Compiler Construction

Lecture 16: Semantic Analysis IV & Code Generation I

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

© Repetition: Attribute Evaluation

Rm Compiler Construction Summer semester 2

Attribute Evaluation Methods

Given: @ (strongly) noncircular attribute grammar
A=(G,E,V)e AG
@ syntax tree t of G
@ valuation v : Syny, — V where
Syny, := {a.k | k labelled by a € ¥, € syn(a)} C Vary
Goal: extend v to (partial) solution v : Vary — V
Methods: @ Topological sorting of D;:
@ start with attribute variables which depend at most
on synthesized attributes of terminals
© proceed by successive substitution
© Recursive functions (for strongly noncircular AGs):
@ for every A € N and a € syn(A), define evaluation
function ga . with the following parameters:
@ the node of t where a has to be evaluated and
@ all inherited attributes of A on which « (potentially)
depends
@ for every a € syn(S), evaluate gs o(ko) where ko
denotes the root of ¢
© Special cases: S-attributed grammars (yacc), L-attributed
grammars

Rm Compiler Construction

Summer semester 2008

© Simultaneous Parsing and Attribute Evaluation

Rm Compiler Construction Summer semester 2

L-Attributed Grammars 1

In an L-attributed grammar, attribute dependencies on the right-hand
sides of productions are only allowed to run from left to right.

Rm Compiler Construction Summer semester 2008

L-Attributed Grammars 1

In an L-attributed grammar, attribute dependencies on the right-hand
sides of productions are only allowed to run from left to right.

Definition 16.1 (L-attributed grammar)

Let 2 = (G, E, V) € AG such that, for every m € P and
Bi=f(...,a.j,...) € Ex with 8 € Inh and o € Syn, j < i. Then U is
called an L-attributed grammar (notation: 2 € LAG).

m' Compiler Construction Summer semester 2008 5

L-Attributed Grammars 1

In an L-attributed grammar, attribute dependencies on the right-hand
sides of productions are only allowed to run from left to right.

Definition 16.1 (L-attributed grammar)

Let 2 = (G, E, V) € AG such that, for every m € P and
Bi=f(...,a.j,...) € Ex with 8 € Inh and o € Syn, j < i. Then U is
called an L-attributed grammar (notation: 2 € LAG).

FEvery A € LAG is noncircular.

m Compiler Construction Summer semester 2008 5

L-Attributed Grammars 11

Example 16.3

L-attributed grammar:
S—AB il =0

.2 =s1+1
s.0=s52+1
A—ad 12 =130+1
s0=s2+4+1

A—c s.0 =17.0+1
B—b 5.0 =140+1

Compiler Construction Summer semester 2008 6

L-Attributed Grammars 11

L-attributed grammar:
S—AB il =0

.2 =s1+1

s.0=s52+1 Y
A—aAd 12 =140+1

5.0 = s2+1 a

A—c s.0 =17.0+1
B—b 5.0 =140+1

m Compiler Construction Summer semester 2008 6

Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be
attributed by a depth-first, left-to-right tree traversal with two visits to
each node

@ top-down: evaluation of inherited attributes

© bottom-up: evaluation of synthesized attributes

Rm Compiler Construction Summer semester 2008

Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be
attributed by a depth-first, left-to-right tree traversal with two visits to
each node

@ top-down: evaluation of inherited attributes

© bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing
@ top-down: expansion steps

@ bottom-up: reduction steps

Rm Compiler Construction Summer semester 2008

Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be
attributed by a depth-first, left-to-right tree traversal with two visits to
each node

@ top-down: evaluation of inherited attributes

© bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing
@ top-down: expansion steps

@ bottom-up: reduction steps

Idea: extend LL parsing to support reduction steps, and integrate
attribute evaluation

= use LR(0) items as stack alphabet
and store values of attribute variables in parsing stack

Rm Compiler Construction Summer semester 2008

LL(1) Parsing with Attribute Evaluation I

Definition 16.4 (Parsing automaton with attribute evaluation)

Let A = (G,E, V) € LAG with G = (N, X, P,S) € LL(1). The parsing
automaton with attribute evaluation of 2 is defined by the following
components.

o Input alphabet X

m Compiler Construction Summer semester 2008

8

LL(1) Parsing with Attribute Evaluation I

Definition 16.4 (Parsing automaton with attribute evaluation)

Let A = (G,E, V) € LAG with G = (N, X, P,S) € LL(1). The parsing
automaton with attribute evaluation of 2 is defined by the following
components.

o Input alphabet X
o Pushdown alphabet I' := ;¢ pyy_53 (LR(0)x (G) x Valr) where

9 LR(O)W(G) o= {[A — 51 52] | T=A— (51(52} and
o Vol :={v|v: Outy --» V}

m Compiler Construction Summer semester 2008

8

LL(1) Parsing with Attribute Evaluation I

Definition 16.4 (Parsing automaton with attribute evaluation)

Let A = (G,E, V) € LAG with G = (N, X, P,S) € LL(1). The parsing
automaton with attribute evaluation of 2 is defined by the following
components.

o Input alphabet X
o Pushdown alphabet I' := ;¢ pyy_53 (LR(0)x (G) x Valr) where
o LR(0):(G) = {[A — 6, - 8] | 7 = A — 6185} and
o Vol :={v|v: Outy --» V}
o Configurations ¥* x I'*
o initial configuration: (w, ([— -S],vp))
o final configurations: {(e, ([— S],v)) | v € Val_s}

m Compiler Construction Summer semester 2008

8

LL(1) Parsing with Attribute Evaluation II

Definition 16.4 (continued)

@ Transitions:

expand: (evaluate inherited attributes of expanded symbol)

if x € la(B — ¢'), then
(zw, ([A — Y1...Y;_1 - Bd],v)7)
F (zw, ([B — 0'],v")([A — Y1...Yi_1 - B],v)y)

where v/ := [3.0 — f(v(ay.i1),...,v(qn.iy))] for
B € inh(B) and
/B.i = f(oq.il, A ,Oén.’in) E EA—>Y1...Yile5

m Compiler Construction Summer semester 2008 9

LL(1) Parsing with Attribute Evaluation II

Definition 16.4 (continued)

@ Transitions:

expand: (evaluate inherited attributes of expanded symbol)

if x € la(B — ¢'), then
(xw7 ([A =v }/1 KD }/i—l : B(s]vv)’)')
F (zw, ([B — 0'],v")([A — Y1...Yi_1 - B],v)y)
where v/ := [3.0 — f(v(ay.i1),...,v(qn.iy))] for
B € inh(B) and
Bi= fla1.41,...,0n.4n) € Eayv;. v, ,Bs
match: (aw, ([A — 41 - ads],v)7)
F (w, ([A — d1a - 02],v)7)

m Compiler Construction Summer semester 2008 9

LL(1) Parsing with Attribute Evaluation II

Definition 16.4 (continued)

o Transitions:

expand:

match:

reduce:

(evaluate inherited attributes of expanded symbol)
if x € la(B — ¢'), then
(zw, ([A — Y1...Y;_1 - Bd],v)7)
F (zw, ([B — 0'],v")([A — Y1...Yi_1 - B],v)y)
where v/ := [3.0 — f(v(ay.i1),...,v(qn.iy))] for
B € inh(B) and
B.i= fla1.i1,...,0n0n) € Eaoy,. v, 1Bs
(aw, ([A — 41 - ads],v)7)
F (w, ([A — b1a - 62],v)7)
(evaluate synthesized attributes of reduced symbol)
(w, ([B — &"],v")([A = Y1...Yi1- B6],v)7)
- (w7 ([A —-Y...Y;1B- 5]7 v”)’)')
where v" := v[a.i — f(V'(a1.i1),. ..,V (n.in))] for
a € syn(B) and .0 = f(aq.41,...,Qn.in) € Eg_&

Compiler Construction Summer semester 2008

9

LL(1) Parsing with Attribute Evaluation III

Example 16.5 (cf. Example 16.3)

S — AB S
A — aA
A—c
B — b
< [ES[=]

10

Summer semester 2008

m' Compiler Construction

LL(1) Parsing with Attribute Evaluation III

Example 16.5 (cf. Example 16.3)

S — AB
A — aA
A A B
B — b

=b [[=S[[-]
F acb = 9] —
[S — ~AB] —

10

Summer semester 2008

m' Compiler Construction

LL(1) Parsing with Attribute Evaluation III

Example 16.5 (cf. Example 16.3)

S — AB S
A — aA
A—c 04 "B
B —b
A
> [T
F acb = 9] —
[S — ~AB] —
F acb [— S] —
[S — -AB] —
[A— aA] [:.0=0

m Compiler Construction Summer semester 2008 10

LL(1) Parsing with Attribute Evaluation III

Example 16.5 (cf. Example 16.3)

S — AB S
A — aA
A—c 04 "B
B —b
A
2> [T
F acb = 9] —
[S — ~AB]
F acb [— S] —
[S — -AB] —

[A— aA] [:.0=0
F cb [9]
[S — -AB] =

[A—a-A][40=0

m Compiler Construction Summer semester 2008 10

LL(1) Parsing with Attribute Evaluation III

Example 16.5 (cf. Example 16.3)

S — AB S
A — aA
A—c A "B
B —b A
a” A
> A=)
F acb = 9] —
[S — ~AB]
F acb [— S] —
[S — -AB] —

[A— -aA] | ¢0=0
F cb [9]
[S — -AB] =
[A—a-A]]i0=0
F cb = 9] —
[S — -AB] =
[A—a-A]|i0=0
[A—] [i0=1

m Compiler Construction Summer semester 2008 10

LL(1) Parsing with Attribute Evaluation III

Example 16.5 (cf. Example 16.3)

S — AB S,
A — ad Fb - -
A—c A’ B [S = -AB] —
B —b [A—a-A][40=0
a” DA [A—c] [40=1
> A=)
F acb = 9] —
[S— -AB] | —
F acb [_> ~S] —
[S — -AB] —

[A— aA] [:.0=0
F cb [9] —
[S= AB[| —
[A—a-A][40=0
F cb = 9] —
[S = AB[| —
[A—a-A][40=0
[A= <] |i0=1
m Compiler Construction Summer semester 2008 10

LL(1) Parsing with Attribute Evaluation III

Example 16.5 (cf. Example 16.3)

S — AB S
A ad b =3] -
A—c A B [S = -AB] —
B —b A [A—a - A][20=0
a’ QA [A—c] [i0=1
s R -
acb ¢ [S — -AD] —
[[= ST -] [A=aA] [i0=0,52=20
F acb = 3] —
[S — ~AB] —
F acb = 9] —
[S — -AB] —

[A— aA] [:.0=0
F cb [9] —
= AB[| —
[A—a-A][40=0
F cb = 9] —
= AB[| —
[A—a-A][40=0
[A= <] [i0=1
m Compiler Construction Summer semester 2008 10

LL(1) Parsing with Attribute Evaluation III

Example 16.5 (cf. Example 16.3)

S — AB S
A aA F b =3] —
A—c A ‘B 5= AB] | —
B —b A [A—a-A][40=0
a” A [A—c] [i0=1
| e -
© [S — -AB] —
S = [A=aA] [i0=0,52=2
- acb [= -9 — Fb = 5] —
[S— -AB] | — [S—A-B]|s1=3
F acb = 9] —
[S — -AB] —

[A— aA] [:.0=0
F cb [9] —
= AB[| —
[A—a-A][40=0
F cb = 9] —
= AB[| —
[A—a-A][40=0
[A= <] [i0=1
m Compiler Construction Summer semester 2008 10

LL(1) Parsing with Attribute Evaluation III

Example 16.5 (cf. Example 16.3)

S — AB S,
A—ad m o = 5] =
A—c (i) [S — -AB] =
B—b [A—a-A][40=0
[A—c] [40=1
Fb [= 9] =
acb |5 — AB] -
[A—aA]|:0=0,s2=2
F acb X — Fb [_> S] —
[S— ABJ [— [S—A-B][s1=3
F acb [5] — Fb = 5] -
[S — -AB] - [S—A-B[[s1=3
[A— aA] [:.0=0 [B—b] [i0=14
F cb [9] —
[S — -AB] =

[A—a-A][40=0
F cb = 9] —
= AB[| —
[A—a-A][40=0
[A— <] |i0=1
m Compiler Construction Summer semester 2008 10

LL(1) Parsing with Attribute Evaluation III

Example 16.5

S — AB
A — aA
A—c
B — b
acb
F acb B —
[S—>~AB] —
F acb [_> ~S] —
[S — -AB] —
[A— aA] [:.0=0
F cb [9] —
[S — -AB] —
[A—a-A][40=0
F cb = 9] —
[S — -AB] —
[A—a-A][40=0
[A —] 1.0=1

(cf. Example 16.3)

Fb

Fb

Fbo

[— -S] -
[S — AB] —

[A—a - A][20=0

[A— c] .0=1
=3 -
[S — -AB] —

[A—aA]|:0=0,s2=2

[— -S] -

[S— A -B]|s1=3
Ea T -

[S— A -B]|s1=3

[B — -b] .0=4
5o T -

[S— A -B]|s1=3

[B — b’] .0=4

Compiler Construction

Summer semester 2008

10

LL(1) Parsing with Attribute Evaluation III

Example 16.5 (cf. Example 16.3)

S — AB
A — aA
A—c
B — b
a”
> [T
F acb = .5 —
[— -S]
[S— -AB] | —
F acb [_> ~S] —
[S — -AB] —
[A— aA] [:.0=0
F cb [9] —
[S — -AB] —
[A—a-A][40=0
F cb = 9] —
[S — -AB] —
[A—a-A][40=0
[A —] 1.0=1

Fb

Fb

Fbo

[s[i AR
[A>a A[[i0=0
[A— c] .0=1

=) -

[S — -AB] —
[A—aA]|:0=0,s2=2
S T -

[S— A -B]|s1=3
=3
[S— A -B]|sl=
[B — -b] .0=4
= T -
[S— A -B]|s1=3
[B — b’] .0=4
=) -
[S— AB][s1=3,52=5

Compiler Construction

Summer semester 2008

10

LL(1) Parsing with Attribute Evaluation III

Example 16.5 (cf. Example 16.3)

S — AB
A — aA
A—c
B — b
acb
F acb B —
[S—>~AB] —
F acb [_> ~S] —
[S — -AB] —
[A— aA] [:.0=0
F cb [9] —
[S — -AB] —
[A—a-A][40=0
F cb = 9] —
[S — -AB] —
[A—a-A][40=0
[A —] 1.0=1

Fb

Fb

Fbo

[—

[S — :AB]

[A—a- A]

[A= <]

= 5]

5= -AB]

[A—aA] |:0

[= 5]

[S—= A D]

[= 5]

[S—= A B

[B — -b]

[= 5]

[S—= A B

[B — b’]

[-S]

[S = AB]

s.1=3,52=5

[[=S5]]s1=6]

Compiler Construction

Summer semester 2008

10

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

Y
Syntactic analysis (Parser))

y
Semantic analysis)

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Summer semester 2008 11

© Generation of Intermediate Code

Rm Compiler Construction Summer semester 2

Modularization of Code Generation 1

Splitting of code generation for programming language PL:

trans
—

PL "% 10 % Mo

Frontend: trans generates machine-independent intermediate code
(IC) for abstract (stack) machine

Backend: code generates actual machine code (MC)

Rm Compiler Construction Summer semester 2008 13

Modularization of Code Generation 1

Splitting of code generation for programming language PL:

trans code
— —_—

PL IC MC

Frontend: trans generates machine-independent intermediate code
(IC) for abstract (stack) machine

Backend: code generates actual machine code (MC)

Advantages: IC machine independent —-

Portability: much easier to write IC compiler/interpreter for a new
machine (as opposed to rewriting the whole compiler)

Fast compiler implementation: generating IC much easier than
generating MC

Code size: 1C programs usually smaller than corresponding MC

programs

Code optimization: division into machine-independent and
machine-dependent parts

Rm Compiler Construction Summer semester 2008 13

Modularization of Code Generation 11
Example 16.6

© UNiversal Computer-Oriented Language (UNCOL; &~ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL; MCy
T~ 7 only n + m translations
UNCOL (in place of n - m)
g ~
PL, MGC,,

m Compiler Construction Summer semester 2008 14

http://en.wikipedia.org/wiki/UNCOL

Modularization of Code Generation 11
Example 16.6

© UNiversal Computer-Oriented Language (UNCOL; &~ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL; MCy
T~ 7 only n + m translations
UNCOL (in place of n - m)
g ~
PL, MGC,,

@ Pascal’s pseudocode (P-code; ~ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

m Compiler Construction Summer semester 2008 14

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine

Modularization of Code Generation 11
Example 16.6

© UNiversal Computer-Oriented Language (UNCOL; &~ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL; MCy
T~ 7 only n + m translations
UNCOL (in place of n - m)
g ~
PL, MGC,,

@ Pascal’s pseudocode (P-code; ~ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

© The Amsterdam Compiler Kit (TACK; since 1980;
http://tack.sourceforge.net/)

m Compiler Construction Summer semester 2008

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine
http://tack.sourceforge.net/

Modularization of Code Generation 11
Example 16.6

© UNiversal Computer-Oriented Language (UNCOL; &~ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL; MCy
T~ 7 only n + m translations
UNCOL (in place of n - m)
g ~
PL, MGC,,

@ Pascal’s pseudocode (P-code; ~ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

© The Amsterdam Compiler Kit (TACK; since 1980;
http://tack.sourceforge.net/)

@ Java Virtual Machine (JVM; Sun;
http://en.wikipedia.org/wiki/Java_Virtual_Machine)

m Compiler Construction Summer semester 2008

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine
http://tack.sourceforge.net/
http://en.wikipedia.org/wiki/Java_Virtual_Machine

Modularization of Code Generation 11
Example 16.6

© UNiversal Computer-Oriented Language (UNCOL; &~ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL; MCy
T~ 7 only n + m translations
UNCOL (in place of n - m)
g ~
PL, MGC,,

@ Pascal’s pseudocode (P-code; ~ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

© The Amsterdam Compiler Kit (TACK; since 1980;
http://tack.sourceforge.net/)

@ Java Virtual Machine (JVM; Sun;
http://en.wikipedia.org/wiki/Java_Virtual_Machine)

© Common Intermediate Language (CIL; Microsoft;
http://en.wikipedia.org/wiki/Common_Intermediate_Language)

RWTH Compiler Construction Summer semester 2008

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine
http://tack.sourceforge.net/
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Common_Intermediate_Language

Language Structures I

Structures in imperative programming languages:

(object-oriented, declarative [functional/logic]: see special courses)
@ Basic data types and basic operations

Static and dynamic data structures

Expressions and assignments

Control structures (sequences, branching statements, loops, ...)

Procedures and functions

¢ 6 ¢ ¢ ¢

Modularity: blocks, modules, and classes

Rm Compiler Construction Summer semester 2008 15

Language Structures I

Structures in imperative programming languages:

(object-oriented, declarative [functional/logic]: see special courses)
@ Basic data types and basic operations

Static and dynamic data structures

Expressions and assignments

Control structures (sequences, branching statements, loops, ...)

Procedures and functions

¢ 6 ¢ ¢ ¢

Modularity: blocks, modules, and classes

Use of procedures and blocks:

@ FORTRAN: non-recursive and non-nested procedures
— static memory management (memory requirement determined at
compile time)

@ C: recursive and non-nested procedures
—> dynamic memory management using runtime stack (memory
requirement only known at runtime), no static links

@ Algol-like languages (Pascal, Modula): recursive and nested procedures
— dynamic memory management using runtime stack with static links

m' Compiler Construction Summer semester 2008 15

Language Structures I1

Structures in machine code: (von Neumann/SISD)

Memory hierarchy: accumulators, registers, cache, main memory,
background storage

Instruction types: arithmetic/Boolean/... operation, test/jump
instruction, transfer instruction, I/O instruction, ...

Address modes: direct/indirect, absolute/relative, ...

Architectures: RISC (few [fast but simple] instructions, many
registers), CISC (many [complex but slow] instructions,
few registers)

Rm Compiler Construction Summer semester 2008 16

Language Structures I1

Structures in machine code: (von Neumann/SISD)

Memory hierarchy: accumulators, registers, cache, main memory,
background storage

Instruction types: arithmetic/Boolean/... operation, test/jump
instruction, transfer instruction, I/O instruction, ...

Address modes: direct/indirect, absolute/relative, ...

Architectures: RISC (few [fast but simple] instructions, many
registers), CISC (many [complex but slow] instructions,
few registers)

Structures in intermediate code:

Data types and operations like PL
Data stack with basic operations
Jumping instructions for control structures

Runtime stack for blocks, procedures, and static data structures

¢ ¢ ¢ ¢

Heap for dynamic data structures

m' Compiler Construction Summer semester 2008 16

@ The Example Programming Language EPL

Rm Compiler Construction Summer semester 2

The Example Programming Language EPL

Structures of EPL:
@ Only integer and Boolean values

@ Arithmetic and Boolean expressions with strict and non-strict
semantics

o Control structures: sequence, branching, iteration

@ Nested blocks and recursive procedures with local and global
variables
(= dynamic memory management using runtime stack with
static links)

® Procedure parameters and data structures later

Rm Compiler Construction Summer semester 2008 18

Syntax of EPL

Definition 16.7 (Syntax of EPL)

The syntax of EPL is defined as follows:
Z: z (* z is an integer *)
Ide : I (* I is an identifier *)
AEzp: Au=z|I|A +As|...
BEzp: B := A; <Ay |not B|Bj and By | B; or By
Cmd : C:u=1:=A]|C1;Cy|if B then C] else (s |
while Bdo C | I(Q)
Dcl : D ::= Do Dy Dp
Do :=¢|const Iy :=21,...,I, := z;
Dy :=¢|var I, ... ,I,;
Dp ::=¢|proc [1;Ky; ... ;1 Ky
Block: K ::=DC
Pgm : P = in/out I, ...,I,; K.

m Compiler Construction Summer semester 2008

Static Semantics of EPL 1

o All identifiers in a declaration D have to be different.

Rm Compiler Construction Summer semester 2008 20

Static Semantics of EPL 1

o All identifiers in a declaration D have to be different.

@ Every identifier occurring in the command C of a block D C' must
be declared
e in D or
e in the declaration list of a surrounding block.

Rm Compiler Construction Summer semester 2008 20

Static Semantics of EPL 1

o All identifiers in a declaration D have to be different.
@ Every identifier occurring in the command C of a block D C' must
be declared
e in D or
e in the declaration list of a surrounding block.
@ Multiple declarations of an identifier in different blocks are
possible. Each usage in a command C refers to the “innermost”
declaration.

Rm Compiler Construction Summer semester 2008 20

Static Semantics of EPL 1

o All identifiers in a declaration D have to be different.
@ Every identifier occurring in the command C of a block D C' must
be declared
e in D or
e in the declaration list of a surrounding block.
@ Multiple declarations of an identifier in different blocks are
possible. Each usage in a command C refers to the “innermost”
declaration.

o Static scoping: the usage of an identifier in the body of a called

procedure refers to its declaration environment (and not to its
calling environment).

Rm Compiler Construction Summer semester 2008

Static Semantics of EPL 11

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;
[... z :=1; PO ..]
[.. PO .. RO ..]
proc R;
[. PO]
[..x :=0; PO ..] .

Compiler Construction Summer semester 2008 21

Static Semantics of EPL 11

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;
[... z :=1; PO ..]
[.. PO .. RO ..]
proc R;
[. PO ..
[.. x :=0; PO ..] .

o “Innermost” principle

Compiler Construction Summer semester 2008 21

Static Semantics of EPL 11

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;
[... z :=1; PO ..]
[.. PO .. RO ..]
proc R;
[. PO ..
[.. x :=0; PO ..] .

o “Innermost” principle

Compiler Construction Summer semester 2008 21

Static Semantics of EPL 11

in/out x;
const ¢ = 10;
var y; . .
proc P; @ “Innermost” principle
var y, z; @ Static scoping: body of P can
proc Q; refer to x, y, z
var x, z;
[... z :=1; PO ..]
[... PO ... RO ...]
proc R;
[... PO ...]
[.. x :=0; PO ..] .

Compiler Construction Summer semester 2008 21

Static Semantics of EPL 11

in/out x;
const ¢ = 10;
var y; « N
— @ “Innermost” principle
var y, z; @ Static scoping: body of P can
proc Q; refer to x, y, z
var x, z; o Later declaration: call of R in
[... z :=1; PO ..] P followed by declaration (in
[... PO ... RO ..] Pascal: forward declarations
proc R; for one-pass compilation)
[... PO ..]
[..x :=0; PO ..] .)

Summer semester 2008

Compiler Construction

	Repetition: Attribute Evaluation
	Simultaneous Parsing and Attribute Evaluation
	Generation of Intermediate Code
	The Example Programming Language EPL

