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Attribute Evaluation Methods

Given: (strongly) noncircular attribute grammar
A = 〈G,E ,V 〉 ∈ AG

syntax tree t of G

valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1 Topological sorting of Dt:
1 start with attribute variables which depend at most

on synthesized attributes of terminals
2 proceed by successive substitution

2 Recursive functions (for strongly noncircular AGs):
1 for every A ∈ N and α ∈ syn(A), define evaluation

function gA,α with the following parameters:
the node of t where α has to be evaluated and
all inherited attributes of A on which α (potentially)

depends

2 for every α ∈ syn(S), evaluate gS,α(k0) where k0

denotes the root of t
3 Special cases: S-attributed grammars (yacc), L-attributed

grammars
Compiler Construction Summer semester 2008 3



Outline

1 Repetition: Attribute Evaluation

2 Simultaneous Parsing and Attribute Evaluation

3 Generation of Intermediate Code

4 The Example Programming Language EPL

Compiler Construction Summer semester 2008 4



L-Attributed Grammars I

In an L-attributed grammar, attribute dependencies on the right-hand
sides of productions are only allowed to run from left to right.

Definition 16.1 (L-attributed grammar)

Let A = 〈G,E ,V 〉 ∈ AG such that, for every π ∈ P and
β.i = f(. . . , α.j, . . .) ∈ Eπ with β ∈ Inh and α ∈ Syn, j < i. Then A is
called an L-attributed grammar (notation: A ∈ LAG).

Corollary 16.2

Every A ∈ LAG is noncircular.
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L-Attributed Grammars II

Example 16.3

L-attributed grammar:

S → AB i.1 = 0
i.2 = s.1 + 1
s.0 = s.2 + 1

A → aA i.2 = i.0 + 1
s.0 = s.2 + 1

A → c s.0 = i.0 + 1
B → b s.0 = i.0 + 1

S

A B

a A

c

b

0

1 2

3 4 5

6
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Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be
attributed by a depth-first, left-to-right tree traversal with two visits to
each node

1 top-down: evaluation of inherited attributes

2 bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing

1 top-down: expansion steps

2 bottom-up: reduction steps

Idea: extend LL parsing to support reduction steps, and integrate
attribute evaluation
=⇒ use LR(0) items as stack alphabet

and store values of attribute variables in parsing stack
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LL(1) Parsing with Attribute Evaluation I

Definition 16.4 (Parsing automaton with attribute evaluation)

Let A = 〈G,E ,V 〉 ∈ LAG with G = 〈N,Σ, P, S〉 ∈ LL(1). The parsing
automaton with attribute evaluation of A is defined by the following
components.

Input alphabet Σ

Pushdown alphabet Γ :=
⋃

π∈P∪{→S}(LR(0)π(G) × Valπ) where

LR(0)π(G) := {[A → δ1 · δ2] | π = A → δ1δ2} and
Valπ := {v | v : Outπ 99K V }

Configurations Σ∗ × Γ∗

initial configuration: (w, ([→ ·S], v∅))
final configurations: {(ε, ([→ S·], v)) | v ∈ Val→S}
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LL(1) Parsing with Attribute Evaluation II

Definition 16.4 (continued)

Transitions:

expand: (evaluate inherited attributes of expanded symbol)
if x ∈ la(B → δ′), then

(xw, ([A → Y1 . . . Yi−1 · Bδ], v)γ)
⊢ (xw, ([B → ·δ′], v′)([A → Y1 . . . Yi−1 · Bδ], v)γ)

where v′ := [β.0 7→ f(v(α1.i1), . . . , v(αn.in))] for
β ∈ inh(B) and
β.i = f(α1.i1, . . . , αn.in) ∈ EA→Y1...Yi−1Bδ

match: (aw, ([A → δ1 · aδ2], v)γ)
⊢ (w, ([A → δ1a · δ2], v)γ)

reduce: (evaluate synthesized attributes of reduced symbol)

(w, ([B → δ′·], v′)([A → Y1 . . . Yi−1 · Bδ], v)γ)
⊢ (w, ([A → Y1 . . . Yi−1B · δ], v′′)γ)

where v′′ := v[α.i 7→ f(v′(α1.i1), . . . , v
′(αn.in))] for

α ∈ syn(B) and α.0 = f(α1.i1, . . . , αn.in) ∈ EB→δ′
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LL(1) Parsing with Attribute Evaluation III

Example 16.5 (cf. Example 16.3)

S → AB
A → aA
A → c

B → b

S

A B

a A

c

b

0

1 2

3 4 5

6

acb [→ ·S] −

⊢ acb [→ ·S] −

[S → ·AB] −

⊢ acb [→ ·S] −

[S → ·AB] −

[A → ·aA] i.0 = 0
⊢ cb [→ ·S] −

[S → ·AB] −

[A → a · A] i.0 = 0
⊢ cb [→ ·S] −

[S → ·AB] −

[A → a · A] i.0 = 0
[A → ·c] i.0 = 1

⊢ b [→ ·S] −

[S → ·AB] −

[A → a · A] i.0 = 0
[A → c·] i.0 = 1

⊢ b [→ ·S] −

[S → ·AB] −

[A → aA·] i.0 = 0, s.2 = 2
⊢ b [→ ·S] −

[S → A · B] s.1 = 3
⊢ b [→ ·S] −

[S → A · B] s.1 = 3
[B → ·b] i.0 = 4

⊢ ε [→ ·S] −

[S → A · B] s.1 = 3
[B → b·] i.0 = 4

⊢ ε [→ ·S] −

[S → AB·] s.1 = 3, s.2 = 5
⊢ ε [→ S·] s.1 = 6
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Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
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Modularization of Code Generation I

Splitting of code generation for programming language PL:

PL
trans
−→ IC

code
−→ MC

Frontend: trans generates machine-independent intermediate code
(IC) for abstract (stack) machine

Backend: code generates actual machine code (MC)

Advantages: IC machine independent =⇒

Portability: much easier to write IC compiler/interpreter for a new
machine (as opposed to rewriting the whole compiler)

Fast compiler implementation: generating IC much easier than
generating MC

Code size: IC programs usually smaller than corresponding MC
programs

Code optimization: division into machine-independent and
machine-dependent parts
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Modularization of Code Generation II

Example 16.6

1 UNiversal Computer-Oriented Language (UNCOL; ≈ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL1

...

PLn

UNCOL

MC1

...

MCm

only n + m translations
(in place of n · m)

2 Pascal’s pseudocode (P-code; ≈ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

3 The Amsterdam Compiler Kit (TACK; since 1980;
http://tack.sourceforge.net/)

4 Java Virtual Machine (JVM; Sun;
http://en.wikipedia.org/wiki/Java_Virtual_Machine)

5 Common Intermediate Language (CIL; Microsoft;
http://en.wikipedia.org/wiki/Common_Intermediate_Language)
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Language Structures I

Structures in imperative programming languages:

(object-oriented, declarative [functional/logic]: see special courses)

Basic data types and basic operations

Static and dynamic data structures

Expressions and assignments

Control structures (sequences, branching statements, loops, ...)

Procedures and functions

Modularity: blocks, modules, and classes

Use of procedures and blocks:

FORTRAN: non-recursive and non-nested procedures
=⇒ static memory management (memory requirement determined at
compile time)

C: recursive and non-nested procedures
=⇒ dynamic memory management using runtime stack (memory
requirement only known at runtime), no static links

Algol-like languages (Pascal, Modula): recursive and nested procedures
=⇒ dynamic memory management using runtime stack with static links
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Language Structures II

Structures in machine code: (von Neumann/SISD)

Memory hierarchy: accumulators, registers, cache, main memory,
background storage

Instruction types: arithmetic/Boolean/... operation, test/jump
instruction, transfer instruction, I/O instruction, ...

Address modes: direct/indirect, absolute/relative, ...

Architectures: RISC (few [fast but simple] instructions, many
registers), CISC (many [complex but slow] instructions,
few registers)

Structures in intermediate code:

Data types and operations like PL

Data stack with basic operations

Jumping instructions for control structures

Runtime stack for blocks, procedures, and static data structures

Heap for dynamic data structures
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The Example Programming Language EPL

Structures of EPL:

Only integer and Boolean values

Arithmetic and Boolean expressions with strict and non-strict
semantics

Control structures: sequence, branching, iteration

Nested blocks and recursive procedures with local and global
variables
( =⇒ dynamic memory management using runtime stack with
static links)

Procedure parameters and data structures later
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Syntax of EPL

Definition 16.7 (Syntax of EPL)

The syntax of EPL is defined as follows:

Z : z (* z is an integer *)

Ide : I (* I is an identifier *)

AExp : A ::= z | I | A1 + A2 | . . .

BExp : B ::= A1 < A2 | not B | B1 and B2 | B1 or B2

Cmd : C ::= I := A | C1;C2 | if B then C1 else C2 |
while B do C | I()

Dcl : D ::= DC DV DP

DC ::= ε | const I1 := z1, . . . ,In := zn;
DV ::= ε | var I1, . . . ,In;
DP ::= ε | proc I1;K1; . . . ;In;Kn;

Block : K ::= D C

Pgm : P ::= in/out I1, . . . ,In;K.
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Static Semantics of EPL I

All identifiers in a declaration D have to be different.

Every identifier occurring in the command C of a block D C must
be declared

in D or
in the declaration list of a surrounding block.

Multiple declarations of an identifier in different blocks are
possible. Each usage in a command C refers to the “innermost”
declaration.

Static scoping: the usage of an identifier in the body of a called
procedure refers to its declaration environment (and not to its
calling environment).
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Static Semantics of EPL II

Example 16.8

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... z := 1; P() ...]
[... P() ... R() ...]

proc R;

[... P() ...]
[... x := 0; P() ...] .

“Innermost” principle

Static scoping: body of P can
refer to x, y, z

Later declaration: call of R in
P followed by declaration (in
Pascal: forward declarations
for one-pass compilation)
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