
Compiler Construction

Lecture 14: Semantic Analysis II
(Circularity of Attribute Grammars)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Outline

1 Repetition: Attribute Grammars

2 Circularity of Attribute Grammars

3 Attribute Dependency Graphs

4 Testing Attribute Grammars for Circularity

5 The Circularity Test

Compiler Construction Summer semester 2008 2

Formal Definition of Attribute Grammars I

Definition (Attribute grammar)

Let G = 〈N, Σ, P, S〉 ∈ CFGΣ with X := N ⊎ Σ.

Let Att = Syn ⊎ Inh be a set of (synthesized or inherited) attributes, and
let V =

⋃

α∈Att
V α be a union of value sets.

Let att : X → 2Att be an attribute assignment, and let
syn(Y) := att(Y) ∩ Syn and inh(Y) := att(Y) ∩ Inh for every Y ∈ X .

Every production π = Y0 → Y1 . . . Yr ∈ P determines the set
Varπ := {α.i | α ∈ att(Yi), i ∈ {0, . . . , r}}

of attribute variables of π with the subsets of inner and outer variables:
Inπ := {α.i | (i = 0, α ∈ syn(Yi)) or (i ∈ [r], α ∈ inh(Yi))}

Outπ := Varπ \ Inπ

A semantic rule of π is an equation of the form
α.i = f(α1.i1, . . . , αn.in)

where n ∈ N, α.i ∈ Inπ, αj .ij ∈ Outπ, and f : V α1 × . . . × V αn → V α.

For each π ∈ P , let Eπ be a set with exactly one semantic rule for every
inner variable of π, and let E := (Eπ | π ∈ P).

Then A := 〈G,E ,V 〉 is called an attribute grammar: A ∈ AG.
Compiler Construction Summer semester 2008 3

Example: Knuth’s Binary Numbers I

Example (synthesized + inherited attributes)

Binary numbers (with fraction):
G′

B : Numbers N → L

N → L.L

Lists L → B

L → LB

Bits B → 0

Bits B → 1

Compiler Construction Summer semester 2008 4

Example: Knuth’s Binary Numbers I

Example (synthesized + inherited attributes)

Binary numbers (with fraction):
G′

B : Numbers N → L v.0 = v.1
p.1 = 0

N → L.L v.0 = v.1 + v.3
p.1 = 0
p.3 = − l.3

Lists L → B v.0 = v.1
l.0 = 1
p.1 = p.0

L → LB v.0 = v.1 + v.2
l.0 = l.1 + 1
p.1 = p.0 + 1
p.2 = p.0

Bits B → 0 v.0 = 0
Bits B → 1 v.0 = 2p.0

Synthesized attributes of N,L,B: v (value; domain: V v := Q)
of L: l (length; domain: V l := N)

Inherited attribute of L,B: p (position; domain: V p := Z)

Compiler Construction Summer semester 2008 4

Example: Knuth’s Binary Numbers II

Example (continued)

Syntax tree for 10.1:

N

L . L

L B

B

B

0

1

1

Compiler Construction Summer semester 2008 5

Example: Knuth’s Binary Numbers II

Example (continued)

Attributed syntax tree for 10.1:

N

L . L

L B

B

B

0

1

1

v :

v : l :p :

v : l :p :

v : l :p :

v :p :

v :p :

v :p :

Compiler Construction Summer semester 2008 5

Example: Knuth’s Binary Numbers II

Example (continued)

Attributed syntax tree for 10.1:

N

L . L

L B

B

B

0

1

1

v :

v : l :p :

v : l : 1p :

v : l : 1p :

v :p :

v :p :

v :p :

L → B : l.0 = 1

Compiler Construction Summer semester 2008 5

Example: Knuth’s Binary Numbers II

Example (continued)

Attributed syntax tree for 10.1:

N

L . L

L B

B

B

0

1

1

v :

v : l : 2p :

v : l : 1p :

v : l : 1p :

v :p :

v :p :

v :p :

L → LB : l.0 = l.1 + 1

Compiler Construction Summer semester 2008 5

Example: Knuth’s Binary Numbers II

Example (continued)

Attributed syntax tree for 10.1:

N

L . L

L B

B

B

0

1

1

v :

v : l : 2p : 0

v : l : 1p :

v : l : 1p :

v :p :

v :p :

v :p :

N → L.L : p.1 = 0

Compiler Construction Summer semester 2008 5

Example: Knuth’s Binary Numbers II

Example (continued)

Attributed syntax tree for 10.1:

N

L . L

L B

B

B

0

1

1

v :

v : l : 2p : 0

v : l : 1p :

v : l : 1p : −1

v :p :

v :p :

v :p :

N → L.L : p.3 = −l.3

Compiler Construction Summer semester 2008 5

Example: Knuth’s Binary Numbers II

Example (continued)

Attributed syntax tree for 10.1:

N

L . L

L B

B

B

0

1

1

v :

v : l : 2p : 0

v : l : 1p : 1

v : l : 1p : −1

v :p :

v :p :

v :p :

L → LB : p.1 = p.0 + 1

Compiler Construction Summer semester 2008 5

Example: Knuth’s Binary Numbers II

Example (continued)

Attributed syntax tree for 10.1:

N

L . L

L B

B

B

0

1

1

v :

v : l : 2p : 0

v : l : 1p : 1

v : l : 1p : −1

v :p : 0

v :p :

v :p :

L → LB : p.2 = p.0

Compiler Construction Summer semester 2008 5

Example: Knuth’s Binary Numbers II

Example (continued)

Attributed syntax tree for 10.1:

N

L . L

L B

B

B

0

1

1

v :

v : l : 2p : 0

v : l : 1p : 1

v : l : 1p : −1

v :p : 0

v :p : 1

v :p : −1

L → B : p.1 = p.0

Compiler Construction Summer semester 2008 5

Example: Knuth’s Binary Numbers II

Example (continued)

Attributed syntax tree for 10.1:

N

L . L

L B

B

B

0

1

1

v :

v : l : 2p : 0

v : l : 1p : 1

v : l : 1p : −1

v : 0p : 0

v :p : 1

v :p : −1

B → 0 : v.0 = 0

Compiler Construction Summer semester 2008 5

Example: Knuth’s Binary Numbers II

Example (continued)

Attributed syntax tree for 10.1:

N

L . L

L B

B

B

0

1

1

v :

v : l : 2p : 0

v : l : 1p : 1

v : l : 1p : −1

v : 0p : 0

v : 2p : 1

v : 0.5p : −1

B → 1 : v.0 = 2p.0

Compiler Construction Summer semester 2008 5

Example: Knuth’s Binary Numbers II

Example (continued)

Attributed syntax tree for 10.1:

N

L . L

L B

B

B

0

1

1

v :

v : l : 2p : 0

v : 2 l : 1p : 1

v : 0.5 l : 1p : −1

v : 0p : 0

v : 2p : 1

v : 0.5p : −1

L → B : v.0 = v.1

Compiler Construction Summer semester 2008 5

Example: Knuth’s Binary Numbers II

Example (continued)

Attributed syntax tree for 10.1:

N

L . L

L B

B

B

0

1

1

v :

v : 2 l : 2p : 0

v : 2 l : 1p : 1

v : 0.5 l : 1p : −1

v : 0p : 0

v : 2p : 1

v : 0.5p : −1

L → LB : v.0 = v.1 + v.2

Compiler Construction Summer semester 2008 5

Example: Knuth’s Binary Numbers II

Example (continued)

Attributed syntax tree for 10.1:

N

L . L

L B

B

B

0

1

1

v : 2.5

v : 2 l : 2p : 0

v : 2 l : 1p : 1

v : 0.5 l : 1p : −1

v : 0p : 0

v : 2p : 1

v : 0.5p : −1

N → L.L : v.0 = v.1 + v.3

Compiler Construction Summer semester 2008 5

Outline

1 Repetition: Attribute Grammars

2 Circularity of Attribute Grammars

3 Attribute Dependency Graphs

4 Testing Attribute Grammars for Circularity

5 The Circularity Test

Compiler Construction Summer semester 2008 6

Solvability of the Attribute Equation System I

Definition 14.1 (Solution of attribute equation system)

Let A = 〈G,E ,V 〉 ∈ AG , and let t be a syntax tree of G. A solution of
Et is a mapping

v : Var t → V

such that, for every α.k ∈ Var t and α.k = f(α.k1, . . . , α.kn) ∈ Et,

v(α.k) = f(v(α.k1), . . . , v(α.kn)).

Compiler Construction Summer semester 2008 7

Solvability of the Attribute Equation System I

Definition 14.1 (Solution of attribute equation system)

Let A = 〈G,E ,V 〉 ∈ AG , and let t be a syntax tree of G. A solution of
Et is a mapping

v : Var t → V

such that, for every α.k ∈ Var t and α.k = f(α.k1, . . . , α.kn) ∈ Et,

v(α.k) = f(v(α.k1), . . . , v(α.kn)).

In general, the attribute equation system Et of a given syntax tree t

can have

no solution,

exactly one solution, or

several solutions.

Compiler Construction Summer semester 2008 7

Solvability of the Attribute Equation System II

Example 14.2

A → aB,B → b ∈ P

α ∈ syn(B), β ∈ inh(B)

β.2 = f(α.2) ∈ EA→aB

α.0 = g(β.0) ∈ EB→b

Compiler Construction Summer semester 2008 8

Solvability of the Attribute Equation System II

Example 14.2

A → aB,B → b ∈ P

α ∈ syn(B), β ∈ inh(B)

β.2 = f(α.2) ∈ EA→aB

α.0 = g(β.0) ∈ EB→b

=⇒ cyclic dependency:

A

a k : B

b

β α

Et : β.k = f(α.k)
α.k = g(β.k)

Compiler Construction Summer semester 2008 8

Solvability of the Attribute Equation System II

Example 14.2

A → aB,B → b ∈ P

α ∈ syn(B), β ∈ inh(B)

β.2 = f(α.2) ∈ EA→aB

α.0 = g(β.0) ∈ EB→b

=⇒ for V α := V β := N, g(x) := x, and

f(x) := x + 1: no solution

f(x) := 2x: exactly one solution
(v(α.k) = v(β.k) = 0)

f(x) := x: infinitely many solutions
(v(α.k) = v(β.k) = y for any y ∈ N)

=⇒ cyclic dependency:

A

a k : B

b

β α

Et : β.k = f(α.k)
α.k = g(β.k)

Compiler Construction Summer semester 2008 8

Circularity of Attribute Grammars

Goal: unique solvability of equation system
=⇒ avoid cyclic dependencies

Compiler Construction Summer semester 2008 9

Circularity of Attribute Grammars

Goal: unique solvability of equation system
=⇒ avoid cyclic dependencies

Definition 14.3 (Circularity)

An attribute grammar A = 〈G,E ,V 〉 ∈ AG is called circular if there
exists a syntax tree t such that the attribute equation system Et is
recursive (i.e., some attribute variable of t depends on itself).
Otherwise it is called noncircular.

Compiler Construction Summer semester 2008 9

Circularity of Attribute Grammars

Goal: unique solvability of equation system
=⇒ avoid cyclic dependencies

Definition 14.3 (Circularity)

An attribute grammar A = 〈G,E ,V 〉 ∈ AG is called circular if there
exists a syntax tree t such that the attribute equation system Et is
recursive (i.e., some attribute variable of t depends on itself).
Otherwise it is called noncircular.

Remark: because of the division of Varπ into Inπ and Outπ, cyclic
dependencies cannot occur at production level (see Corollary 14.5).

Compiler Construction Summer semester 2008 9

Outline

1 Repetition: Attribute Grammars

2 Circularity of Attribute Grammars

3 Attribute Dependency Graphs

4 Testing Attribute Grammars for Circularity

5 The Circularity Test

Compiler Construction Summer semester 2008 10

Attribute Dependency Graphs I

Goal: graphic representation of attribute dependencies

Definition 14.4 (Production dependency graph)

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉. Every production
π ∈ P determines the dependency graph Dπ := 〈Varπ,→π〉 where the
set of edges →π⊆ Varπ × Varπ is given by

x →π y iff y = f(. . . , x, . . .) ∈ Eπ.

Compiler Construction Summer semester 2008 11

Attribute Dependency Graphs I

Goal: graphic representation of attribute dependencies

Definition 14.4 (Production dependency graph)

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉. Every production
π ∈ P determines the dependency graph Dπ := 〈Varπ,→π〉 where the
set of edges →π⊆ Varπ × Varπ is given by

x →π y iff y = f(. . . , x, . . .) ∈ Eπ.

Corollary 14.5

The dependency graph of a production is acyclic
(since →π⊆ Outπ × Inπ).

Compiler Construction Summer semester 2008 11

Attribute Dependency Graphs II

Example 14.6 (cf. Example 13.2)

1 N → L.L :
v.0 = v.1 + v.3
p.1 = 0
p.3 = −l.3

=⇒ DN→L.L :
N

L . L

v.0

v.1 l.1p.1 v.3 l.3p.3

Compiler Construction Summer semester 2008 12

Attribute Dependency Graphs II

Example 14.6 (cf. Example 13.2)

1 N → L.L :
v.0 = v.1 + v.3
p.1 = 0
p.3 = −l.3

=⇒ DN→L.L :
N

L . L

v.0

v.1 l.1p.1 v.3 l.3p.3

2 L → LB :
v.0 = v.1 + v.2
l.0 = l.1 + 1
p.1 = p.0 + 1
p.2 = p.0

=⇒ DN→LB :
L

L B

v.0 l.0p.0

v.1 l.1p.1 v.2p.2

Compiler Construction Summer semester 2008 12

Attribute Dependency Graphs III

Just as the attribute equation system Et of a syntax tree t is obtained
from the semantic rules of the contributing productions, the
dependency graph of t is obtained by “glueing together” the
dependency graphs of the productions.

Compiler Construction Summer semester 2008 13

Attribute Dependency Graphs III

Just as the attribute equation system Et of a syntax tree t is obtained
from the semantic rules of the contributing productions, the
dependency graph of t is obtained by “glueing together” the
dependency graphs of the productions.

Definition 14.7 (Tree dependency graph)

Let A = 〈G,E ,V 〉 ∈ AG , and let t be a syntax tree of G.

The dependency graph of t is defined by
Dt := 〈Var t,→t〉 where the set of edges →t⊆ Var t×Var t is given by

x →t y iff y = f(. . . , x, . . .) ∈ Et.

Dt is called cyclic if there exists x ∈ Var t such that x →+
t x.

Compiler Construction Summer semester 2008 13

Attribute Dependency Graphs III

Just as the attribute equation system Et of a syntax tree t is obtained
from the semantic rules of the contributing productions, the
dependency graph of t is obtained by “glueing together” the
dependency graphs of the productions.

Definition 14.7 (Tree dependency graph)

Let A = 〈G,E ,V 〉 ∈ AG , and let t be a syntax tree of G.

The dependency graph of t is defined by
Dt := 〈Var t,→t〉 where the set of edges →t⊆ Var t×Var t is given by

x →t y iff y = f(. . . , x, . . .) ∈ Et.

Dt is called cyclic if there exists x ∈ Var t such that x →+
t x.

Corollary 14.8

An attribute grammar A = 〈G,E ,V 〉 ∈ AG is circular iff there exists a
syntax tree t of G such that Dt is cyclic.

Compiler Construction Summer semester 2008 13

Attribute Dependency Graphs IV

Example 14.9 (cf. Example 13.2)

(Acyclic) dependency graph of the syntax tree for 10.1:

k0 : N

k1 : L k7 : . k8 : L

k2 : L

k3 : B

k5 : B k9 : B

k6 : 0

k4 : 1

k10 : 1

v.k0

v.k1 l.k1p.k1

v.k2 l.k2p.k2

v.k8 l.k8p.k8

v.k5p.k5

v.k3p.k3

v.k9p.k9

Compiler Construction Summer semester 2008 14

Outline

1 Repetition: Attribute Grammars

2 Circularity of Attribute Grammars

3 Attribute Dependency Graphs

4 Testing Attribute Grammars for Circularity

5 The Circularity Test

Compiler Construction Summer semester 2008 15

Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph Dt of a given syntax
tree t is caused by the occurrence of a “cover” production
π = A0 → w0A1w1 . . . Arwr ∈ P in a node k0 of t such that

the dependencies in Ek0
yield the “upper end” of the cycle and

for at least one i ∈ [r], some attributes in syn(Ai) depend on
attributes in inh(Ai).

Compiler Construction Summer semester 2008 16

Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph Dt of a given syntax
tree t is caused by the occurrence of a “cover” production
π = A0 → w0A1w1 . . . Arwr ∈ P in a node k0 of t such that

the dependencies in Ek0
yield the “upper end” of the cycle and

for at least one i ∈ [r], some attributes in syn(Ai) depend on
attributes in inh(Ai).

Example 14.10

on the board

Compiler Construction Summer semester 2008 16

Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph Dt of a given syntax
tree t is caused by the occurrence of a “cover” production
π = A0 → w0A1w1 . . . Arwr ∈ P in a node k0 of t such that

the dependencies in Ek0
yield the “upper end” of the cycle and

for at least one i ∈ [r], some attributes in syn(Ai) depend on
attributes in inh(Ai).

Example 14.10

on the board

To identify such “critical” situations we need to determine the possible
ways in which attributes in syn(Ai) can depend on attributes in
inh(Ai).

Compiler Construction Summer semester 2008 16

Attribute Dependency Graphs and Circularity II

Definition 14.11 (Attribute dependence)

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉.

If t is a syntax tree with root label A ∈ N and root node k,
α ∈ syn(A), and β ∈ inh(A) such that β.k →+

t α.k, then α is

dependent on β below A in t (notation: β
A
→֒ α).

Compiler Construction Summer semester 2008 17

Attribute Dependency Graphs and Circularity II

Definition 14.11 (Attribute dependence)

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉.

If t is a syntax tree with root label A ∈ N and root node k,
α ∈ syn(A), and β ∈ inh(A) such that β.k →+

t α.k, then α is

dependent on β below A in t (notation: β
A
→֒ α).

For every syntax tree t with root label A ∈ N ,

is(A, t) := {(β, α) ∈ inh(A) × syn(A) | β
A
→֒ α in t}.

Compiler Construction Summer semester 2008 17

Attribute Dependency Graphs and Circularity II

Definition 14.11 (Attribute dependence)

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉.

If t is a syntax tree with root label A ∈ N and root node k,
α ∈ syn(A), and β ∈ inh(A) such that β.k →+

t α.k, then α is

dependent on β below A in t (notation: β
A
→֒ α).

For every syntax tree t with root label A ∈ N ,

is(A, t) := {(β, α) ∈ inh(A) × syn(A) | β
A
→֒ α in t}.

For every A ∈ N ,
IS (A) := {is(A, t) | t syntax tree with root label A}

⊆ 2Inh×Syn .

Compiler Construction Summer semester 2008 17

Attribute Dependency Graphs and Circularity II

Definition 14.11 (Attribute dependence)

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉.

If t is a syntax tree with root label A ∈ N and root node k,
α ∈ syn(A), and β ∈ inh(A) such that β.k →+

t α.k, then α is

dependent on β below A in t (notation: β
A
→֒ α).

For every syntax tree t with root label A ∈ N ,

is(A, t) := {(β, α) ∈ inh(A) × syn(A) | β
A
→֒ α in t}.

For every A ∈ N ,
IS (A) := {is(A, t) | t syntax tree with root label A}

⊆ 2Inh×Syn .

Remark: it is important that IS (A) is a system of attribute
dependence sets, not a union (later: strong noncircularity).

Compiler Construction Summer semester 2008 17

Attribute Dependency Graphs and Circularity II

Definition 14.11 (Attribute dependence)

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉.

If t is a syntax tree with root label A ∈ N and root node k,
α ∈ syn(A), and β ∈ inh(A) such that β.k →+

t α.k, then α is

dependent on β below A in t (notation: β
A
→֒ α).

For every syntax tree t with root label A ∈ N ,

is(A, t) := {(β, α) ∈ inh(A) × syn(A) | β
A
→֒ α in t}.

For every A ∈ N ,
IS (A) := {is(A, t) | t syntax tree with root label A}

⊆ 2Inh×Syn .

Remark: it is important that IS (A) is a system of attribute
dependence sets, not a union (later: strong noncircularity).

Example 14.12

on the board
Compiler Construction Summer semester 2008 17

Outline

1 Repetition: Attribute Grammars

2 Circularity of Attribute Grammars

3 Attribute Dependency Graphs

4 Testing Attribute Grammars for Circularity

5 The Circularity Test

Compiler Construction Summer semester 2008 18

The Circularity Test I

In the circularity test, the dependency systems IS (A) are iteratively
computed. It employs the following notation:

Definition 14.13

Given π = A → w0A1w1 . . . Arwr ∈ P and is i ⊆ inh(Ai) × syn(Ai) for
every i ∈ [r], let

is [π; is1, . . . , isr] ⊆ inh(A) × syn(A)
be given by

is[π; is1, . . . , isr] :=
{

(β, α) | (β.0, α.0) ∈ (→π ∪
⋃r

i=1{(β
′.pi, α

′.pi) | (β′, α′) ∈ is i})
+
}

where pi :=
∑i

j=1 |wj−1| + i.

Compiler Construction Summer semester 2008 19

The Circularity Test I

In the circularity test, the dependency systems IS (A) are iteratively
computed. It employs the following notation:

Definition 14.13

Given π = A → w0A1w1 . . . Arwr ∈ P and is i ⊆ inh(Ai) × syn(Ai) for
every i ∈ [r], let

is [π; is1, . . . , isr] ⊆ inh(A) × syn(A)
be given by

is[π; is1, . . . , isr] :=
{

(β, α) | (β.0, α.0) ∈ (→π ∪
⋃r

i=1{(β
′.pi, α

′.pi) | (β′, α′) ∈ is i})
+
}

where pi :=
∑i

j=1 |wj−1| + i.

Example 14.14

on the board

Compiler Construction Summer semester 2008 19

The Circularity Test II

Algorithm 14.15 (Circularity test for attribute grammars)

Input: A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉

Procedure: 1 for every A ∈ N , iteratively construct IS (A) as
follows:

1 if π = A → w ∈ P , then is [π] ∈ IS (A)
2 if π = A → w0A1w1 . . . Arwr ∈ P and is i ∈ IS(Ai)

for every i ∈ [r], then is [π; is1, . . . , isr] ∈ IS (A)

2 test whether A is circular by checking if there exist
π = A → w0A1w1 . . . Arwr ∈ P and isi ∈ IS (Ai) for
every i ∈ [r] such that the following relation is cyclic:

→π ∪
⋃r

i=1{(β.pi, α.pi) | (β, α) ∈ isi}

(where pi :=
∑i

j=1 |wj−1| + i)

Output: “yes” or “no”

Compiler Construction Summer semester 2008 20

The Circularity Test III

Example 14.16

DS→AB: S

A B

α

α1 α2β α1 α2β

DB→AB: B

A B

α1 α2β

α1 α2β α1 α2β

DA→B: A

B

α1 α2β

α1 α2β

DA→a: A

a

α1 α2β

DA→c: A

c

α1 α2β

DB→b: B

b

α1 α2β

Application of Algorithm 14.15: on the board

Compiler Construction Summer semester 2008 21

	Repetition: Attribute Grammars
	Circularity of Attribute Grammars
	Attribute Dependency Graphs
	Testing Attribute Grammars for Circularity
	The Circularity Test

