
Compiler Construction

Lecture 16: Semantic Analysis IV & Code Generation I

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Outline

1 Repetition: Attribute Evaluation

2 Simultaneous Parsing and Attribute Evaluation

3 Generation of Intermediate Code

4 The Example Programming Language EPL

Compiler Construction Summer semester 2008 2

Attribute Evaluation Methods

Given: (strongly) noncircular attribute grammar
A = 〈G,E ,V 〉 ∈ AG

syntax tree t of G

valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1 Topological sorting of Dt:
1 start with attribute variables which depend at most

on synthesized attributes of terminals
2 proceed by successive substitution

2 Recursive functions (for strongly noncircular AGs):
1 for every A ∈ N and α ∈ syn(A), define evaluation

function gA,α with the following parameters:
the node of t where α has to be evaluated and
all inherited attributes of A on which α (potentially)

depends

2 for every α ∈ syn(S), evaluate gS,α(k0) where k0

denotes the root of t
3 Special cases: S-attributed grammars (yacc), L-attributed

grammars
Compiler Construction Summer semester 2008 3

Outline

1 Repetition: Attribute Evaluation

2 Simultaneous Parsing and Attribute Evaluation

3 Generation of Intermediate Code

4 The Example Programming Language EPL

Compiler Construction Summer semester 2008 4

L-Attributed Grammars I

In an L-attributed grammar, attribute dependencies on the right-hand
sides of productions are only allowed to run from left to right.

Definition 16.1 (L-attributed grammar)

Let A = 〈G,E ,V 〉 ∈ AG such that, for every π ∈ P and
β.i = f(. . . , α.j, . . .) ∈ Eπ with β ∈ Inh and α ∈ Syn, j < i. Then A is
called an L-attributed grammar (notation: A ∈ LAG).

Corollary 16.2

Every A ∈ LAG is noncircular.

Compiler Construction Summer semester 2008 5

L-Attributed Grammars II

Example 16.3

L-attributed grammar:

S → AB i.1 = 0
i.2 = s.1 + 1
s.0 = s.2 + 1

A → aA i.2 = i.0 + 1
s.0 = s.2 + 1

A → c s.0 = i.0 + 1
B → b s.0 = i.0 + 1

S

A B

a A

c

b

0

1 2

3 4 5

6

Compiler Construction Summer semester 2008 6

Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be
attributed by a depth-first, left-to-right tree traversal with two visits to
each node

1 top-down: evaluation of inherited attributes

2 bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing

1 top-down: expansion steps

2 bottom-up: reduction steps

Idea: extend LL parsing to support reduction steps, and integrate
attribute evaluation
=⇒ use LR(0) items as stack alphabet

and store values of attribute variables in parsing stack

Compiler Construction Summer semester 2008 7

LL(1) Parsing with Attribute Evaluation I

Definition 16.4 (Parsing automaton with attribute evaluation)

Let A = 〈G,E ,V 〉 ∈ LAG with G = 〈N,Σ, P, S〉 ∈ LL(1). The parsing
automaton with attribute evaluation of A is defined by the following
components.

Input alphabet Σ

Pushdown alphabet Γ :=
⋃

π∈P∪{→S}(LR(0)π(G) × Valπ) where

LR(0)π(G) := {[A → δ1 · δ2] | π = A → δ1δ2} and
Valπ := {v | v : Outπ 99K V }

Configurations Σ∗ × Γ∗

initial configuration: (w, ([→ ·S], v∅))
final configurations: {(ε, ([→ S·], v)) | v ∈ Val→S}

Compiler Construction Summer semester 2008 8

LL(1) Parsing with Attribute Evaluation II

Definition 16.4 (continued)

Transitions:

expand: (evaluate inherited attributes of expanded symbol)
if x ∈ la(B → δ′), then

(xw, ([A → Y1 . . . Yi−1 · Bδ], v)γ)
⊢ (xw, ([B → ·δ′], v′)([A → Y1 . . . Yi−1 · Bδ], v)γ)

where v′ := [β.0 7→ f(v(α1.i1), . . . , v(αn.in))] for
β ∈ inh(B) and
β.i = f(α1.i1, . . . , αn.in) ∈ EA→Y1...Yi−1Bδ

match: (aw, ([A → δ1 · aδ2], v)γ)
⊢ (w, ([A → δ1a · δ2], v)γ)

reduce: (evaluate synthesized attributes of reduced symbol)

(w, ([B → δ′·], v′)([A → Y1 . . . Yi−1 · Bδ], v)γ)
⊢ (w, ([A → Y1 . . . Yi−1B · δ], v′′)γ)

where v′′ := v[α.i 7→ f(v′(α1.i1), . . . , v
′(αn.in))] for

α ∈ syn(B) and α.0 = f(α1.i1, . . . , αn.in) ∈ EB→δ′

Compiler Construction Summer semester 2008 9

LL(1) Parsing with Attribute Evaluation III

Example 16.5 (cf. Example 16.3)

S → AB
A → aA
A → c

B → b

S

A B

a A

c

b

0

1 2

3 4 5

6

acb [→ ·S] −

⊢ acb [→ ·S] −

[S → ·AB] −

⊢ acb [→ ·S] −

[S → ·AB] −

[A → ·aA] i.0 = 0
⊢ cb [→ ·S] −

[S → ·AB] −

[A → a · A] i.0 = 0
⊢ cb [→ ·S] −

[S → ·AB] −

[A → a · A] i.0 = 0
[A → ·c] i.0 = 1

⊢ b [→ ·S] −

[S → ·AB] −

[A → a · A] i.0 = 0
[A → c·] i.0 = 1

⊢ b [→ ·S] −

[S → ·AB] −

[A → aA·] i.0 = 0, s.2 = 2
⊢ b [→ ·S] −

[S → A · B] s.1 = 3
⊢ b [→ ·S] −

[S → A · B] s.1 = 3
[B → ·b] i.0 = 4

⊢ ε [→ ·S] −

[S → A · B] s.1 = 3
[B → b·] i.0 = 4

⊢ ε [→ ·S] −

[S → AB·] s.1 = 3, s.2 = 5
⊢ ε [→ S·] s.1 = 6

Compiler Construction Summer semester 2008 10

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
Compiler Construction Summer semester 2008 11

Outline

1 Repetition: Attribute Evaluation

2 Simultaneous Parsing and Attribute Evaluation

3 Generation of Intermediate Code

4 The Example Programming Language EPL

Compiler Construction Summer semester 2008 12

Modularization of Code Generation I

Splitting of code generation for programming language PL:

PL
trans
−→ IC

code
−→ MC

Frontend: trans generates machine-independent intermediate code
(IC) for abstract (stack) machine

Backend: code generates actual machine code (MC)

Advantages: IC machine independent =⇒

Portability: much easier to write IC compiler/interpreter for a new
machine (as opposed to rewriting the whole compiler)

Fast compiler implementation: generating IC much easier than
generating MC

Code size: IC programs usually smaller than corresponding MC
programs

Code optimization: division into machine-independent and
machine-dependent parts

Compiler Construction Summer semester 2008 13

Modularization of Code Generation II

Example 16.6

1 UNiversal Computer-Oriented Language (UNCOL; ≈ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL1

...

PLn

UNCOL

MC1

...

MCm

only n + m translations
(in place of n · m)

2 Pascal’s pseudocode (P-code; ≈ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

3 The Amsterdam Compiler Kit (TACK; since 1980;
http://tack.sourceforge.net/)

4 Java Virtual Machine (JVM; Sun;
http://en.wikipedia.org/wiki/Java_Virtual_Machine)

5 Common Intermediate Language (CIL; Microsoft;
http://en.wikipedia.org/wiki/Common_Intermediate_Language)

Compiler Construction Summer semester 2008 14

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine
http://tack.sourceforge.net/
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Common_Intermediate_Language

Language Structures I

Structures in imperative programming languages:

(object-oriented, declarative [functional/logic]: see special courses)

Basic data types and basic operations

Static and dynamic data structures

Expressions and assignments

Control structures (sequences, branching statements, loops, ...)

Procedures and functions

Modularity: blocks, modules, and classes

Use of procedures and blocks:

FORTRAN: non-recursive and non-nested procedures
=⇒ static memory management (memory requirement determined at
compile time)

C: recursive and non-nested procedures
=⇒ dynamic memory management using runtime stack (memory
requirement only known at runtime), no static links

Algol-like languages (Pascal, Modula): recursive and nested procedures
=⇒ dynamic memory management using runtime stack with static links

Compiler Construction Summer semester 2008 15

Language Structures II

Structures in machine code: (von Neumann/SISD)

Memory hierarchy: accumulators, registers, cache, main memory,
background storage

Instruction types: arithmetic/Boolean/... operation, test/jump
instruction, transfer instruction, I/O instruction, ...

Address modes: direct/indirect, absolute/relative, ...

Architectures: RISC (few [fast but simple] instructions, many
registers), CISC (many [complex but slow] instructions,
few registers)

Structures in intermediate code:

Data types and operations like PL

Data stack with basic operations

Jumping instructions for control structures

Runtime stack for blocks, procedures, and static data structures

Heap for dynamic data structures

Compiler Construction Summer semester 2008 16

Outline

1 Repetition: Attribute Evaluation

2 Simultaneous Parsing and Attribute Evaluation

3 Generation of Intermediate Code

4 The Example Programming Language EPL

Compiler Construction Summer semester 2008 17

The Example Programming Language EPL

Structures of EPL:

Only integer and Boolean values

Arithmetic and Boolean expressions with strict and non-strict
semantics

Control structures: sequence, branching, iteration

Nested blocks and recursive procedures with local and global
variables
(=⇒ dynamic memory management using runtime stack with
static links)

Procedure parameters and data structures later

Compiler Construction Summer semester 2008 18

Syntax of EPL

Definition 16.7 (Syntax of EPL)

The syntax of EPL is defined as follows:

Z : z (* z is an integer *)

Ide : I (* I is an identifier *)

AExp : A ::= z | I | A1 + A2 | . . .

BExp : B ::= A1 < A2 | not B | B1 and B2 | B1 or B2

Cmd : C ::= I := A | C1;C2 | if B then C1 else C2 |
while B do C | I()

Dcl : D ::= DC DV DP

DC ::= ε | const I1 := z1, . . . ,In := zn;
DV ::= ε | var I1, . . . ,In;
DP ::= ε | proc I1;K1; . . . ;In;Kn;

Block : K ::= D C

Pgm : P ::= in/out I1, . . . ,In;K.

Compiler Construction Summer semester 2008 19

Static Semantics of EPL I

All identifiers in a declaration D have to be different.

Every identifier occurring in the command C of a block D C must
be declared

in D or
in the declaration list of a surrounding block.

Multiple declarations of an identifier in different blocks are
possible. Each usage in a command C refers to the “innermost”
declaration.

Static scoping: the usage of an identifier in the body of a called
procedure refers to its declaration environment (and not to its
calling environment).

Compiler Construction Summer semester 2008 20

Static Semantics of EPL II

Example 16.8

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... z := 1; P() ...]
[... P() ... R() ...]

proc R;

[... P() ...]
[... x := 0; P() ...] .

“Innermost” principle

Static scoping: body of P can
refer to x, y, z

Later declaration: call of R in
P followed by declaration (in
Pascal: forward declarations
for one-pass compilation)

Compiler Construction Summer semester 2008 21

	Repetition: Attribute Evaluation
	Simultaneous Parsing and Attribute Evaluation
	Generation of Intermediate Code
	The Example Programming Language EPL

