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Formal Definition of Attribute Grammars 1

Definition (Attribute grammar)
Let G = (N, X, P,S) € CFGs, with X := N 3.

® Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

@ Let att : X — 24% be an attribute assignment, and let
syn(Y) := att(Y) N Syn and inh(Y) := att(Y") N Inh for every Y € X.
@ Every production m = Yy — Y;...Y, € P determines the set
Vary = {a.i| o € att(Y;),i € {0,...,r}}
of attribute variables of w with the subsets of inner and outer variables:
Ing :={a.i| (i =0,a €syn(Y;)) or (i € [r],« € inh(Y;))}
Out, := Vary \ In,
@ A semantic rule of 7 is an equation of the form
ot = fag.i1, ..., 0pn.ip)
where n € N, a.i € Ing, 0.1 € Outr, and f: V1 x ... x VO — Ve,
@ For each m € P, let E, be a set with exactly one semantic rule for every
inner variable of 7, and let £ := (E, | m € P).

Then A := (G, E, V) is called an attribute grammar: 2 € AG.
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Example: Knuth’s Binary Numbers I

Example (synthesized + inherited attributes)

Binary numbers (with fraction):
G5 : Numbers N — L
N —-L.L
Lists L — B
L — LB
Bits B —o0
Bits B—1
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Example: Knuth’s Binary Numbers I

Example (synthesized + inherited attributes)

Binary numbers (with fraction):
G5 : Numbers N — L v.0 = v.1
p.l =0
N—L.L v0 = v.1+0v.3
p.l =0
p3 = —1.3
Lists L— B v.0 = v.1
1.0 =1
p.l = p.0
L—-LB v0 = vl+wv2
1.0 = 1141
p.l = p0+1
p.2 = p0
Bits B —o0 0=0
Bits B —1 v.0 = 2°0
Synthesized attributes of N, L, B: v (value; domain: V' := Q)
of L: I (length; domain: V! :=N)
Inherited attribute of L,B:  p (position; domain: V? :=7Z)
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Example: Knuth’s Binary Numbers I1

Example (continued)

Syntax tree for 10.1:

o -t
s e
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Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:
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Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:
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Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

L—LB:l0=101+1
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Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

N—-L.L:p1=0
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Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:
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Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:
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Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:
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Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

Compiler Construction Summer semester 2008



Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:
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Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:
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Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

L— B:v.0=wv.1
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Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

L—LB:v0=v1+v2
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Example: Knuth’s Binary Numbers I1

Example (continued)
Attributed syntax tree for 10.1:

N—L.L:v0=v1+2.3
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© Circularity of Attribute Grammars
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Solvability of the Attribute Equation System 1

Definition 14.1 (Solution of attribute equation system)

Let A = (G, E, V) € AG, and let t be a syntax tree of G. A solution of
E,; is a mapping

v: Vary — V

such that, for every a.k € Var, and a.k = f(a.ky,...,a.ky,) € Ey,

v(ak) = f(v(a.kr),...,v(aky)).
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Solvability of the Attribute Equation System 1

Definition 14.1 (Solution of attribute equation system)

Let A = (G, E, V) € AG, and let t be a syntax tree of G. A solution of
E,; is a mapping
v: Vary — V

such that, for every a.k € Var, and a.k = f(a.ky,...,a.ky,) € Ey,

v(ak) = f(v(a.kr),...,v(aky)).

In general, the attribute equation system FE; of a given syntax tree ¢
can have

@ no solution,
@ exactly one solution, or

@ several solutions.
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Solvability of the Attribute Equation System II

Example 14.2

e A—aB,B—beP

@ a €syn(B), # € inh(B)
32 = f(a.2) € Eaupn
o a.0 =g(B.0) € Eg_yp
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Solvability of the Attribute Equation System II

Example 14.2

e A—aB,B—beP
@ a €syn(B), # € inh(B) — cyclic dependency:
32 = f(a.2) € Eaupn
o .0 =g(B.0) € Eg_yp /// i
a” @@@
b
a.k = g(B.k)
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Solvability of the Attribute Equation System II

Example 14.2

e A—aB,B—beP

@ a €syn(B), # € inh(B) — cyclic dependency:
32 = f(a.2) € Eaupn

o .0 =g(B.0) € Eg_yp A

a’/
= for V®:= VP :=N, g(z) := z, and

@ f(z) := z + 1: no solution b
@ f(z) := 2x: exactly one solution E: Bk
(v(ak) = v(B.k) = 0) ok
@ f(z) := x: infinitely many solutions
(v(a.k) = v(B.k) =y for any y € N)

m Compiler Construction Summer semester 2008



Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies
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Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

Definition 14.3 (Circularity)

An attribute grammar A = (G, E, V) € AG is called circular if there
exists a syntax tree t such that the attribute equation system FE; is
recursive (i.e., some attribute variable of ¢ depends on itself).
Otherwise it is called noncircular.
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Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

Definition 14.3 (Circularity)

An attribute grammar A = (G, E, V) € AG is called circular if there
exists a syntax tree t such that the attribute equation system FE; is
recursive (i.e., some attribute variable of ¢ depends on itself).
Otherwise it is called noncircular.

Remark: because of the division of Var, into In, and Out,, cyclic
dependencies cannot occur at production level (see Corollary 14.5).
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© Attribute Dependency Graphs
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Attribute Dependency Graphs I

Goal: graphic representation of attribute dependencies

Definition 14.4 (Production dependency graph)

Let 2= (G,E, V) € AG with G = (N, %, P,S). Every production
m € P determines the dependency graph D := (Var,, —,) where the
set of edges —,C Var, x Var, is given by

x—ry it y=f(G..,z,...) € E,.
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Attribute Dependency Graphs I

Goal: graphic representation of attribute dependencies

Definition 14.4 (Production dependency graph)

Let 2= (G,E, V) € AG with G = (N, %, P,S). Every production
m € P determines the dependency graph D := (Var,, —,) where the
set of edges —,C Var, x Var, is given by

x—ry it y=f(G..,z,...) € E,.

The dependency graph of a production is acyclic
(since —C Outy, X Ing).
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Attribute Dependency Graphs 11

Example 14.6 (cf. Example 13.2)
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Attribute Dependency Graphs 11

Example 14.6 (cf. Example 13.2)
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Attribute Dependency Graphs III

Just as the attribute equation system FE; of a syntax tree ¢ is obtained
from the semantic rules of the contributing productions, the
dependency graph of ¢ is obtained by “glueing together” the
dependency graphs of the productions.
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Attribute Dependency Graphs III

Just as the attribute equation system FE; of a syntax tree ¢ is obtained
from the semantic rules of the contributing productions, the
dependency graph of ¢ is obtained by “glueing together” the
dependency graphs of the productions.

Definition 14.7 (Tree dependency graph)

Let A = (G,E, V) € AG, and let t be a syntax tree of G.

o The dependency graph of ¢ is defined by
Dy := (Vary, —¢) where the set of edges —;C Vary x Var, is given by
x—y iff y=f(..,z,...) € E.

o Dy is called cyclic if there exists x € Var; such that x —; z.
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Attribute Dependency Graphs III

Just as the attribute equation system FE; of a syntax tree ¢ is obtained
from the semantic rules of the contributing productions, the
dependency graph of ¢ is obtained by “glueing together” the
dependency graphs of the productions.

Definition 14.7 (Tree dependency graph)
Let A = (G,E, V) € AG, and let t be a syntax tree of G.

o The dependency graph of ¢ is defined by
Dy := (Var;, —¢) where the set of edges —;C Var; x Vary is given by
x—py it y=f(~..,z,...) € E.

o Dy is called cyclic if there exists x € Var; such that x —; z.

Corollary 14.8

An attribute grammar A = (G, E, V') € AG is circular iff there exists a
syntax tree t of G such that Dy is cyclic.
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Attribute Dependency Graphs IV

Example 14.9 (cf. Example 13.2)

(Acyclic) dependency graph of the syntax tree for 10.1:

Compiler Construction Summer semester 2008 14



@ Testing Attribute Grammars for Circularity
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Attribute Dependency Graphs and Circularity 1

Observation: a cycle in the dependency graph D; of a given syntax
tree t is caused by the occurrence of a “cover” production
= Ay — wodjwy ... A,w, € P in a node kg of ¢ such that

o the dependencies in Ej, yield the “upper end” of the cycle and

o for at least one ¢ € [r], some attributes in syn(4;) depend on
attributes in inh(A;).
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Attribute Dependency Graphs and Circularity 1

Observation: a cycle in the dependency graph D; of a given syntax
tree t is caused by the occurrence of a “cover” production
= Ay — wodjwy ... A,w, € P in a node kg of ¢ such that

o the dependencies in Ej, yield the “upper end” of the cycle and

o for at least one ¢ € [r], some attributes in syn(4;) depend on
attributes in inh(A;).

on the board l
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Attribute Dependency Graphs and Circularity 1

Observation: a cycle in the dependency graph D; of a given syntax
tree t is caused by the occurrence of a “cover” production
= Ay — wodjwy ... A,w, € P in a node kg of ¢ such that
o the dependencies in Ej, yield the “upper end” of the cycle and
o for at least one ¢ € [r], some attributes in syn(4;) depend on
attributes in inh(A;).

on the board l

To identify such “critical” situations we need to determine the possible
ways in which attributes in syn(A4;) can depend on attributes in
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Attribute Dependency Graphs and Circularity II

Definition 14.11 (Attribute dependence)

Let A = (G, E, V) € AG with G = (N, %, P, S).

o If ¢ is a syntax tree with root label A € N and root node k,
a € syn(A), and (3 € inh(A) such that 8.k —; a.k, then o is

dependent on 3 below A in ¢ (notation: [ &, Q).
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Attribute Dependency Graphs and Circularity II

Definition 14.11 (Attribute dependence)

Let A= (G,E, V) € AG with G = (N,X, P, S).
o If ¢ is a syntax tree with root label A € N and root node k,
a € syn(A), and (3 € inh(A) such that 8.k —; a.k, then o is
dependent on 3 below A in ¢ (notation: [ &, Q).
o For every syntax tree t with root label A € N,

is(A,t) = {(8, ) € inh(A) x syn(A4) | B <> o in t}.
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Attribute Dependency Graphs and Circularity II

Definition 14.11 (Attribute dependence)

Let A = (G, E, V) € AG with G = (N, %, P, S).

o If ¢ is a syntax tree with root label A € N and root node k,
a € syn(A), and (3 € inh(A) such that 8.k —; a.k, then o is

dependent on 3 below A in ¢ (notation: [ &, Q).
o For every syntax tree t with root label A € N,
is(A,t) = {(8, ) € inh(A) x syn(A4) | B <> o in t}.
o For every A € N,

IS(A) := {is(A,t) | t syntax tree with root label A}
C 2Inh><5’yn‘
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Attribute Dependency Graphs and Circularity II

Definition 14.11 (Attribute dependence)

Let A = (G, E, V) € AG with G = (N, %, P, S).

o If ¢ is a syntax tree with root label A € N and root node k,
a € syn(A), and (3 € inh(A) such that 8.k —; a.k, then o is

dependent on 3 below A in ¢ (notation: [ & Q).
o For every syntax tree t with root label A € N,
is(A,t) = {(8, ) € inh(A) x syn(A4) | B <> o in t}.
o For every A € N,

IS(A) := {is(A,t) | t syntax tree with root label A}
C 2Inh><Syn‘

Remark: it is important that IS(A) is a system of attribute
dependence sets, not a union (later: strong noncircularity).
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Attribute Dependency Graphs and Circularity II

Definition 14.11 (Attribute dependence)

Let A = (G, E, V) € AG with G = (N, %, P, S).

o If ¢ is a syntax tree with root label A € N and root node k,
a € syn(A), and (3 € inh(A) such that 8.k —; a.k, then o is

dependent on 3 below A in ¢ (notation: [ & Q).
o For every syntax tree t with root label A € N,
A
is(A,t) :=={(B,a) € inh(A) x syn(4) | f — « in t}.
o For every A € N,

IS(A) := {is(A,t) | t syntax tree with root label A}
C 2Inh><Syn‘

Remark: it is important that IS(A) is a system of attribute
dependence sets, not a union (later: strong noncircularity).

on the board ‘
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© The Circularity Test
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The Circularity Test I

In the circularity test, the dependency systems IS(A) are iteratively
computed. It employs the following notation:

Definition 14.13
Given m = A — woAjw; ... Ayw, € P and is; C inh(A;) x syn(4;) for

every i € [r], let
is[m;is1, ..., is,] C inh(A) x syn(A)

be given by
STy AS1, .., 0Sp) 1=

{(8,0)1(80,0.0) € (=x VUL {(8'pi,0' ) | (8,) € isi})* }

where p; := Z;:l lwj—1| + 4.
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The Circularity Test I

In the circularity test, the dependency systems IS(A) are iteratively
computed. It employs the following notation:

Definition 14.13
Given 1 = A — woAjws ... Ayw, € P and is; C inh(A4;) x syn(4;) for

every i € [r], let
is[m;is1, ..., is,] C inh(A) x syn(A)

be given by
STy AS1, .., 0Sp) 1=

{(8,0)1(80,0.0) € (=x VUL {(8'pi,0' ) | (8,) € isi})* }

where p; := Z;Zl lwj—1| + 4.

on the board

Compiler Construction Summer semester 2008 19



The Circularity Test 11

Algorithm 14.15 (Circularity test for attribute grammars)

Input: A= (G,E, V) € AG with G = (N,%, P, S)
Procedure: @ for every A € N, iteratively construct IS(A) as
follows:
® ifm=A— weE P, then is[r] € IS(A)
Q ifmt=A— wyAiws ... Ayw, € P and is; € IS(A4;)
for every i € [r], then is[m;isy,...,1is,] € IS(A)
© test whether U is circular by checking if there exist
T =A— wyAjw; ... Ayw, € P and is; € IS(A;) for
every i € [r] such that the following relation is cyclic:
o UU (B i i) | (B,a) € isi}
(where p; := Y% |wj—1] +1)
Output: “yes” or “no”
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The Circularity Test 111

Example 14.16

Application of Algorithm 14.15: on the board
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