Compiler Construction

Lecture 14: Semantic Analysis II
(Circularity of Attribute Grammars)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

@ Repetition: Attribute Grammars

Rm Compiler Construction Summer semester 2

Formal Definition of Attribute Grammars 1

Definition (Attribute grammar)
Let G = (N, X, P,S) € CFGs, with X := N 3.

® Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

@ Let att : X — 24% be an attribute assignment, and let
syn(Y) := att(Y) N Syn and inh(Y) := att(Y") N Inh for every Y € X.
@ Every production m = Yy — Y;...Y, € P determines the set
Vary = {a.i| o € att(Y;),i € {0,...,r}}
of attribute variables of w with the subsets of inner and outer variables:
Ing :={a.i| (i =0,a €syn(Y;)) or (i € [r],« € inh(Y;))}
Out, := Vary \ In,
@ A semantic rule of 7 is an equation of the form
ot = fag.i1, ..., 0pn.ip)
where n € N, a.i € Ing, 0.1 € Outr, and f: V1 x ... x VO — Ve,
@ For each m € P, let E, be a set with exactly one semantic rule for every
inner variable of 7, and let £ := (E, | m € P).

Then A := (G, E, V) is called an attribute grammar: 2 € AG.

m Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I

Example (synthesized + inherited attributes)

Binary numbers (with fraction):
G5 : Numbers N — L
N —-L.L
Lists L — B
L — LB
Bits B —o0
Bits B—1

m Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I

Example (synthesized + inherited attributes)

Binary numbers (with fraction):
G5 : Numbers N — L v.0 = v.1
p.l =0
N—L.L v0 = v.1+0v.3
p.l =0
p3 = —1.3
Lists L— B v.0 = v.1
1.0 =1
p.l = p.0
L—-LB v0 = vl+wv2
1.0 = 1141
p.l = p0+1
p.2 = p0
Bits B —o0 0=0
Bits B —1 v.0 = 2°0
Synthesized attributes of N, L, B: v (value; domain: V' := Q)
of L: I (length; domain: V! :=N)
Inherited attribute of L,B: p (position; domain: V? :=7Z)

m Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example (continued)

Syntax tree for 10.1:

o -t
s e

m Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

L—LB:l0=101+1

m Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

N—-L.L:p1=0

m Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

L— B:v.0=wv.1

m Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

L—LB:v0=v1+v2

m Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

N—L.L:v0=v1+2.3

m Compiler Construction Summer semester 2008

© Circularity of Attribute Grammars

Rm Compiler Construction Summer semester 2

Solvability of the Attribute Equation System 1

Definition 14.1 (Solution of attribute equation system)

Let A = (G, E, V) € AG, and let t be a syntax tree of G. A solution of
E,; is a mapping

v: Vary — V

such that, for every a.k € Var, and a.k = f(a.ky,...,a.ky,) € Ey,

v(ak) = f(v(a.kr),...,v(aky)).

m' Compiler Construction Summer semester 2008 7

Solvability of the Attribute Equation System 1

Definition 14.1 (Solution of attribute equation system)

Let A = (G, E, V) € AG, and let t be a syntax tree of G. A solution of
E,; is a mapping
v: Vary — V

such that, for every a.k € Var, and a.k = f(a.ky,...,a.ky,) € Ey,

v(ak) = f(v(a.kr),...,v(aky)).

In general, the attribute equation system FE; of a given syntax tree ¢
can have

@ no solution,
@ exactly one solution, or

@ several solutions.

m Compiler Construction Summer semester 2008 7

Solvability of the Attribute Equation System II

Example 14.2

e A—aB,B—beP

@ a €syn(B), # € inh(B)
32 = f(a.2) € Eaupn
o a.0 =g(B.0) € Eg_yp

m Compiler Construction Summer semester 2008 8

Solvability of the Attribute Equation System II

Example 14.2

e A—aB,B—beP
@ a €syn(B), # € inh(B) — cyclic dependency:
32 = f(a.2) € Eaupn
o .0 =g(B.0) € Eg_yp /// i
a” @@@
b
a.k = g(B.k)

m Compiler Construction Summer semester 2008

Solvability of the Attribute Equation System II

Example 14.2

e A—aB,B—beP

@ a €syn(B), # € inh(B) — cyclic dependency:
32 = f(a.2) € Eaupn

o .0 =g(B.0) € Eg_yp A

a’/
= for V®:= VP :=N, g(z) := z, and

@ f(z) := z + 1: no solution b
@ f(z) := 2x: exactly one solution E: Bk
(v(ak) = v(B.k) = 0) ok
@ f(z) := x: infinitely many solutions
(v(a.k) = v(B.k) =y for any y € N)

m Compiler Construction Summer semester 2008

Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

Rm Compiler Construction Summer semester 2008

Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

Definition 14.3 (Circularity)

An attribute grammar A = (G, E, V) € AG is called circular if there
exists a syntax tree t such that the attribute equation system FE; is
recursive (i.e., some attribute variable of ¢ depends on itself).
Otherwise it is called noncircular.

m' Compiler Construction Summer semester 2008 ©

Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

Definition 14.3 (Circularity)

An attribute grammar A = (G, E, V) € AG is called circular if there
exists a syntax tree t such that the attribute equation system FE; is
recursive (i.e., some attribute variable of ¢ depends on itself).
Otherwise it is called noncircular.

Remark: because of the division of Var, into In, and Out,, cyclic
dependencies cannot occur at production level (see Corollary 14.5).

m' Compiler Construction Summer semester 2008

© Attribute Dependency Graphs

Rm Compiler Construction Summer semester 2

Attribute Dependency Graphs I

Goal: graphic representation of attribute dependencies

Definition 14.4 (Production dependency graph)

Let 2= (G,E, V) € AG with G = (N, %, P,S). Every production
m € P determines the dependency graph D := (Var,, —,) where the
set of edges —,C Var, x Var, is given by

x—ry it y=f(G..,z,...) € E,.

m' Compiler Construction Summer semester 2008 11

Attribute Dependency Graphs I

Goal: graphic representation of attribute dependencies

Definition 14.4 (Production dependency graph)

Let 2= (G,E, V) € AG with G = (N, %, P,S). Every production
m € P determines the dependency graph D := (Var,, —,) where the
set of edges —,C Var, x Var, is given by

x—ry it y=f(G..,z,...) € E,.

The dependency graph of a production is acyclic
(since —C Outy, X Ing).

m Compiler Construction Summer semester 2008 11

Attribute Dependency Graphs 11

Example 14.6 (cf. Example 13.2)

m Compiler Construction Summer semester 2008 12

Attribute Dependency Graphs 11

Example 14.6 (cf. Example 13.2)

Compiler Construction Summer semester 2008 12

Attribute Dependency Graphs III

Just as the attribute equation system FE; of a syntax tree ¢ is obtained
from the semantic rules of the contributing productions, the
dependency graph of ¢ is obtained by “glueing together” the
dependency graphs of the productions.

Rm Compiler Construction Summer semester 2008 13

Attribute Dependency Graphs III

Just as the attribute equation system FE; of a syntax tree ¢ is obtained
from the semantic rules of the contributing productions, the
dependency graph of ¢ is obtained by “glueing together” the
dependency graphs of the productions.

Definition 14.7 (Tree dependency graph)

Let A = (G,E, V) € AG, and let t be a syntax tree of G.

o The dependency graph of ¢ is defined by
Dy := (Vary, —¢) where the set of edges —;C Vary x Var, is given by
x—y iff y=f(..,z,...) € E.

o Dy is called cyclic if there exists x € Var; such that x —; z.

m Compiler Construction Summer semester 2008 13

Attribute Dependency Graphs III

Just as the attribute equation system FE; of a syntax tree ¢ is obtained
from the semantic rules of the contributing productions, the
dependency graph of ¢ is obtained by “glueing together” the
dependency graphs of the productions.

Definition 14.7 (Tree dependency graph)
Let A = (G,E, V) € AG, and let t be a syntax tree of G.

o The dependency graph of ¢ is defined by
Dy := (Var;, —¢) where the set of edges —;C Var; x Vary is given by
x—py it y=f(~..,z,...) € E.

o Dy is called cyclic if there exists x € Var; such that x —; z.

Corollary 14.8

An attribute grammar A = (G, E, V') € AG is circular iff there exists a
syntax tree t of G such that Dy is cyclic.

m Compiler Construction Summer semester 2008 13

Attribute Dependency Graphs IV

Example 14.9 (cf. Example 13.2)

(Acyclic) dependency graph of the syntax tree for 10.1:

Compiler Construction Summer semester 2008 14

@ Testing Attribute Grammars for Circularity

Rm Compiler Construction Summer semester 2

Attribute Dependency Graphs and Circularity 1

Observation: a cycle in the dependency graph D; of a given syntax
tree t is caused by the occurrence of a “cover” production
= Ay — wodjwy ... A,w, € P in a node kg of ¢ such that

o the dependencies in Ej, yield the “upper end” of the cycle and

o for at least one ¢ € [r], some attributes in syn(4;) depend on
attributes in inh(A;).

Rm Compiler Construction Summer semester 2008 16

Attribute Dependency Graphs and Circularity 1

Observation: a cycle in the dependency graph D; of a given syntax
tree t is caused by the occurrence of a “cover” production
= Ay — wodjwy ... A,w, € P in a node kg of ¢ such that

o the dependencies in Ej, yield the “upper end” of the cycle and

o for at least one ¢ € [r], some attributes in syn(4;) depend on
attributes in inh(A;).

on the board l

Rm Compiler Construction Summer semester 2008 16

Attribute Dependency Graphs and Circularity 1

Observation: a cycle in the dependency graph D; of a given syntax
tree t is caused by the occurrence of a “cover” production
= Ay — wodjwy ... A,w, € P in a node kg of ¢ such that
o the dependencies in Ej, yield the “upper end” of the cycle and
o for at least one ¢ € [r], some attributes in syn(4;) depend on
attributes in inh(A;).

on the board l

To identify such “critical” situations we need to determine the possible
ways in which attributes in syn(A4;) can depend on attributes in

Rm Compiler Construction Summer semester 2008 16

Attribute Dependency Graphs and Circularity II

Definition 14.11 (Attribute dependence)

Let A = (G, E, V) € AG with G = (N, %, P, S).

o If ¢ is a syntax tree with root label A € N and root node k,
a € syn(A), and (3 € inh(A) such that 8.k —; a.k, then o is

dependent on 3 below A in ¢ (notation: [&, Q).

m Compiler Construction Summer semester 2008 17

Attribute Dependency Graphs and Circularity II

Definition 14.11 (Attribute dependence)

Let A= (G,E, V) € AG with G = (N,X, P, S).
o If ¢ is a syntax tree with root label A € N and root node k,
a € syn(A), and (3 € inh(A) such that 8.k —; a.k, then o is
dependent on 3 below A in ¢ (notation: [&, Q).
o For every syntax tree t with root label A € N,

is(A,t) = {(8,) € inh(A) x syn(A4) | B <> o in t}.

m Compiler Construction Summer semester 2008 17

Attribute Dependency Graphs and Circularity II

Definition 14.11 (Attribute dependence)

Let A = (G, E, V) € AG with G = (N, %, P, S).

o If ¢ is a syntax tree with root label A € N and root node k,
a € syn(A), and (3 € inh(A) such that 8.k —; a.k, then o is

dependent on 3 below A in ¢ (notation: [&, Q).
o For every syntax tree t with root label A € N,
is(A,t) = {(8,) € inh(A) x syn(A4) | B <> o in t}.
o For every A € N,

IS(A) := {is(A,t) | t syntax tree with root label A}
C 2Inh><5’yn‘

m Compiler Construction Summer semester 2008 17

Attribute Dependency Graphs and Circularity II

Definition 14.11 (Attribute dependence)

Let A = (G, E, V) € AG with G = (N, %, P, S).

o If ¢ is a syntax tree with root label A € N and root node k,
a € syn(A), and (3 € inh(A) such that 8.k —; a.k, then o is

dependent on 3 below A in ¢ (notation: [& Q).
o For every syntax tree t with root label A € N,
is(A,t) = {(8,) € inh(A) x syn(A4) | B <> o in t}.
o For every A € N,

IS(A) := {is(A,t) | t syntax tree with root label A}
C 2Inh><Syn‘

Remark: it is important that IS(A) is a system of attribute
dependence sets, not a union (later: strong noncircularity).

m Compiler Construction Summer semester 2008

Attribute Dependency Graphs and Circularity II

Definition 14.11 (Attribute dependence)

Let A = (G, E, V) € AG with G = (N, %, P, S).

o If ¢ is a syntax tree with root label A € N and root node k,
a € syn(A), and (3 € inh(A) such that 8.k —; a.k, then o is

dependent on 3 below A in ¢ (notation: [& Q).
o For every syntax tree t with root label A € N,
A
is(A,t) :=={(B,a) € inh(A) x syn(4) | f — « in t}.
o For every A € N,

IS(A) := {is(A,t) | t syntax tree with root label A}
C 2Inh><Syn‘

Remark: it is important that IS(A) is a system of attribute
dependence sets, not a union (later: strong noncircularity).

on the board ‘

m Compiler Construction Summer semester 2008 17

© The Circularity Test

Rm Compiler Construction Summer semester 2

The Circularity Test I

In the circularity test, the dependency systems IS(A) are iteratively
computed. It employs the following notation:

Definition 14.13
Given m = A — woAjw; ... Ayw, € P and is; C inh(A;) x syn(4;) for

every i € [r], let
is[m;is1, ..., is,] C inh(A) x syn(A)

be given by
STy AS1, .., 0Sp) 1=

{(8,0)1(80,0.0) € (=x VUL {(8'pi,0') | (8,) € isi})* }

where p; := Z;:l lwj—1| + 4.

Compiler Construction Summer semester 2008 19

The Circularity Test I

In the circularity test, the dependency systems IS(A) are iteratively
computed. It employs the following notation:

Definition 14.13
Given 1 = A — woAjws ... Ayw, € P and is; C inh(A4;) x syn(4;) for

every i € [r], let
is[m;is1, ..., is,] C inh(A) x syn(A)

be given by
STy AS1, .., 0Sp) 1=

{(8,0)1(80,0.0) € (=x VUL {(8'pi,0') | (8,) € isi})* }

where p; := Z;Zl lwj—1| + 4.

on the board

Compiler Construction Summer semester 2008 19

The Circularity Test 11

Algorithm 14.15 (Circularity test for attribute grammars)

Input: A= (G,E, V) € AG with G = (N,%, P, S)
Procedure: @ for every A € N, iteratively construct IS(A) as
follows:
® ifm=A— weE P, then is[r] € IS(A)
Q ifmt=A— wyAiws ... Ayw, € P and is; € IS(A4;)
for every i € [r], then is[m;isy,...,1is,] € IS(A)
© test whether U is circular by checking if there exist
T =A— wyAjw; ... Ayw, € P and is; € IS(A;) for
every i € [r] such that the following relation is cyclic:
o UU (B i i) | (B,a) € isi}
(where p; := Y% |wj—1] +1)
Output: “yes” or “no”

m Compiler Construction Summer semester 2008 20

The Circularity Test 111

Example 14.16

Application of Algorithm 14.15: on the board

m Compiler Construction Summer semester 2008 21

	Repetition: Attribute Grammars
	Circularity of Attribute Grammars
	Attribute Dependency Graphs
	Testing Attribute Grammars for Circularity
	The Circularity Test

