Compiler Construction

Lecture 15: Semantic Analysis III (Attribute Evaluation)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

© Repetition: Circularity of Attribute Grammars

Rm Compiler Construction Summer semester 2

Solvability of the Attribute Equation System

e A—aB,B—beP

@ «a €syn(B), § € inh(B) — cyclic dependency:
32 = f(a.2) € Eaupn

o .0 =g(B.0) € Eg_yp A

a’/
= for V®:= VP :=N, g(z) := z, and

@ f(z) := z + 1: no solution b
@ f(z) := 2x: exactly one solution E.: Bk=f(ak)
(v(ak) =v(B.k) =0) a.k = g(
@ f(z) := x: infinitely many solutions
(v(a.k) = v(B.k) =y for any y € N)

Compiler Construction Summer semester 2008

Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

Definition (Circularity)

An attribute grammar A = (G, E, V) € AG is called circular if there
exists a syntax tree t such that the attribute equation system FE; is
recursive (i.e., some attribute variable of ¢ depends on itself).
Otherwise it is called noncircular.

Remark: because of the division of Var, into In, and Out,, cyclic
dependencies cannot occur at production level.

m' Compiler Construction Summer semester 2008 4

Attribute Dependency Graphs and Circularity 1

Observation: a cycle in the dependency graph D; of a given syntax
tree t is caused by the occurrence of a “cover” production
= Ay — wodjwy ... A,w, € P in a node kg of ¢ such that
o the dependencies in Ej, yield the “upper end” of the cycle and
o for at least one ¢ € [r], some attributes in syn(4;) depend on
attributes in inh(A;).

on the board l

To identify such “critical” situations we need to determine the possible
ways in which attributes in syn(A4;) can depend on attributes in

Rm Compiler Construction Summer semester 2008

Attribute Dependency Graphs and Circularity II

Definition (Attribute dependence)

Let A = (G, E, V) € AG with G = (N, %, P, S).

o If ¢ is a syntax tree with root label A € N and root node k,
a € syn(A), and (3 € inh(A) such that 8.k —; a.k, then o is

dependent on 3 below A in ¢ (notation: [& Q).
o For every syntax tree t with root label A € N,
A
is(A,t) :=={(B,a) € inh(A) x syn(4) | f — « in t}.
o For every A € N,

IS(A) := {is(A,t) | t syntax tree with root label A}
C 2Inh><Syn‘

Remark: it is important that IS(A) is a system of attribute
dependence sets, not a union (later: strong noncircularity).

on the board ‘

m Compiler Construction Summer semester 2008 6

The Circularity Test

Algorithm (Circularity test for attribute grammars)
Input: A= (G,E, V)€ AG with G = (N,%, P, S)
Procedure: @ for every A € N, iteratively construct IS(A) as
follows:
@ ifm=A— weE P, then is[r] € IS(A)
Q ifmt=A— wyAiws ... Ayw, € P and is; € IS(A;)
for every i € [r], then is[m;is1,. .., 18] € IS(A)
© test whether U is circular by checking if there exist
T =A— wpAjw; ... Ayw, € P and is; € IS(A;) for
every i € [r] such that the following relation is cyclic:
—r Ui {(Bpi; upi) | (B, 0) € isi}
(where p; := Y%y |wj—1] +1)
Output: “yes” or “no”

m Compiler Construction Summer semester 2008

© Correctness and Complexity of the Circularity Test

Rm Compiler Construction Summer semester 2

Correctness and Complexity of Circularity Test

Theorem 15.1 (Correctness of the circularity test)

An attribute grammar is circular iff Algorithm 14.15 yields the answer “yes”.

Rm Compiler Construction Summer semester 2008

Correctness and Complexity of Circularity Test

Theorem 15.1 (Correctness of the circularity test)

An attribute grammar is circular iff Algorithm 14.15 yields the answer “yes”.

by induction on the syntax tree ¢t with cyclic D,]

Rm Compiler Construction Summer semester 2008

Correctness and Complexity of Circularity Test

Theorem 15.1 (Correctness of the circularity test)

An attribute grammar is circular iff Algorithm 14.15 yields the answer “yes”.

by induction on the syntax tree ¢t with cyclic D,]

The time complexity of the circularity test is exponential in the size of the
attribute grammar (= maximal length of right-hand sides of productions).

m Compiler Construction Summer semester 2008

Correctness and Complexity of Circularity Test

Theorem 15.1 (Correctness of the circularity test)

An attribute grammar is circular iff Algorithm 14.15 yields the answer “yes”.

by induction on the syntax tree ¢t with cyclic D,]

Lemma 15.2

The time complexity of the circularity test is exponential in the size of the
attribute grammar (= maximal length of right-hand sides of productions).

by reduction of the word problem of alternating Turing machines (see

M. Jazayeri: A Simpler Construction for Showing the Intrinsically
Exponential Complexity of the Circularity Problem for Attribute Grammars,
Comm. of the ACM 28(4), 1981, pp. 715-720) O

v

Compiler Construction Summer semester 2008

© Strongly Noncircular Attribute Grammars

Rm Compiler Construction Summer semester 2

Simplifying the Circularity Test

Idea: to simplify the circularity test, do not distinguish between
attribute dependences which are caused by different syntax trees

Rm Compiler Construction Summer semester 2008 11

Simplifying the Circularity Test

Idea: to simplify the circularity test, do not distinguish between
attribute dependences which are caused by different syntax trees

Definition 15.3 (Attribute dependence (modified))

Let A= (G,E, V) € AG with G = (N,X, P, S).
o Reminder: if ¢ is a syntax tree with root label A € N and root
node k, a € syn(A), and 3 € inh(A) such that 3.k —; a.k, then o

A
is dependent on [below A in t (notation: 8 — «).

m Compiler Construction Summer semester 2008 11

Simplifying the Circularity Test

Idea: to simplify the circularity test, do not distinguish between
attribute dependences which are caused by different syntax trees

Definition 15.3 (Attribute dependence (modified))

Let A= (G,E, V) € AG with G = (N,X, P, S).
o Reminder: if ¢ is a syntax tree with root label A € N and root
node k, a € syn(A), and 3 € inh(A) such that 3.k —; a.k, then o

A
is dependent on [below A in t (notation: 8 — «).

o For every A € N,

IS'(A) = {(B,a) | B A o in some syntax tree with root label A}
C Inh x Syn

4

m Compiler Construction Summer semester 2008 11

The Strong Circularity Test

Algorithm 15.4 (Strong circularity test for attribute grammars)

Input: A=(G,E, V) € AG with G = (N, %, P, S)
Procedure: @ for every A € N, iteratively construct IS'(A) as

follows:

Q@ ift=A—we P, then is[r] C IS'(A)

Q ifmt=A—> wyAdyws ... Ayw, € P, then

is[m; IS'(Ay), ..., IS'(A,)] C IS'(A)
Q test whether there exists

T =A— wgdjw; ... A,w, € P such that the
following relation is cyclic:

—r U (B, am) | (5,0) € IS(A0)}

(where p; := Y% |wj—1] +1)
Output: “yes” or “no”

m Compiler Construction Summer semester 2008 12

The Strong Circularity Test

Algorithm 15.4 (Strong circularity test for attribute grammars)

Input: A= (G, E, V) € AG with G = (N, %, P, S)
Procedure: @ for every A € N, iteratively construct IS'(A) as

follows:

Q@ ift=A—we P, then is[r] C IS'(A)

Q ifmt=A—> wyAdyws ... Ayw, € P, then

is[m; IS'(Ay), ..., IS'(A,)] C IS'(A)
Q test whether there exists

T =A— wgdjw; ... A,w, € P such that the
following relation is cyclic:

—r U (B, am) | (5,0) € IS(A0)}

(where p; := Y% |wj—1] +1)
Output: “yes” or “no”

Example 15.5
on the board

m Compiler Construction Summer semester 2008 12

Strongly Noncircular Attribute Grammars I

Definition 15.6 (Strong noncircularity)

An attribute grammar is called strongly noncircular if Algorithm 15.4
yields the answer “no”.

Rm Compiler Construction Summer semester 2008 13

Strongly Noncircular Attribute Grammars I

Definition 15.6 (Strong noncircularity)

An attribute grammar is called strongly noncircular if Algorithm 15.4
yields the answer “no”.

The time complexity of the strong circularity test is polynomial in the
size of the attribute grammar (= mazximal length of right-hand sides of
productions).

omitted

m Compiler Construction Summer semester 2008 13

Strongly Noncircular Attribute Grammars II

Q@ Fvery strongly noncircular attribute grammar is noncircular.

© There are noncircular attribute grammars which are not strongly
noncircular.

Rm Compiler Construction Summer semester 2008 14

Strongly Noncircular Attribute Grammars II

Q@ Fvery strongly noncircular attribute grammar is noncircular.

© There are noncircular attribute grammars which are not strongly
noncircular.

@ Clear since is C IS'(A) for every A € N and is € IS(A)

© The attribute grammar in Example 15.5 is noncircular but not
strongly noncircular (on the board).

m Compiler Construction Summer semester 2008 14

@ Attribute Evaluation

Rm Compiler nstruction Summer semester 2

Attribute Evaluation Methods

Given: @ (strongly) noncircular attribute grammar
A=(G,E,V)e AG
@ syntax tree t of G
@ valuation v : Syny, — V where

Syny, := {a.k | k labelled by a € ¥, a € syn(a)} C Var;

Rm Compiler Construction

Summer semester 2008 16

Attribute Evaluation Methods

Given: @ (strongly) noncircular attribute grammar
A=(G,E,V)e AG
@ syntax tree t of G
@ valuation v : Syny, — V where
Syny, := {a.k | k labelled by a € ¥, € syn(a)} C Vary
Goal: extend v to (partial) solution v : Vary — V

Rm Compiler Construction

Summer semester 2008 16

Attribute Evaluation Methods

Given: @ (strongly) noncircular attribute grammar
A=(G,E,V)e AG
@ syntax tree t of G
@ valuation v : Syny, — V where
Syny, := {a.k | k labelled by a € ¥, € syn(a)} C Vary
Goal: extend v to (partial) solution v : Vary — V
Methods: @ Topological sorting of D;:
@ start with attribute variables which depend at most
on synthesized attributes of terminals
© proceed by successive substitution

Rm Compiler Construction

Summer semester 2008 16

Attribute Evaluation Methods

Given: @ (strongly) noncircular attribute grammar
A=(G,E,V)e AG
@ syntax tree t of G
@ valuation v : Syny, — V where
Syny, := {a.k | k labelled by a € ¥, € syn(a)} C Vary
Goal: extend v to (partial) solution v : Vary — V
Methods: @ Topological sorting of D;:
@ start with attribute variables which depend at most
on synthesized attributes of terminals
© proceed by successive substitution
© Recursive functions (for strongly noncircular AGs):
@ for every A € N and a € syn(A), define evaluation
function ga . with the following parameters:
@ the node of t where a has to be evaluated and
@ all inherited attributes of A on which « (potentially)
depends

@ for every a € syn(S), evaluate gs o(ko) where ko
denotes the root of ¢

Rm Compiler Construction

Summer semester 2008 16

Attribute Evaluation Methods

Given: @ (strongly) noncircular attribute grammar
A=(G,E,V)e AG
@ syntax tree t of G
@ valuation v : Syny, — V where
Syny, := {a.k | k labelled by a € ¥, € syn(a)} C Vary
Goal: extend v to (partial) solution v : Vary — V
Methods: @ Topological sorting of D;:
@ start with attribute variables which depend at most
on synthesized attributes of terminals
© proceed by successive substitution
© Recursive functions (for strongly noncircular AGs):
@ for every A € N and a € syn(A), define evaluation
function ga . with the following parameters:
@ the node of t where a has to be evaluated and
@ all inherited attributes of A on which « (potentially)
depends
@ for every a € syn(S), evaluate gs o(ko) where ko
denotes the root of ¢
© Special cases: S-attributed grammars (yacc), L-attributed
grammars

Rm Compiler Construction

Summer semester 2008 16

@ Attribute Evaluation by Topological Sorting

Rm Compiler Construction Summer semester 2

Attribute Evaluation by Topological Sorting

Algorithm 15.9 (Evaluation by topological sorting)

Input: noncircular A = (G, E, V) € AG, syntax tree t of G,
valuation v : Syns, — V
Procedure: @ let Var := Vary \ Syny, (* attributes to be evaluated *)
Q while Var # 0 do

@ let x € Var such that {y € Var |y — x} =10
Q letx = f(x1,...,2,) € By

@ let v(z) := f(v(z1),...,v(xyn))

@ let Var := Var \ {z}

Output: solution v : Vary — V

m Compiler Construction Summer semester 2008

Attribute Evaluation by Topological Sorting

Algorithm 15.9 (Evaluation by topological sorting)

Input: noncircular A = (G, E, V) € AG, syntax tree t of G,
valuation v : Syns, — V
Procedure: @ let Var := Vary \ Syny, (* attributes to be evaluated *)
Q while Var # 0 do

@ let x € Var such that {y € Var |y — x} =10
Q letx = f(x1,...,2,) € By

@ let v(z) := f(v(z1),...,v(xyn))

@ let Var := Var \ {z}

Output: solution v : Vary — V

Remark: noncircularity guarantees that in step 2.1 at least one such x
is available

m Compiler Construction Summer semester 2008 18

Attribute Evaluation by Topological Sorting

Algorithm 15.9 (Evaluation by topological sorting)

Input: noncircular A = (G, E, V) € AG, syntax tree t of G,
valuation v : Syns, — V
Procedure: @ let Var := Vary \ Syny, (* attributes to be evaluated *)
Q while Var # 0 do

@ let x € Var such that {y € Var |y — x} =10
Q letx = f(x1,...,2,) € By

@ let v(z) := f(v(z1),...,v(xyn))

@ let Var := Var \ {z}

Output: solution v : Vary — V

Remark: noncircularity guarantees that in step 2.1 at least one such x
is available

see Examples 13.1 and 13.2 (Knuth’s binary numbers)

m Compiler Construction Summer semester 2008 18

© Attribute Evaluation by Recursive Functions

Rm Compiler Construction Summer semester 2

Attribute Evaluation by Recursive Functions

Restriction: only for strongly noncircular attribute grammars

Rm Compiler Construction Summer semester 2008 20

Attribute Evaluation by Recursive Functions

Restriction: only for strongly noncircular attribute grammars

Principle: @ for every A € N and « € syn(A), define evaluation
function g4 o with the following parameters:
¢ the node of ¢ where « has to be evaluated (which is
labelled by A) and
o all inherited attributes of A on which a (potentially)
depends (that is, {3 € inh(A) | (3,a) € IS'(A)})
@ given a syntax tree ¢ with root kg, evaluate gg o (ko) for
every a € syn(S)

Rm Compiler Construction Summer semester 2008 20

Attribute Evaluation by Recursive Functions

Restriction: only for strongly noncircular attribute grammars

Principle: @ for every A € N and « € syn(A), define evaluation
function g4 o with the following parameters:

¢ the node of ¢ where « has to be evaluated (which is
labelled by A) and
o all inherited attributes of A on which a (potentially)
depends (that is, {3 € inh(A) | (3,a) € IS'(A)})
@ given a syntax tree ¢ with root kg, evaluate gg o (ko) for
every a € syn(S)

Result: evaluates synthesized attribute variables at root of ¢ and all
attribute variables on which they actually depend (according to
E)

Rm Compiler Construction Summer semester 2008 20

Definition of Evaluation Functions I

For every A € N and « € syn(A), let
@ IS'(A) Cinh(A) x syn(A) as computed by strong circularity test
(Algorithm 15.4)
@ inh(4,a):= {3 €inh(4) | (3,a) € IS'(A)}
@ A— 1 |...| ym all A-productions in P

Rm Compiler Construction Summer semester 2008 21

Definition of Evaluation Functions I

For every A € N and « € syn(A), let
@ IS'(A) Cinh(A) x syn(A) as computed by strong circularity test
(Algorithm 15.4)
@ inh(4,a):= {3 €inh(4) | (3,a) € IS'(A)}
@ A— 1 |...| ym all A-productions in P

Then g4 . is given by
gA,a(ko,inh(A, a)) := case production applied at ko of

A= 75 : eval(a.0)

end

Rm Compiler Construction Summer semester 2008 21

Definition of Evaluation Functions I

For every A € N and « € syn(A), let

@ IS'(A) Cinh(A) x syn(A) as computed by strong circularity test
(Algorithm 15.4)

@ inh(4,a):= {3 €inh(4) | (3,a) € IS'(A)}

@ A— 1 |...| ym all A-productions in P

Then g4 . is given by
gA,a(ko,inh(A, a)) := case production applied at ko of

A= 75 : eval(a.0)

end
with
a if « € inh(A4),i=0
fleval(ay.i1), ..., eval(an.iy)) if i€ Inagy,;, i =
. N f(al.il,...,an.in) € EAH,Y,
eval(e.7) == gvi,a(ki,eval(B1.9),...eval(G;.1)) if a € Syn,i>0,Y; € N, ’
inh(Vi,) = {1, (i}
v(.1) ifaeSyn,i >0,Y;, € X
where v; = Y;...Y,, and where k; denotes the ith successor of kg

Rm Compiler Construction Summer semester 2008 21

Definition of Evaluation Functions I1

Example 15.11 (cf. Example 13.2)

S — L

S—L.L

L — LB

B — 0
B —1

v.0 =wv.1

p.l1 =0
v.0=v.14+v.3
p.l1 =0

p.3 = —1.3

v.0 =wv.1
[.0=1

p.1 =p.0

v.0 =v.14+v.2
[.0=101+1
p.l=p0+1
p.2 =p.0
v.0=0

v.0 = 2r0

Compiler Construction

Summer semester 2008

Definition of Evaluation Functions I1

Example 15.11 (cf. Example 13.2)

S — L v.0 =wv.1
p.l1 =0
S—L.L v.0=v.1+v.3
p.l1 =0
p.3 = —1.3
L — B v.0 =v.1
[0=1
p.1 =p.0
L —-LB v0=v1+0v.2
l0=11+1
p.l=p0+1
p.2 =p.0
B —0 v.0 =0
B—1 v.0 = 2P0
AeN|S L B
IS'A) [0 {(p,v)} {(,v)}

Compiler Construction

Summer semester 2008

Definition of Evaluation Functions I1

Example 15.11 (cf. Example 13.2)

G gs.»(ko) = case production(ky) of
_ S — L:gr,(ki,0)
L U = 1 ,U 9
5 ;‘(1):8 S—L.L: gp,(k1,0) +
S—L.L v0=uvl+0v3 9r(k3, —gz,1(ks
P 1=0 end
p‘3 — 13 gr,0(ko,p) = case production(kg) of
0=l L— B: (k1,p)
L — B v.0 =v.1 9Bw\K1,DP
1.0=1 L—LB:gru(ki,p+1)
p.1 =p.0 + 9B,0(k2,p)
L—LB v0=vl1+v2 end i
10=11+1 g1,1(kog) = case production(kg) of
pl=p0+1 L—5:1
p.2 =p.0 1(;1_’ LB :gri(k1) +1
B—0 00=0 en '
B : 1 0.0 = 2P0 9B,v(ko, p) = case production(kg) of
] B—0:0
AeN|S L B B—1:2°
B [0 (oo 5ol end

m Compiler Construction Summer semester 2008

Example Evaluation

Example 15.11 (continued)

gs,v(ko) = case production(ky) of
S—L: gL,v(khO)
S — L.L:gp.,(ki,0) +
gr.v(k3, —gr1(ks))
end
gr.v(ko,p) = case production(kg) of
L—B: gp.,(ki,p)
L — LB :gp,(k1,p+1)
+* gB,v(k27p)
end
gr1(ko) = case production(kg) of
L—B:1
L — LB : gL,l(kl) +1
end
9B, (ko,p) = case production(ky) of
B—0:0
B—1:2?
end

m Compiler Construction Summer semester 2008

Example Evaluation

Example 15.11 (continued)

Syntax tree ¢:
gs,v(ko) = case production(ky) of
SHL:gL,U(kl,O) kOI:S
S — L.L:gp.,(ki,0) + g i N
end 9r,w(ks, —gr,i(ks)) ki:L ky:. ks:L
gr.v(ko,p) = case production(kg) of
L — B : gp(Fk1,p) ky: B ke : B
L — LB: g(L,U(kﬁ,p—i— 1)
+ 9B w(ke,p
end ks : 0 kr:1
gr1(ko) = case production(kg) of
L—-B:1
L — LB : gL,l(kl) +1
end
9B, (ko,p) = case production(ky) of
B—0:0
B —1:2P
end

m Compiler Construction Summer semester 2008

Example Evaluation

Example 15.11 (continued)

Syntax tree t:

gs,v(ko) = case production(ky) of
S — L:gr,(ki,0) ko: S

. ~
.

S—>L.LZgL,U(k1,O)+ ,/ i \\
end grv(k3, —gr.i(ks)) ki:L ky:. ks:L
gr.v(ko,p) = case production(kg) of
L — B:gpy(k1,p) ks : B ke : B
L—LB: g(L,U(kﬁ,p—i— 1)
+ 9B w(ke,p
end ks :0 k7 :1
gr.1(ko) = case production(kg) of
L—B:1 9gs,v(ko)
L — LB : gL,l(kl) +1
end
9B, (ko,p) = case production(ky) of
B—0:0
B —1:2P
end

m Compiler Construction Summer semester 2008

Example Evaluation

Example 15.11 (continued)

gs,v(ko) = case production(ky) of
S—L: gL,v(khO)
S — L.L:gp.,(ki,0) +
gr.v(k3, —gr1(ks))
end
gr1,.v(ko,p) = case production(ky) of
L—B: gp.,(ki,p)
L — LB :gp,(k1,p+1)
+* gB,v(k27p)
end
gr.1(ko) = case production(kg) of
L—-B:1
L — LB : gL,l(kl) +1
end
9B, (ko,p) = case production(ky) of
B—0:0
B—1:2P
end

Compiler Construction

Syntax tree t:

k1 : II:/ ko :: \;53 : L
k4 i B ke i B
k5:: 0 k7: 1

gs,0(ko)
= gr,0(k1,0) + gr,v(k3, —gr,1(k3))

Summer semester 2008 23

Example Evaluation

Example 15.11 (continued)

Syntax tree ¢:
gs,v(ko) = case production(ky) of
SHL:gL,U(kl,O) kOI:S
S — L.L:gp.,(ki,0) + e i \\\
end 9r,w(ks, —gr,i(ks)) ki:L ky:. ks:L
gr.v(ko,p) = case production(kg) of
L — B :gp.u(k1,p) ky:B ke : B
L — LB: g(L,U(kﬁ,p—i— 1)
+ 9B w(ke,p
end ks :0 kr:1
gr1(ko) = case production(kg) of
L—B:1 9gs,v(ko)
L— LB:gr (k) +1 9r,0(k1,0) + grv(ks, —gr,1(k3))
end 9B,0(k1,0) + gr,v(k3, —gr,1(k3))
9B.»(ko, p) = case production(ky) of
B—0:0
B —1:2P
end

%)

m Compiler Construction Summer semester 2008 23

Example Evaluation

Example 15.11 (continued)

gs,v(ko) = case production(ky) of

Syntax tree t:

S = L:gp.(ki,0) ko:§
S — L.L:gp.,(ki,0) + ,,// i N
end 9r,w(ks, —gr,i(ks)) ka L ky:. ks ;L
gr1,.v(ko,p) = case production(ky) of i i
L — B : gp(Fk1,p) ky: B ke : B
L — LB :gp,(k1,p+1) i |
+ 9B,v(k2,p) ’ ’
end ks :0 kr:1
gr.1(ko) = case production(kg) of
L—B:1 9s,0(ko)
L— LB:gr (k) +1 = gL v(kh 0) + gr,v(ks, —gr,1(k3))
end = gBw(k)+9Lv(k37 —gr,1(k3))
9B, (ko,p) = case production(ky) of =0+ (}L v (/4‘ —gr.1(ks
B—0:0
B —1:2P
end
m' Compiler Construction Summer semester 2008 23

Example Evaluation

Example 15.11 (continued)

Syntax tree t:
gs,v(ko) = case production(ky) of

S — L:gpu(ki,0) ko - 8
S—L.L: gL,v(kl,O) + /// i \\\
ond 9r.v(ks, —gr.1(k3)) kil kar. KoL
gr.v(ko,p) = case production(kg) of i i
L — B : gp(Fk1,p) ky: B ke : B
L—>LB:g(L,U(k§,p—|— 1) ! !
+ 9B,v(k2,p ‘ ‘
end ks : 0 kr:1
gr1(ko) = case production(kg) of
L—B:1 gs.v(ko)
L— LB:gr (k) +1 = 9r,0(k1,0) + gr,0(k3, —gr,1(k3))
end = 9B,v(k4,0) + g v(k3, —gri(k3
g5 (ko, p) = case production(kg) of = 0+ grv(ks, —gr,1(ks))
B—0:0 = 0+ gB,o(ks, —(]Lz(/ﬁ))
B —1:2P
end

m Compiler Construction Summer semester 2008 23

Example Evaluation

Example 15.11 (continued)

Syntax tree t:
gs,v(ko) = case production(ky) of
S — L:gyy(k1,0) EL
S — L.L:gp.,(ki,0) + ,,// i \\\
end 9r,w(ks, —gr,i(ks)) ka L ky:. ks ;L
gr.v(ko,p) = case production(kg) of i i
L — B : gp(Fk1,p) ky: B ke : B
L—>LBZgL7U(k§,p+ 1) i i
+ 9B,0(k2,p ‘ ‘
end ks :0 kr:1
gr.1(ko) = case production(ko) of
L—B:1 gs.v(ko)
L— LB:gr (k) +1 = 9r,0(k1,0) + gr,0(k3, —gr,1(k3))
end = 9Bw(k4,0) + gL (K3, —gri(k
9B, (ko,p) = case production (ko) of = 0+ grw(ks, —gr.1(k3))
B—0:0 =0+ gB,v(k67 gL,z(k3))
B —1:2? = 042 9za(ks)
end

Compiler Construction

Summer semester 2008

23

Example Evaluation

Example 15.11 (continued)

Syntax tree t:
gs,v(ko) = case production(ky) of
S — L:gyy(k1,0) EIL
S — L.L:gp.,(ki,0) + ,,// i S
end 9r,w(ks, —gr,i(ks)) b : L ky:. ks ;L
gr.v(ko,p) = case production(kg) of i i
L — B : gp(Fk1,p) ky: B ke : B
L—>LBZgL7U(k§,p+ 1) i i
+ 9B,0(k2,p ‘ ‘
end ks :0 kr:1
gr1(ko) = case production(kg) of
L—B:1 9s,0(ko)
L— LB:gr (k) +1 = 9r,0(k1,0) + gr,0(k3, —gr,1(k3))
end = 9Bw(k4,0) + gL (K3, —gri(k
9B,v(ko,p) = case production (ko) of = 0+ grw(ks, —gr.1(k3))
B—0:0 =0+ gB,v(k67 gL,z(k3))
B —1:2° = 04 2 9c.(ks)
end = 0+21

Compiler Construction

Summer semester 2008

23

Example Evaluation

Example 15.11 (continued)

Syntax tree t:
gs,v(ko) = case production(ky) of

S — L:gpu(ki,0) ko -8
S—L.L: gL,v(kl,O) + /// i \\\
end gr.v(k3, —gr1(ks)) Fiil k. kL
gr.v(ko,p) = case production(kg) of i i
L — B:gpu(ki,p) ky:B ke : B
L—>LB:g(Lk,U(k§,p+ 1) i i
+ 9Bw(R2,P ' '
end ks :0 kr:1
gr1(ko) = case production(kg) of
L—>B:1 gs,0(ko)
L— LB:gr (k) +1 = 9r,0(k1,0) + gr,0(k3, —gr,1(k3))
end = 9B,v(k4,0) + g v(k3, —gr,1(k3))
9B,v(ko,p) = case production (ko) of = 04 gr,0(k3, —gr,1(k3))
B—0:0 = 0+ gB,v(k67 —gL,z(k3))
B —1:9P = 0+ 9—9r.1(ks)
end - 0+2!
- 0.5

m Compiler Construction Summer semester 2008 23

Why Strong Noncircularity?

If the attribute grammar is not strongly noncircular, then the
construction of the evaluation functions fails.

Example 15.12 (cf. Example 15.5)

S— A a0=al

ﬂl.l = Ozl.l
/82.1 = OéQ.l
A— a 041.0 = /32.0
042.0 =2
A—b on.0=1
042.0 = /31.0

m Compiler Construction Summer semester 2008 24

Why Strong Noncircularity?

If the attribute grammar is not strongly noncircular, then the
construction of the evaluation functions fails.

Example 15.12 (cf. Example 15.5)
S— A a0=al

ﬂl.l = Ozl.l
/82.1 = OéQ.l
A— a 041.0 = /32.0
042.0 =2
A—b on.0=1
042.0 = /31.0

In Example 15.5:
IS/(A) = {(/32’ al)v (/81’ 042)}

m Compiler Construction Summer semester 2008 24

Why Strong Noncircularity?

If the attribute grammar is not strongly noncircular, then the
construction of the evaluation functions fails.

Example 15.12 (cf. Example 15.5)

S— A «al=asl Definition of gg q:
ﬂl.l = Ozl.l Js.a kO
/82.1 = OéQ.l . ()
A—a a1.0 = /32.0
042.0 =2
A—b on.0=1
042.0 = /31.0
In Example 15.5:
IS'(A) = {(B2, 1), (B1, 2)}

m Compiler Construction Summer semester 2008 24

Why Strong Noncircularity?

If the attribute grammar is not strongly noncircular, then the
construction of the evaluation functions fails.

Example 15.12 (cf. Example 15.5)

S—A al=asl Definition of gg :
611 =a.1 gs,a(ko)
B2.1 = as.1 = eval(a.0)
A— a 041.0 = /32.0
042.0 =2
A—b on.0=1
042.0 = /31.0
In Example 15.5:
IS'(A) = {(B2, 1), (B1, a2)}

m Compiler Construction Summer semester 2008

Why Strong Noncircularity?

If the attribute grammar is not strongly noncircular, then the
construction of the evaluation functions fails.

Example 15.12 (cf. Example 15.5)

S5 A al=ayl Definition of gg q:
prl=aq.1 9s,a(ko)
B2.1 = as.1 = eval(a.0)
A— a a1.0 = /3)2-0 = eval(ozg.l)
042.0 =2
A—b on.0=1
042.0 = /31.0
In Example 15.5:
IS/(A) = {(/82’041)7 (ﬁlz()@)}

m Compiler Construction Summer semester 2008

Why Strong Noncircularity?

If the attribute grammar is not strongly noncircular, then the
construction of the evaluation functions fails.

Example 15.12 (cf. Example 15.5)

S— A al0=al Definition of gg q:
fr-l=ayl 95,a(ko)
B2.1 = as.1 = eval(a.0)
A — a Oél.g = /2320 — eval(a}l)
-V == = oo (K1, eval(By.1
A—b on.0=1 9aaa(kr (61-1))
042.0 = /31.0

In Example 15.5:
IS/(A) = {(/32’ al)v (/81’ OQ)}

m Compiler Construction Summer semester 2008

Why Strong Noncircularity?

If the attribute grammar is not strongly noncircular, then the
construction of the evaluation functions fails.

Example 15.12 (cf. Example 15.5)

S—A al=al Definition of gg :
611 =ap.1 9S8, ko
B2.1 = as.1 — (evzil(a.O)
A—a m.0=0.0 = eval(ag.1)
3.0 = 2 = YAa (K1, eval(fr.1))
A—Db a0=1 = gAa,(k1,eval(a;.1))
042.0 = /31.0

In Example 15.5:
IS/(A) = {(ﬁ27 al)v (/81’ 0[2)}

m Compiler Construction Summer semester 2008

Why Strong Noncircularity?

If the attribute grammar is not strongly noncircular, then the
construction of the evaluation functions fails.

Example 15.12 (cf. Example 15.5)

S— A al=ayl Definition of gg q:
611 =ap.1 9S8, ko
B2.1 = as.1 — (evzzl(a.O)
A—a m.0=70.0 = eval(as.1)
.0 =2 = gA.a(k1,eval(B1.1))
A—b m0=1 = gAa,(k1,eval(a;.1))
020 = 1.0 = gAan (K1, 94,0 (K1, eval(B2.1))

In Example 15.5:
IS/(A) = {(/32’ al)v (/81’ OQ)}

m Compiler Construction Summer semester 2008

Why Strong Noncircularity?

If the attribute grammar is not strongly noncircular, then the
construction of the evaluation functions fails.

Example 15.12 (cf. Example 15.5)

S— A «al=asl Definition of gg q:
611 =a.1 95,a(ko)
B2.1 = as.1 eval(c.0)
A—a a1.0 = /32.0 eval(ag.l)
a2.0 =2 JA.an (K1, eval(3y.1))

A—=Db a.0=1 gA,az(klaevaKal-l))

a0 = 51.0 a0 (K1, 9.0 k1, eval(B2.1)))
In Example 15.5: 9A,a5(k1, 94,0, (K1, eval(ao.1))
IS'(A) = {(B2,01), (B1,2)} = does not terminate!

m Compiler Construction Summer semester 2008

	Repetition: Circularity of Attribute Grammars
	Correctness and Complexity of the Circularity Test
	Strongly Noncircular Attribute Grammars
	Attribute Evaluation
	Attribute Evaluation by Topological Sorting
	Attribute Evaluation by Recursive Functions

