute Grammars
- 3 Attribute Dependency Graphs
- 4 Testing Attribute Grammars for Circularity
- 5 The Circularity Test

Goal: graphic representation of attribute dependencies

Definition 14.4 (Production dependency graph)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$. Every production $\pi \in P$ determines the **dependency graph** $D_\pi := \langle Var_\pi, \rightarrow_\pi \rangle$ where the set of edges $\rightarrow_\pi \subseteq Var_\pi \times Var_\pi$ is given by

$$x \rightarrow_\pi y \quad \text{iff} \quad y = f(\dots, x, \dots) \in E_\pi.$$

Goal: graphic representation of attribute dependencies

Definition 14.4 (Production dependency graph)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$. Every production $\pi \in P$ determines the **dependency graph** $D_\pi := \langle Var_\pi, \rightarrow_\pi \rangle$ where the set of edges $\rightarrow_\pi \subseteq Var_\pi \times Var_\pi$ is given by

$$x \rightarrow_\pi y \quad \text{iff} \quad y = f(\dots, x, \dots) \in E_\pi.$$

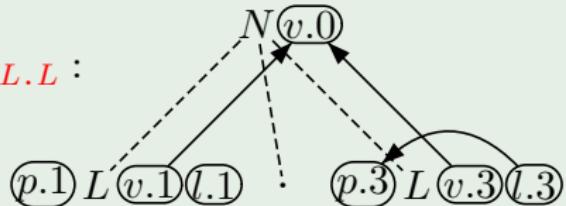
Corollary 14.5

*The dependency graph of a production is acyclic
(since $\rightarrow_\pi \subseteq Out_\pi \times In_\pi$).*

Attribute Dependency Graphs II

Example 14.6 (cf. Example 13.2)

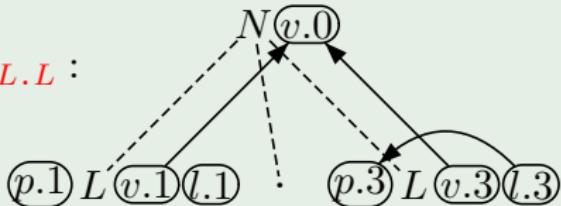
- ① $N \rightarrow L.L :$ $\implies D_{N \rightarrow L.L} :$
 $v.0 = v.1 + v.3$
 $p.1 = 0$
 $p.3 = -l.3$



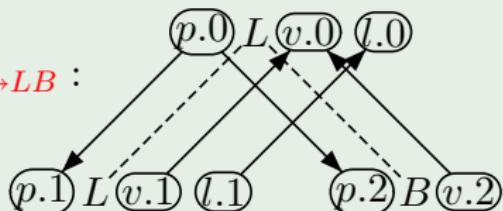
Attribute Dependency Graphs II

Example 14.6 (cf. Example 13.2)

① $N \rightarrow L.L :$ $\Rightarrow D_{N \rightarrow L.L} :$
 $v.0 = v.1 + v.3$
 $p.1 = 0$
 $p.3 = -l.3$



② $L \rightarrow LB :$ $\Rightarrow D_{N \rightarrow LB} :$
 $v.0 = v.1 + v.2$
 $l.0 = l.1 + 1$
 $p.1 = p.0 + 1$
 $p.2 = p.0$



Attribute Dependency Graphs III

Just as the attribute equation system E_t of a syntax tree t is obtained from the semantic rules of the contributing productions, the dependency graph of t is obtained by “glueing together” the dependency graphs of the productions.

Attribute Dependency Graphs III

Just as the attribute equation system E_t of a syntax tree t is obtained from the semantic rules of the contributing productions, the dependency graph of t is obtained by “glueing together” the dependency graphs of the productions.

Definition 14.7 (Tree dependency graph)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G .

- The **dependency graph** of t is defined by $D_t := \langle Var_t, \rightarrow_t \rangle$ where the set of edges $\rightarrow_t \subseteq Var_t \times Var_t$ is given by $x \rightarrow_t y \quad \text{iff} \quad y = f(\dots, x, \dots) \in E_t$.
- D_t is called **cyclic** if there exists $x \in Var_t$ such that $x \rightarrow_t^+ x$.

Attribute Dependency Graphs III

Just as the attribute equation system E_t of a syntax tree t is obtained from the semantic rules of the contributing productions, the dependency graph of t is obtained by “glueing together” the dependency graphs of the productions.

Definition 14.7 (Tree dependency graph)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G .

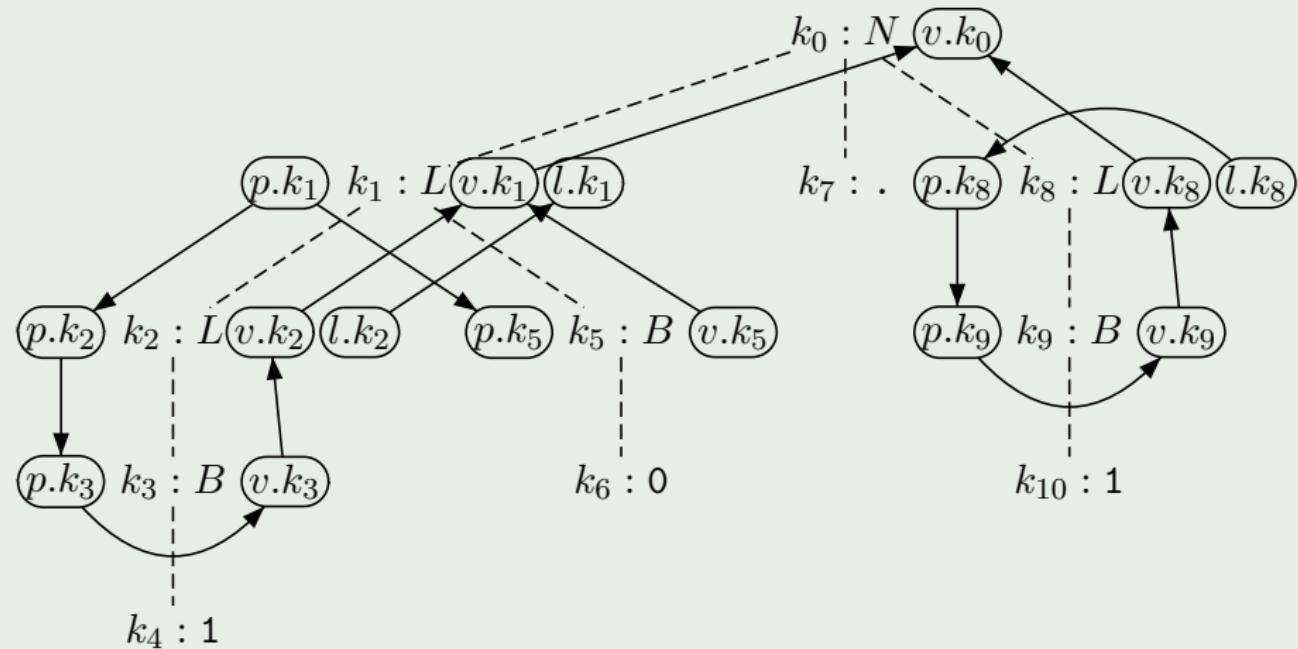
- The **dependency graph** of t is defined by $D_t := \langle Var_t, \rightarrow_t \rangle$ where the set of edges $\rightarrow_t \subseteq Var_t \times Var_t$ is given by
$$x \rightarrow_t y \quad \text{iff} \quad y = f(\dots, x, \dots) \in E_t.$$
- D_t is called **cyclic** if there exists $x \in Var_t$ such that $x \rightarrow_t^+ x$.

Corollary 14.8

An attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$ is circular iff there exists a syntax tree t of G such that D_t is cyclic.

Example 14.9 (cf. Example 13.2)

(Acyclic) dependency graph of the syntax tree for 10.1:



- 1 Repetition: Attribute Grammars
- 2 Circularity of Attribute Grammars
- 3 Attribute Dependency Graphs
- 4 Testing Attribute Grammars for Circularity
- 5 The Circularity Test

Observation: a cycle in the dependency graph D_t of a given syntax tree t is caused by the occurrence of a “cover” production

$\pi = A_0 \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ in a node k_0 of t such that

- the dependencies in E_{k_0} yield the “upper end” of the cycle and
- for at least one $i \in [r]$, some attributes in $\text{syn}(A_i)$ depend on attributes in $\text{inh}(A_i)$.

Observation: a cycle in the dependency graph D_t of a given syntax tree t is caused by the occurrence of a “cover” production

$\pi = A_0 \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ in a node k_0 of t such that

- the dependencies in E_{k_0} yield the “upper end” of the cycle and
- for at least one $i \in [r]$, some attributes in $\text{syn}(A_i)$ depend on attributes in $\text{inh}(A_i)$.

Example 14.10

on the board

Observation: a cycle in the dependency graph D_t of a given syntax tree t is caused by the occurrence of a “cover” production

$\pi = A_0 \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ in a node k_0 of t such that

- the dependencies in E_{k_0} yield the “upper end” of the cycle and
- for at least one $i \in [r]$, some attributes in $\text{syn}(A_i)$ depend on attributes in $\text{inh}(A_i)$.

Example 14.10

on the board

To identify such “critical” situations we need to determine the possible ways in which attributes in $\text{syn}(A_i)$ can depend on attributes in $\text{inh}(A_i)$.

Definition 14.11 (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

- If t is a syntax tree with root label $A \in N$ and root node k , $\alpha \in \text{syn}(A)$, and $\beta \in \text{inh}(A)$ such that $\beta.k \rightarrow_t^+ \alpha.k$, then α is dependent on β below A in t (notation: $\beta \xrightarrow{A} \alpha$).

Definition 14.11 (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

- If t is a syntax tree with root label $A \in N$ and root node k , $\alpha \in \text{syn}(A)$, and $\beta \in \text{inh}(A)$ such that $\beta.k \rightarrow_t^+ \alpha.k$, then α is dependent on β below A in t (notation: $\beta \xrightarrow{A} \alpha$).
- For every syntax tree t with root label $A \in N$,

$$\text{is}(A, t) := \{(\beta, \alpha) \in \text{inh}(A) \times \text{syn}(A) \mid \beta \xrightarrow{A} \alpha \text{ in } t\}.$$

Definition 14.11 (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

- If t is a syntax tree with root label $A \in N$ and root node k , $\alpha \in \text{syn}(A)$, and $\beta \in \text{inh}(A)$ such that $\beta.k \rightarrow_t^+ \alpha.k$, then α is **dependent on β below A in t** (notation: $\beta \xrightarrow{A} \alpha$).
- For every syntax tree t with root label $A \in N$,
$$is(A, t) := \{(\beta, \alpha) \in \text{inh}(A) \times \text{syn}(A) \mid \beta \xrightarrow{A} \alpha \text{ in } t\}.$$
- For every $A \in N$,
$$IS(A) := \{is(A, t) \mid t \text{ syntax tree with root label } A\} \subseteq 2^{Inh \times Syn}.$$

Definition 14.11 (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

- If t is a syntax tree with root label $A \in N$ and root node k , $\alpha \in \text{syn}(A)$, and $\beta \in \text{inh}(A)$ such that $\beta.k \rightarrow_t^+ \alpha.k$, then α is **dependent on β below A in t** (notation: $\beta \xrightarrow{A} \alpha$).
- For every syntax tree t with root label $A \in N$,
$$\text{is}(A, t) := \{(\beta, \alpha) \in \text{inh}(A) \times \text{syn}(A) \mid \beta \xrightarrow{A} \alpha \text{ in } t\}.$$
- For every $A \in N$,
$$\begin{aligned} \text{IS}(A) &:= \{ \text{is}(A, t) \mid t \text{ syntax tree with root label } A \} \\ &\subseteq 2^{\text{Inh} \times \text{Syn}}. \end{aligned}$$

Remark: it is important that $\text{IS}(A)$ is a **system** of attribute dependence sets, not a **union** (later: **strong noncircularity**).

Definition 14.11 (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

- If t is a syntax tree with root label $A \in N$ and root node k , $\alpha \in \text{syn}(A)$, and $\beta \in \text{inh}(A)$ such that $\beta.k \rightarrow_t^+ \alpha.k$, then α is **dependent on β below A in t** (notation: $\beta \xrightarrow{A} \alpha$).
- For every syntax tree t with root label $A \in N$,
$$\text{is}(A, t) := \{(\beta, \alpha) \in \text{inh}(A) \times \text{syn}(A) \mid \beta \xrightarrow{A} \alpha \text{ in } t\}.$$
- For every $A \in N$,
$$\begin{aligned} \text{IS}(A) &:= \{\text{is}(A, t) \mid t \text{ syntax tree with root label } A\} \\ &\subseteq 2^{\text{Inh} \times \text{Syn}}. \end{aligned}$$

Remark: it is important that $\text{IS}(A)$ is a **system** of attribute dependence sets, not a **union** (later: **strong noncircularity**).

Example 14.12

on the board

- 1 Repetition: Attribute Grammars
- 2 Circularity of Attribute Grammars
- 3 Attribute Dependency Graphs
- 4 Testing Attribute Grammars for Circularity
- 5 The Circularity Test

The Circularity Test I

In the circularity test, the dependency systems $IS(A)$ are iteratively computed. It employs the following notation:

Definition 14.13

Given $\pi = A \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ and $is_i \subseteq \text{inh}(A_i) \times \text{syn}(A_i)$ for every $i \in [r]$, let

$$is[\pi; is_1, \dots, is_r] \subseteq \text{inh}(A) \times \text{syn}(A)$$

be given by

$$is[\pi; is_1, \dots, is_r] := \left\{ (\beta, \alpha) \mid (\beta.0, \alpha.0) \in (\rightarrow_\pi \cup \bigcup_{i=1}^r \{(\beta'.p_i, \alpha'.p_i) \mid (\beta', \alpha') \in is_i\})^+ \right\}$$

where $p_i := \sum_{j=1}^i |w_{j-1}| + i$.

The Circularity Test I

In the circularity test, the dependency systems $IS(A)$ are iteratively computed. It employs the following notation:

Definition 14.13

Given $\pi = A \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ and $is_i \subseteq \text{inh}(A_i) \times \text{syn}(A_i)$ for every $i \in [r]$, let

$$is[\pi; is_1, \dots, is_r] \subseteq \text{inh}(A) \times \text{syn}(A)$$

be given by

$$is[\pi; is_1, \dots, is_r] := \left\{ (\beta, \alpha) \mid (\beta.0, \alpha.0) \in (\rightarrow_\pi \cup \bigcup_{i=1}^r \{(\beta'.p_i, \alpha'.p_i) \mid (\beta', \alpha') \in is_i\})^+ \right\}$$

where $p_i := \sum_{j=1}^i |w_{j-1}| + i$.

Example 14.14

on the board

The Circularity Test II

Algorithm 14.15 (Circularity test for attribute grammars)

Input: $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$

Procedure: ① for every $A \in N$, iteratively construct $IS(A)$ as follows:

- ① if $\pi = A \rightarrow w \in P$, then $is[\pi] \in IS(A)$
- ② if $\pi = A \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ and $is_i \in IS(A_i)$ for every $i \in [r]$, then $is[\pi; is_1, \dots, is_r] \in IS(A)$

② test whether \mathfrak{A} is circular by checking if there exist $\pi = A \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ and $is_i \in IS(A_i)$ for every $i \in [r]$ such that the following relation is cyclic:

$$\rightarrow_\pi \cup \bigcup_{i=1}^r \{(\beta.p_i, \alpha.p_i) \mid (\beta, \alpha) \in is_i\}$$

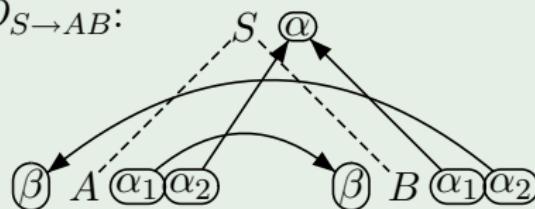
$$(\text{where } p_i := \sum_{j=1}^i |w_{j-1}| + i)$$

Output: “yes” or “no”

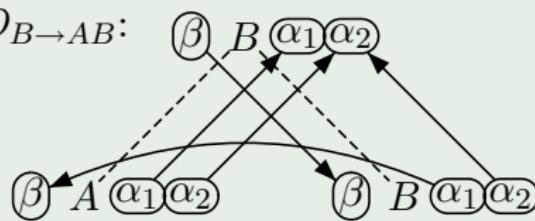
The Circularity Test III

Example 14.16

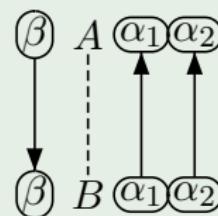
$D_{S \rightarrow AB}$:



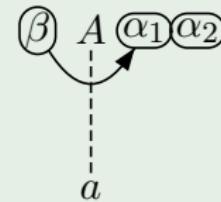
$D_{B \rightarrow AB}$:



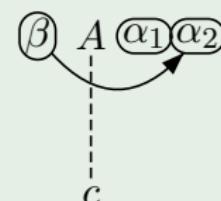
$D_{A \rightarrow B}$:



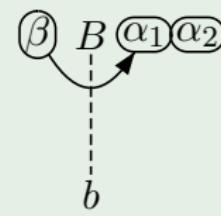
$D_{A \rightarrow a}$:



$D_{A \rightarrow c}$:



$D_{B \rightarrow b}$:



Application of Algorithm 14.15: on the board