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Syntax of EPL

Definition (Syntax of EPL)

The syntax of EPL is defined as follows:

Z : z (* z is an integer *)

Ide : I (* I is an identifier *)

AExp : A ::= z | I | A1 + A2 | . . .

BExp : B ::= A1 < A2 | not B | B1 and B2 | B1 or B2

Cmd : C ::= I := A | C1;C2 | if B then C1 else C2 |
while B do C | I()

Dcl : D ::= DC DV DP

DC ::= ε | const I1 := z1, . . . ,In := zn;
DV ::= ε | var I1, . . . ,In;
DP ::= ε | proc I1;K1; . . . ;In;Kn;

Block : K ::= D C

Pgm : P ::= in/out I1, . . . ,In;K.
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Static Semantics of EPL I

All identifiers in a declaration D have to be different.

Every identifier occurring in the command C of a block D C must
be declared

in D or
in the declaration list of a surrounding block.

Multiple declarations of an identifier in different blocks are
possible. Each usage in a command C refers to the “innermost”
declaration.

Static scoping: the usage of an identifier in the body of a called
procedure refers to its declaration environment (and not to its
calling environment).
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Static Semantics of EPL II

Example

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... z := 1; P() ...]
[... P() ... R() ...]

proc R;

[... P() ...]
[... x := 0; P() ...] .
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Static Semantics of EPL II

Example

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... z := 1; P() ...]
[... P() ... R() ...]

proc R;

[... P() ...]
[... x := 0; P() ...] .

“Innermost” principle

Static scoping: body of P can
refer to x, y, z
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Static Semantics of EPL II

Example

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... z := 1; P() ...]
[... P() ... R() ...]

proc R;

[... P() ...]
[... x := 0; P() ...] .

“Innermost” principle

Static scoping: body of P can
refer to x, y, z

Later declaration: call of R in
P followed by declaration (in
Pascal: forward declarations
for one-pass compilation)
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Outline

1 Repetition: The Example Programming Language EPL

2 Dynamic Semantics of EPL

3 Intermediate Code for EPL
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Running Example

Example 17.1

in/out x, y;

x := 1;

while x * x < y do

x := x + 1.
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Meaning of Variables

Without nested declarations:

Program state : Variables 99K Values
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Meaning of Variables

Without nested declarations:

Program state : Variables 99K Values

With nested declarations: consider
in/out x;
var y;
proc P;
var x;
y := 1;

P(); x := x + y.

value of I/O variable x must not be overwritten while calling P

=⇒ introduce intermediate level of memory locations and environments:

Environment : Variables 99K Locations
Program state : Locations 99K Values
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Semantic Domains

Memory addresses (locations) store integer values ( =⇒ states)

Variable identifiers refer to locations

Constant identifiers refer to integers

Procedure identifiers refer to state transformations

Commands transform states

Declarations determine identifier references (environments)
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Semantic Domains

Memory addresses (locations) store integer values ( =⇒ states)

Variable identifiers refer to locations

Constant identifiers refer to integers

Procedure identifiers refer to state transformations

Commands transform states

Declarations determine identifier references (environments)

Definition 17.2 (Semantic domains of EPL)

The semantic domains of EPL are given as follows:

Z := {0, 1,−1, . . .} integer numbers
B := {true, false} Booleans

Loc := {α1, α2, . . .} locations
Stt := {σ | σ : Loc 99K Z} states

Trn := {τ | τ : Stt 99K Stt} state transformations
Env := {ρ | ρ : Ide 99K Z ∪ Loc ∪ Trn} environments
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Semantics of Arithmetic Expressions I

The semantics of an arithmetic expression is its integer value
(or undefined).

Definition 17.3 (Semantics of arithmetic expressions)

A : AExp × Env × Stt 99K Z

is given by

AJzK ρ σ := z

AJIK ρ σ :=

{
z if ρ(I) = z ∈ Z

σ(α) if ρ(I) = α ∈ Loc

AJA1 + A2K ρ σ := AJA1K ρ σ + AJA2K ρ σ
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Semantics of Arithmetic Expressions I

The semantics of an arithmetic expression is its integer value
(or undefined).

Definition 17.3 (Semantics of arithmetic expressions)

A : AExp × Env × Stt 99K Z

is given by

AJzK ρ σ := z

AJIK ρ σ :=

{
z if ρ(I) = z ∈ Z

σ(α) if ρ(I) = α ∈ Loc

AJA1 + A2K ρ σ := AJA1K ρ σ + AJA2K ρ σ

Remark: AJIK ρ σ is undefined (notation: AJIK ρ σ = ⊥) if I is a
procedure identifier, i.e., ρ(I) ∈ Trn.
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Semantics of Arithmetic Expressions II

Example 17.4

Let ρ(x) = α1 and σ(α1) = 1. Then

AJx + 1K ρ σ
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Semantics of Arithmetic Expressions II

Example 17.4

Let ρ(x) = α1 and σ(α1) = 1. Then

AJx + 1K ρ σ = AJxK ρ σ + AJ1K ρ σ
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Semantics of Arithmetic Expressions II

Example 17.4

Let ρ(x) = α1 and σ(α1) = 1. Then

AJx + 1K ρ σ = AJxK ρ σ + AJ1K ρ σ

= σ(α1) + 1
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Semantics of Arithmetic Expressions II

Example 17.4

Let ρ(x) = α1 and σ(α1) = 1. Then

AJx + 1K ρ σ = AJxK ρ σ + AJ1K ρ σ

= σ(α1) + 1

= 1 + 1

Compiler Construction Summer semester 2008 11



Semantics of Arithmetic Expressions II

Example 17.4

Let ρ(x) = α1 and σ(α1) = 1. Then

AJx + 1K ρ σ = AJxK ρ σ + AJ1K ρ σ

= σ(α1) + 1

= 1 + 1

= 2
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Semantics of Boolean Expressions I

The semantics of a Boolean expression is its truth value (or undefined).

Definition 17.5 (Semantics of Boolean expressions)

B : BExp × Env × Stt 99K B

is given by

BJA1 < A2K ρ σ := AJA1K ρ σ < AJA2K ρ σ
BJnot BK ρ σ := ¬BJBK ρ σ

BJB1 and B2K ρ σ := BJB1K ρ σ ∧ BJB2K ρ σ
BJB1 or B2K ρ σ := BJB1K ρ σ ∨ BJB2K ρ σ
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Semantics of Boolean Expressions I

The semantics of a Boolean expression is its truth value (or undefined).

Definition 17.5 (Semantics of Boolean expressions)

B : BExp × Env × Stt 99K B

is given by

BJA1 < A2K ρ σ := AJA1K ρ σ < AJA2K ρ σ
BJnot BK ρ σ := ¬BJBK ρ σ

BJB1 and B2K ρ σ := BJB1K ρ σ ∧ BJB2K ρ σ
BJB1 or B2K ρ σ := BJB1K ρ σ ∨ BJB2K ρ σ

Remarks:

BJBK ρ σ is undefined only if the value of an arithmetic subexpression of
B is undefined.

Possible interpretations of binary operations:
Strict:
a ∧
∨ ⊥ = ⊥

⊥ ∧
∨ b = ⊥

Sequential:
false ∧ ⊥ = false

true ∨ ⊥ = true

⊥ ∧
∨ b = ⊥

Non-strict:
false ∧ ⊥ = ⊥ ∧ false = false

true ∨ ⊥ = ⊥ ∨ true = true
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Semantics of Boolean Expressions II

Example 17.6

Let ρ(x) = α1, ρ(y) = α2, σ(α1) = 1, and σ(α2) = 4. Then

BJx * x < yK ρ σ
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Semantics of Boolean Expressions II

Example 17.6

Let ρ(x) = α1, ρ(y) = α2, σ(α1) = 1, and σ(α2) = 4. Then

BJx * x < yK ρ σ = AJx * xK ρ σ < AJyK ρ σ
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Semantics of Boolean Expressions II

Example 17.6

Let ρ(x) = α1, ρ(y) = α2, σ(α1) = 1, and σ(α2) = 4. Then

BJx * x < yK ρ σ = AJx * xK ρ σ < AJyK ρ σ

= AJxK ρ σ · AJxK ρ σ < σ(α2)
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Semantics of Boolean Expressions II

Example 17.6

Let ρ(x) = α1, ρ(y) = α2, σ(α1) = 1, and σ(α2) = 4. Then

BJx * x < yK ρ σ = AJx * xK ρ σ < AJyK ρ σ

= AJxK ρ σ · AJxK ρ σ < σ(α2)

= σ(α1) · σ(α1) < 4
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Semantics of Boolean Expressions II

Example 17.6

Let ρ(x) = α1, ρ(y) = α2, σ(α1) = 1, and σ(α2) = 4. Then

BJx * x < yK ρ σ = AJx * xK ρ σ < AJyK ρ σ

= AJxK ρ σ · AJxK ρ σ < σ(α2)

= σ(α1) · σ(α1) < 4

= 1 · 1 < 4
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Semantics of Boolean Expressions II

Example 17.6

Let ρ(x) = α1, ρ(y) = α2, σ(α1) = 1, and σ(α2) = 4. Then

BJx * x < yK ρ σ = AJx * xK ρ σ < AJyK ρ σ

= AJxK ρ σ · AJxK ρ σ < σ(α2)

= σ(α1) · σ(α1) < 4

= 1 · 1 < 4

= true
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Semantics of Commands I

Commands modify the values of variables, i.e., transform states.

Definition 17.7 (Semantics of commands)

C : Cmd × Env × Stt 99K Stt

is given by
CJI := AK ρ σ := σ[α 7→ z]

if ρ(I) = α ∈ Loc and AJAK ρ σ = z ∈ Z

where σ[α 7→ z](β) :=

{

z if β = α
σ(β) otherwise

CJC1;C2K ρ σ := CJC2K ρ (CJC1K ρ σ)

CJif B then C1 else C2K ρ σ :=

{

CJC1K ρ σ if BJBK ρ σ
CJC2K ρ σ if ¬BJBK ρ σ

CJwhile B do C
︸ ︷︷ ︸

C′

K ρ σ :=

{

CJC′K ρ (CJCK ρ σ) if BJBK ρ σ
σ if ¬BJBK ρ σ

CJI()K ρ σ := τ(σ) if ρ(I) = τ ∈ Trn
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Semantics of Commands II

Example 17.8

Let ρ(x) = α1, ρ(y) = α2, σ(α1) = 1, and σ(α2) = 4. Then

CJwhile x * x < y do x := x + 1K ρ σ
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Semantics of Commands II

Example 17.8

Let ρ(x) = α1, ρ(y) = α2, σ(α1) = 1, and σ(α2) = 4. Then

CJwhile x * x < y do x := x + 1K ρ σ

(Ex. 17.6: BJx * x < yK ρ σ = true)

= CJwhile x * x < y do x := x + 1K ρ (CJx := x + 1K ρ σ)
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Semantics of Commands II

Example 17.8

Let ρ(x) = α1, ρ(y) = α2, σ(α1) = 1, and σ(α2) = 4. Then

CJwhile x * x < y do x := x + 1K ρ σ

(Ex. 17.6: BJx * x < yK ρ σ = true)

= CJwhile x * x < y do x := x + 1K ρ (CJx := x + 1K ρ σ)

(Ex. 17.4: AJx + 1K ρ σ = 2)

= CJwhile x * x < y do x := x + 1K ρ (σ[α1 7→ 2])
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Semantics of Commands II

Example 17.8

Let ρ(x) = α1, ρ(y) = α2, σ(α1) = 1, and σ(α2) = 4. Then

CJwhile x * x < y do x := x + 1K ρ σ

(Ex. 17.6: BJx * x < yK ρ σ = true)

= CJwhile x * x < y do x := x + 1K ρ (CJx := x + 1K ρ σ)

(Ex. 17.4: AJx + 1K ρ σ = 2)

= CJwhile x * x < y do x := x + 1K ρ (σ[α1 7→ 2])

(BJx * x < yK ρ σ[α1 7→ 2] = false)

= σ[α1 7→ 2]
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Semantics of Declarations/Blocks (informally)

Declarations update environments:

D : Dcl × Env × Stt 99K Env × Stt

Constant declarations: bind identifiers to values

Variable declarations: bind identifiers to free locations

Procedure declarations: bind identifiers to state transformations
(which are determined with respect to the declaration
environment of the procedure (static scoping))
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Semantics of Declarations/Blocks (informally)

Declarations update environments:

D : Dcl × Env × Stt 99K Env × Stt

Constant declarations: bind identifiers to values

Variable declarations: bind identifiers to free locations

Procedure declarations: bind identifiers to state transformations
(which are determined with respect to the declaration
environment of the procedure (static scoping))

Semantics of a block K = D C:

K : Block × Env × Stt 99K Stt

1 Extension of the current environment according to the
declarations in D

2 Execution of command C in the extended environment

3 “Release” of memory addresses allocated by D
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Semantics of Programs I

To “run” a program, execute the main block in

the environment which is determined by the I/O variables and

the state which is given by the input values
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Semantics of Programs I

To “run” a program, execute the main block in

the environment which is determined by the I/O variables and

the state which is given by the input values

Definition 17.9 (Semantics of programs)

M : Pgm × Z
∗

99K Z
∗

is given by

MJin/out I1, . . . ,In;K.K(z1, . . . , zn) := (σ(α1), . . . , σ(αn))

where σ := KJKK ρ∅[I1 7→ α1, . . . , In 7→ αn] σ∅[α1 7→ z1, . . . , αn 7→ zn]
and ρ∅(I) := σ∅(α) := ⊥ for every I ∈ Ide, α ∈ Loc.
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Semantics of Programs II

Example 17.10

For P = in/out x, y;
x := 1;
while x * x < y do
x := x + 1.

we obtain:
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Semantics of Programs II

Example 17.10

For P = in/out x, y;
x := 1;
while x * x < y do
x := x + 1.

we obtain:

MJP K(0, 4) = (σ(α1), σ(α2))
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Semantics of Programs II

Example 17.10

For P = in/out x, y;
x := 1;
while x * x < y do
x := x + 1.

we obtain:

MJP K(0, 4) = (σ(α1), σ(α2)) where

σ = KJx := 1; while x * x < y do x := x + 1K
ρ∅[x 7→ α1, y 7→ α2] σ∅[α1 7→ 0, α2 7→ 4]
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Semantics of Programs II

Example 17.10

For P = in/out x, y;
x := 1;
while x * x < y do
x := x + 1.

we obtain:

MJP K(0, 4) = (σ(α1), σ(α2)) where

σ = KJx := 1; while x * x < y do x := x + 1K
ρ∅[x 7→ α1, y 7→ α2] σ∅[α1 7→ 0, α2 7→ 4]

= CJx := 1; while x * x < y do x := x + 1K
ρ∅[x 7→ α1, y 7→ α2] σ∅[α1 7→ 0, α2 7→ 4]
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Semantics of Programs II

Example 17.10

For P = in/out x, y;
x := 1;
while x * x < y do
x := x + 1.

we obtain:

MJP K(0, 4) = (σ(α1), σ(α2)) where

σ = KJx := 1; while x * x < y do x := x + 1K
ρ∅[x 7→ α1, y 7→ α2] σ∅[α1 7→ 0, α2 7→ 4]

= CJx := 1; while x * x < y do x := x + 1K
ρ∅[x 7→ α1, y 7→ α2] σ∅[α1 7→ 0, α2 7→ 4]

(Def. 17.7) = CJwhile x * x < y do x := x + 1K
ρ∅[x 7→ α1, y 7→ α2] σ∅[α1 7→ 1, α2 7→ 4]
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Semantics of Programs II

Example 17.10

For P = in/out x, y;
x := 1;
while x * x < y do
x := x + 1.

we obtain:

MJP K(0, 4) = (σ(α1), σ(α2)) where

σ = KJx := 1; while x * x < y do x := x + 1K
ρ∅[x 7→ α1, y 7→ α2] σ∅[α1 7→ 0, α2 7→ 4]

= CJx := 1; while x * x < y do x := x + 1K
ρ∅[x 7→ α1, y 7→ α2] σ∅[α1 7→ 0, α2 7→ 4]

(Def. 17.7) = CJwhile x * x < y do x := x + 1K
ρ∅[x 7→ α1, y 7→ α2] σ∅[α1 7→ 1, α2 7→ 4]

(Ex. 17.8) = σ∅[α1 7→ 2, α2 7→ 4]
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Semantics of Programs II

Example 17.10

For P = in/out x, y;
x := 1;
while x * x < y do
x := x + 1.

we obtain:

MJP K(0, 4) = (σ(α1), σ(α2)) where

σ = KJx := 1; while x * x < y do x := x + 1K
ρ∅[x 7→ α1, y 7→ α2] σ∅[α1 7→ 0, α2 7→ 4]

= CJx := 1; while x * x < y do x := x + 1K
ρ∅[x 7→ α1, y 7→ α2] σ∅[α1 7→ 0, α2 7→ 4]

(Def. 17.7) = CJwhile x * x < y do x := x + 1K
ρ∅[x 7→ α1, y 7→ α2] σ∅[α1 7→ 1, α2 7→ 4]

(Ex. 17.8) = σ∅[α1 7→ 2, α2 7→ 4]

=⇒ MJP K(0, 4) = (2, 4)
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1 Repetition: The Example Programming Language EPL

2 Dynamic Semantics of EPL

3 Intermediate Code for EPL
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The Abstract Machine AM

Definition 17.11 (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space

S := PC × DS × PS

with

the program counter PC := N,

the data stack DS := Z
∗ (top of stack to the right), and

the procedure stack (or: runtime stack) PS := Z
∗

(top of stack to the left).

Thus a state s = (l, d, p) ∈ S is given by

a program label l ∈ PC ,

a data stack d = d.r : . . . : d.1 ∈ DS , and

a procedure stack p = p.1 : . . . : p.t ∈ PS .
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AM Instructions

Definition 17.12 (AM instructions)

The set of AM instructions is divided into

arithmetic instructions: ADD, MULT, ...

Boolean instructions: NOT, AND, OR, LT, ...

jumping instructions: JMP(ca), JFALSE(ca) (ca ∈ PC )

procedure instructions: CALL(ca,dif ,loc) (ca ∈ PC , dif , loc ∈ N), RET

transfer instructions: LOAD(dif ,off ), STORE(dif ,off ) (dif , off ∈ N),
LIT(z) (z ∈ Z)
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Semantics of Instructions

Definition 17.13 (Semantics of AM instructions (1st part))

The semantics of an AM instruction O

JOK : S 99K S

is defined as follows:

JADDK(l, d : z1 : z2, p) := (l + 1, d : z1 + z2, p)
JNOTK(l, d : b, p) := (l + 1, d : ¬b, p) if b ∈ {0, 1}

JANDK(l, d : b1 : b2, p) := (l + 1, d : b1 ∧ b2, p) if b1, b2 ∈ {0, 1}
JORK(l, d : b1 : b2, p) := (l + 1, d : b1 ∨ b2, p) if b1, b2 ∈ {0, 1}

JLTK(l, d : z1 : z2, p) :=

{
(l + 1, d : 1, p) if z1 < z2

(l + 1, d : 0, p) if z1 ≥ z2

JJMP(ca)K(l, d, p) := (ca, d, p)

JJFALSE(ca)K(l, d : b, p) :=

{
(ca, d, p) if b = 0
(l + 1, d, p) if b = 1

Compiler Construction Summer semester 2008 22


	Repetition: The Example Programming Language EPL
	Dynamic Semantics of EPL
	Intermediate Code for EPL

