
Compiler Construction

Lecture 15: Semantic Analysis III (Attribute Evaluation)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Outline

1 Repetition: Circularity of Attribute Grammars

2 Correctness and Complexity of the Circularity Test

3 Strongly Noncircular Attribute Grammars

4 Attribute Evaluation

5 Attribute Evaluation by Topological Sorting

6 Attribute Evaluation by Recursive Functions

Compiler Construction Summer semester 2008 2

Solvability of the Attribute Equation System

Example

A → aB,B → b ∈ P

α ∈ syn(B), β ∈ inh(B)

β.2 = f(α.2) ∈ EA→aB

α.0 = g(β.0) ∈ EB→b

=⇒ for V α := V β := N, g(x) := x, and

f(x) := x + 1: no solution

f(x) := 2x: exactly one solution
(v(α.k) = v(β.k) = 0)

f(x) := x: infinitely many solutions
(v(α.k) = v(β.k) = y for any y ∈ N)

=⇒ cyclic dependency:

A

a k : B

b

β α

Et : β.k = f(α.k)
α.k = g(β.k)

Compiler Construction Summer semester 2008 3

Circularity of Attribute Grammars

Goal: unique solvability of equation system
=⇒ avoid cyclic dependencies

Definition (Circularity)

An attribute grammar A = 〈G,E ,V 〉 ∈ AG is called circular if there
exists a syntax tree t such that the attribute equation system Et is
recursive (i.e., some attribute variable of t depends on itself).
Otherwise it is called noncircular.

Remark: because of the division of Varπ into Inπ and Outπ, cyclic
dependencies cannot occur at production level.

Compiler Construction Summer semester 2008 4

Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph Dt of a given syntax
tree t is caused by the occurrence of a “cover” production
π = A0 → w0A1w1 . . . Arwr ∈ P in a node k0 of t such that

the dependencies in Ek0
yield the “upper end” of the cycle and

for at least one i ∈ [r], some attributes in syn(Ai) depend on
attributes in inh(Ai).

Example

on the board

To identify such “critical” situations we need to determine the possible
ways in which attributes in syn(Ai) can depend on attributes in
inh(Ai).

Compiler Construction Summer semester 2008 5

Attribute Dependency Graphs and Circularity II

Definition (Attribute dependence)

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉.

If t is a syntax tree with root label A ∈ N and root node k,
α ∈ syn(A), and β ∈ inh(A) such that β.k →+

t α.k, then α is

dependent on β below A in t (notation: β
A
→֒ α).

For every syntax tree t with root label A ∈ N ,

is(A, t) := {(β, α) ∈ inh(A) × syn(A) | β
A
→֒ α in t}.

For every A ∈ N ,
IS (A) := {is(A, t) | t syntax tree with root label A}

⊆ 2Inh×Syn .

Remark: it is important that IS (A) is a system of attribute
dependence sets, not a union (later: strong noncircularity).

Example

on the board
Compiler Construction Summer semester 2008 6

The Circularity Test

Algorithm (Circularity test for attribute grammars)

Input: A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉

Procedure: 1 for every A ∈ N , iteratively construct IS (A) as
follows:

1 if π = A → w ∈ P , then is [π] ∈ IS (A)
2 if π = A → w0A1w1 . . . Arwr ∈ P and is i ∈ IS(Ai)

for every i ∈ [r], then is [π; is1, . . . , isr] ∈ IS (A)

2 test whether A is circular by checking if there exist
π = A → w0A1w1 . . . Arwr ∈ P and isi ∈ IS (Ai) for
every i ∈ [r] such that the following relation is cyclic:

→π ∪
⋃r

i=1{(β.pi, α.pi) | (β, α) ∈ isi}

(where pi :=
∑i

j=1 |wj−1| + i)

Output: “yes” or “no”

Compiler Construction Summer semester 2008 7

Outline

1 Repetition: Circularity of Attribute Grammars

2 Correctness and Complexity of the Circularity Test

3 Strongly Noncircular Attribute Grammars

4 Attribute Evaluation

5 Attribute Evaluation by Topological Sorting

6 Attribute Evaluation by Recursive Functions

Compiler Construction Summer semester 2008 8

Correctness and Complexity of Circularity Test

Theorem 15.1 (Correctness of the circularity test)

An attribute grammar is circular iff Algorithm 14.15 yields the answer “yes”.

Proof.
by induction on the syntax tree t with cyclic Dt

Lemma 15.2
The time complexity of the circularity test is exponential in the size of the
attribute grammar (= maximal length of right-hand sides of productions).

Proof.

by reduction of the word problem of alternating Turing machines (see
M. Jazayeri: A Simpler Construction for Showing the Intrinsically

Exponential Complexity of the Circularity Problem for Attribute Grammars,
Comm. of the ACM 28(4), 1981, pp. 715–720)

Compiler Construction Summer semester 2008 9

Outline

1 Repetition: Circularity of Attribute Grammars

2 Correctness and Complexity of the Circularity Test

3 Strongly Noncircular Attribute Grammars

4 Attribute Evaluation

5 Attribute Evaluation by Topological Sorting

6 Attribute Evaluation by Recursive Functions

Compiler Construction Summer semester 2008 10

Simplifying the Circularity Test

Idea: to simplify the circularity test, do not distinguish between
attribute dependences which are caused by different syntax trees

Definition 15.3 (Attribute dependence (modified))

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉.

Reminder: if t is a syntax tree with root label A ∈ N and root
node k, α ∈ syn(A), and β ∈ inh(A) such that β.k →+

t α.k, then α

is dependent on β below A in t (notation: β
A
→֒ α).

For every A ∈ N ,

IS ′(A) := {(β, α) | β
A
→֒ α in some syntax tree with root label A}

⊆ Inh × Syn

Compiler Construction Summer semester 2008 11

The Strong Circularity Test

Algorithm 15.4 (Strong circularity test for attribute grammars)

Input: A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉
Procedure: 1 for every A ∈ N , iteratively construct IS ′(A) as

follows:
1 if π = A → w ∈ P , then is [π] ⊆ IS ′(A)
2 if π = A → w0A1w1 . . . Arwr ∈ P , then

is [π; IS ′(A1), . . . , IS
′(Ar)] ⊆ IS ′(A)

2 test whether there exists
π = A → w0A1w1 . . . Arwr ∈ P such that the
following relation is cyclic:

→π ∪
⋃r

i=1{(β.pi, α.pi) | (β, α) ∈ IS ′(Ai)}

(where pi :=
∑i

j=1 |wj−1| + i)
Output: “yes” or “no”

Example 15.5

on the board
Compiler Construction Summer semester 2008 12

Strongly Noncircular Attribute Grammars I

Definition 15.6 (Strong noncircularity)

An attribute grammar is called strongly noncircular if Algorithm 15.4
yields the answer “no”.

Lemma 15.7

The time complexity of the strong circularity test is polynomial in the
size of the attribute grammar (= maximal length of right-hand sides of
productions).

Proof.

omitted

Compiler Construction Summer semester 2008 13

Strongly Noncircular Attribute Grammars II

Lemma 15.8
1 Every strongly noncircular attribute grammar is noncircular.

2 There are noncircular attribute grammars which are not strongly
noncircular.

Proof.

1 Clear since is ⊆ IS ′(A) for every A ∈ N and is ∈ IS (A)

2 The attribute grammar in Example 15.5 is noncircular but not
strongly noncircular (on the board).

Compiler Construction Summer semester 2008 14

Outline

1 Repetition: Circularity of Attribute Grammars

2 Correctness and Complexity of the Circularity Test

3 Strongly Noncircular Attribute Grammars

4 Attribute Evaluation

5 Attribute Evaluation by Topological Sorting

6 Attribute Evaluation by Recursive Functions

Compiler Construction Summer semester 2008 15

Attribute Evaluation Methods

Given: (strongly) noncircular attribute grammar
A = 〈G,E ,V 〉 ∈ AG
syntax tree t of G

valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1 Topological sorting of Dt:
1 start with attribute variables which depend at most

on synthesized attributes of terminals
2 proceed by successive substitution

2 Recursive functions (for strongly noncircular AGs):
1 for every A ∈ N and α ∈ syn(A), define evaluation

function gA,α with the following parameters:
the node of t where α has to be evaluated and
all inherited attributes of A on which α (potentially)

depends

2 for every α ∈ syn(S), evaluate gS,α(k0) where k0

denotes the root of t
3 Special cases: S-attributed grammars (yacc), L-attributed

grammars
Compiler Construction Summer semester 2008 16

Outline

1 Repetition: Circularity of Attribute Grammars

2 Correctness and Complexity of the Circularity Test

3 Strongly Noncircular Attribute Grammars

4 Attribute Evaluation

5 Attribute Evaluation by Topological Sorting

6 Attribute Evaluation by Recursive Functions

Compiler Construction Summer semester 2008 17

Attribute Evaluation by Topological Sorting

Algorithm 15.9 (Evaluation by topological sorting)

Input: noncircular A = 〈G,E ,V 〉 ∈ AG, syntax tree t of G,
valuation v : SynΣ → V

Procedure: 1 let Var := Var t \ SynΣ (* attributes to be evaluated *)
2 while Var 6= ∅ do

1 let x ∈ Var such that {y ∈ Var | y →t x} = ∅
2 let x = f(x1, . . . , xn) ∈ Et

3 let v(x) := f(v(x1), . . . , v(xn))
4 let Var := Var \ {x}

Output: solution v : Var t → V

Remark: noncircularity guarantees that in step 2.1 at least one such x

is available

Example 15.10

see Examples 13.1 and 13.2 (Knuth’s binary numbers)

Compiler Construction Summer semester 2008 18

Outline

1 Repetition: Circularity of Attribute Grammars

2 Correctness and Complexity of the Circularity Test

3 Strongly Noncircular Attribute Grammars

4 Attribute Evaluation

5 Attribute Evaluation by Topological Sorting

6 Attribute Evaluation by Recursive Functions

Compiler Construction Summer semester 2008 19

Attribute Evaluation by Recursive Functions

Restriction: only for strongly noncircular attribute grammars

Principle: 1 for every A ∈ N and α ∈ syn(A), define evaluation
function gA,α with the following parameters:

the node of t where α has to be evaluated (which is
labelled by A) and
all inherited attributes of A on which α (potentially)
depends (that is, {β ∈ inh(A) | (β, α) ∈ IS ′(A)})

2 given a syntax tree t with root k0, evaluate gS,α(k0) for
every α ∈ syn(S)

Result: evaluates synthesized attribute variables at root of t and all
attribute variables on which they actually depend (according to
Et)

Compiler Construction Summer semester 2008 20

Definition of Evaluation Functions I

For every A ∈ N and α ∈ syn(A), let

IS ′(A) ⊆ inh(A) × syn(A) as computed by strong circularity test
(Algorithm 15.4)

inh(A, α) := {β ∈ inh(A) | (β, α) ∈ IS ′(A)}

A → γ1 | . . . | γm all A-productions in P

Then gA,α is given by
gA,α(k0, inh(A, α)) := case production applied at k0 of

...
A → γj : eval(α.0)

...
end

with

eval(α.i) :=



























α if α ∈ inh(A), i = 0
f(eval(α1.i1), . . . , eval(αn.in)) if α.i ∈ InA→γj

, α.i =
f(α1.i1, . . . , αn.in) ∈ EA→γj

gYi,α(ki, eval(β1.i), . . . , eval(βl.i)) if α ∈ Syn, i > 0, Yi ∈ N,
inh(Yi, α) = {β1, . . . , βl}

v(α.i) if α ∈ Syn, i > 0, Yi ∈ Σ
where γj = Y1 . . . Yr, and where ki denotes the ith successor of k0

Compiler Construction Summer semester 2008 21

Definition of Evaluation Functions II

Example 15.11 (cf. Example 13.2)

G′

B :

S → L v.0 = v.1
p.1 = 0

S → L.L v.0 = v.1 + v.3
p.1 = 0
p.3 = −l.3

L → B v.0 = v.1
l.0 = 1
p.1 = p.0

L → LB v.0 = v.1 + v.2
l.0 = l.1 + 1
p.1 = p.0 + 1
p.2 = p.0

B → 0 v.0 = 0
B → 1 v.0 = 2p.0

A ∈ N S L B
IS ′(A) ∅ {(p, v)} {(p, v)}

gS,v(k0) = case production(k0) of
S → L : gL,v(k1, 0)
S → L.L : gL,v(k1, 0) +

gL,v(k3,−gL,l(k3))
end

gL,v(k0, p) = case production(k0) of
L → B : gB,v(k1, p)
L → LB : gL,v(k1, p + 1)

+ gB,v(k2, p)
end

gL,l(k0) = case production(k0) of
L → B : 1
L → LB : gL,l(k1) + 1

end
gB,v(k0, p) = case production(k0) of

B → 0 : 0
B → 1 : 2p

end
Compiler Construction Summer semester 2008 22

Example Evaluation

Example 15.11 (continued)

gS,v(k0) = case production(k0) of
S → L : gL,v(k1, 0)
S → L.L : gL,v(k1, 0) +

gL,v(k3,−gL,l(k3))
end

gL,v(k0, p) = case production(k0) of
L → B : gB,v(k1, p)
L → LB : gL,v(k1, p + 1)

+ gB,v(k2, p)
end

gL,l(k0) = case production(k0) of
L → B : 1
L → LB : gL,l(k1) + 1

end
gB,v(k0, p) = case production(k0) of

B → 0 : 0
B → 1 : 2p

end

Syntax tree t:

k0 : S

k1 : L k2 : . k3 : L

k4 : B k6 : B

k5 : 0 k7 : 1

gS,v(k0)
= gL,v(k1, 0) + gL,v(k3,−gL,l(k3))
= gB,v(k4, 0) + gL,v(k3,−gL,l(k3))
= 0 + gL,v(k3,−gL,l(k3))
= 0 + gB,v(k6,−gL,l(k3))
= 0 + 2−gL,l(k3)

= 0 + 2−1

= 0.5
Compiler Construction Summer semester 2008 23

Why Strong Noncircularity?

If the attribute grammar is not strongly noncircular, then the
construction of the evaluation functions fails.

Example 15.12 (cf. Example 15.5)

S → A α.0 = α2.1
β1.1 = α1.1
β2.1 = α2.1

A → a α1.0 = β2.0
α2.0 = 2

A → b α1.0 = 1
α2.0 = β1.0

In Example 15.5:
IS ′(A) = {(β2, α1), (β1, α2)}

Definition of gS,α:

gS,α(k0)
= eval(α.0)
= eval(α2.1)
= gA,α2

(k1, eval(β1.1))
= gA,α2

(k1, eval(α1.1))
= gA,α2

(k1, gA,α1
(k1, eval(β2.1)))

= gA,α2
(k1, gA,α1

(k1, eval(α2.1))

=⇒ does not terminate!

Compiler Construction Summer semester 2008 24

	Repetition: Circularity of Attribute Grammars
	Correctness and Complexity of the Circularity Test
	Strongly Noncircular Attribute Grammars
	Attribute Evaluation
	Attribute Evaluation by Topological Sorting
	Attribute Evaluation by Recursive Functions

