Compiler Construction

Lecture 17: Code Generation 11
(Semantics & Intermediate Code)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

@ Repetition: The Example Programming Language EPL

Rm Compiler Construction Summer semester 2

Syntax of EPL

Definition (Syntax of EPL)

The syntax of EPL is defined as follows:
Z: z (* z is an integer *)
Ide : I (* I is an identifier *)
AEzp: Au=z|I|A +As|...
BEzp: B := A; <Ay |not B|Bj and By | B; or By
Cmd : C:u=1:=A]|C1;Cy|if B then C] else (s |
while Bdo C | I(Q)
Dcl : D ::= Do Dy Dp
Do :=¢|const Iy :=21,...,I, := z;
Dy :=¢|var I, ... ,I,;
Dp ::=¢|proc [1;Ky; ... ;1 Ky
Block: K ::=DC
Pgm : P = in/out I, ...,I,; K.

m Compiler Construction Summer semester 2008

Static Semantics of EPL 1

o All identifiers in a declaration D have to be different.
@ Every identifier occurring in the command C of a block D C' must
be declared
e in D or
e in the declaration list of a surrounding block.
@ Multiple declarations of an identifier in different blocks are
possible. Each usage in a command C refers to the “innermost”
declaration.

o Static scoping: the usage of an identifier in the body of a called

procedure refers to its declaration environment (and not to its
calling environment).

Rm Compiler Construction Summer semester 2008

Static Semantics of EPL 11

in/out x;
const ¢ = 10;
var y; . .
— o “Innermost” principle
var y, z; @ Static scoping: body of P can
proc Q; refer to x, y, z
var x, z; o Later declaration: call of R in
[... z :=1; PO ..] P followed by declaration (in
[... PO ... RO ..] Pascal: forward declarations
proc R; for one-pass compilation)
[... PO ..]
[.. x :=0; PO ..] .

Compiler Construction Summer semester 2008

© Dynamic Semantics of EPL

Rm Compiler Construction Summer semester 2

Running Example

in/out x, y;
x :=1;
while x * x < y do
X :=x + 1.

Rm Compiler Construction Summer semester 2008

Meaning of Variables

o Without nested declarations:

Program state : Variables --» Values

o With nested declarations: consider
in/out x;
var y;
proc P;
var x;
y :=1;
PO; x :=x +y.

o value of I/O variable x must not be overwritten while calling P
— introduce intermediate level of memory locations and environments:

Environment : Variables --» Locations
Program state : Locations --» Values

Rm Compiler Construction Summer semester 2008

Semantic Domains

Memory addresses (locations) store integer values (= states)
Variable identifiers refer to locations

Constant identifiers refer to integers

Procedure identifiers refer to state transformations

Commands transform states

e © &6 © ¢ ¢

Declarations determine identifier references (environments)

Definition 17.2 (Semantic domains of EPL)

The semantic domains of EPL are given as follows:

Z:=1{0,1,-1,...} integer numbers
B := {true false} Booleans
Loc := {oq,aq,...} locations
Stt :={o | o : Loc --» Z} states
Trn .= {7 | 7 : Stt --» Stt} state transformations

Env :={p|p:Ide--»ZU LocU Trn} environments

m Compiler Construction Summer semester 2008

Semantics of Arithmetic Expressions I

The semantics of an arithmetic expression is its integer value
(or undefined).

Definition 17.3 (Semantics of arithmetic expressions)
A: AFxp x Env X Stt --+» 7

is given by

Azl po == - .
% i =z€
Al pa = o(a) if Z(I) =a«a € Loc
A[AL + As] po :=A[A1] po +A[As] p o

Remark: 2[I] p o is undefined (notation: A[I[] po = 1) if I is a
procedure identifier, i.e., p(I) € Trn.

m Compiler Construction Summer semester 2008

Semantics of Arithmetic Expressions I1

Example 17.4
Let p(x) = aq and o(ay) = 1. Then

Ax + 1] po = Ax]po+A[L] po
= o(a;)+1
= 1+1
= 2

m' Compiler Construction Summer semester 2008

Semantics of Boolean Expressions I

The semantics of a Boolean expression is its truth value (or undefined).

Definition 17.5 (Semantics of Boolean expressions)

B : BEzp X Env x Stt --» B
is given by
B[A; < A] po:=A[A1] po <AUA[As] po
Bnot Bl po :=-B[B] po
sB[[_Bl and B2]] po = %[[Blﬂ po/\’B[[Bg]] po
B[B;1 or Bs] po :=B[B1] poVB[B:z] po
Remarks:

@ B[B] p o is undefined only if the value of an arithmetic subexpression of
B is undefined.

@ Possible interpretations of binary operations:

Strict: Sequential: Non-strict:

a <> 1l =1 false A L = false false A L = 1L Afalse = false

1 Q b— | true \;\J_ = true trueV L = 1L Vtrue = true
Lyb=1

m Compiler Construction Summer semester 2008 12

Semantics of Boolean Expressions 11

Example 17.6

Let p(x) = aq, p(y) = a2, o(a;) = 1, and o(ag) = 4. Then

Blx * x <ylpo = Az * x[po<Ay]po
= U] po-Alx] po < o(asz)
= 0'(0[1)’0’(@1) <4
= 1.-1<4

= true

Compiler Construction Summer semester 2008

Semantics of Commands 1

Commands modify the values of variables, i.e., transform states.

Definition 17.7 (Semantics of commands)

¢: Cmd x Env x Stt --» Stt

is given by
eI := A] po :=olar 2]
if p(I) =a € Loc and A[A] po =2 € Z
53—
where olo > 2](B) := z(ﬁ) i)tgerw?se
C[C1;Co] p o = €[Cs] p (C[C1] p o)
C[Ci] po it B[B]po
CICs] po if =B[B] po
¢[while Bdo C] po := S[[CH p(EC] po) g ?%Bﬁlgﬁ)ga

CIC[[I()]] po:=1(c) ifp(I)=7¢€ Trn

C[if B then C; else Cq] po =

m Compiler Construction Summer semester 2008 14

Semantics of Commands 11
Example 17.8

Let p(x) = aq, p(y) = a2, o(a1) = 1, and o(ag) = 4. Then

C[while x * x < y do x :=x + 1] po
(Ex. 17.6: B[x * x < y] p o = true)
= C[while x * x < y do x :=x + 1] p(€[x := x + 1] po)
(Ex. 17.4: A[x + 1] po = 2)
= C[while x * x < y do x := x + 1] p (o[ag — 2])
(B[x * x < y] polag — 2] = false)

= ooy — 2]

Compiler Construction Summer semester 2008 15

Semantics of Declarations/Blocks (informally)

Declarations update environments:
D : Dcl x Env x Stt --» Env x Stt

Constant declarations: bind identifiers to values
Variable declarations: bind identifiers to free locations

Procedure declarations: bind identifiers to state transformations
(which are determined with respect to the declaration
environment of the procedure (static scoping))

Semantics of a block K =D C:

R : Block x Env x Stt --» Stt

@ Extension of the current environment according to the
declarations in D

© Execution of command C in the extended environment

@ “Release” of memory addresses allocated by D

Rm Compiler Construction Summer semester 2008 16

Semantics of Programs I

To “run” a program, execute the main block in
@ the environment which is determined by the I/O variables and

@ the state which is given by the input values

Definition 17.9 (Semantics of programs)

M : Pgm X Z* --+ 1"
is given by
M[in/out I, ..., L K.](z1,...,2n) := (c(a1),...,0(an))

where o := R[K] pg[l1 — a1,...,In — o] oplar — 2z1,...,an — 23]
and py(I) := op(a) := L for every I € Ide, o € Loc.

m Compiler Construction Summer semester 2008 17

Semantics of Programs II
Example 17.10

For P = in/out x, y; we obtain:
x :=1;
while x * x < y do
X :=x + 1.

M[P](0,4) = (o(a1),0(cz)) where
o = Rx :=1; while x * x < y do x := x + 1]
po[x = a1,y = az] oglan = 0,09 — 4]

= ([x :=1; while x * x < y do x := x + 1]
po[x = a1,y = az] oglan = 0,09 — 4]

(Def. 17.7) = C€[while x * x < y do x := x + 1]
pplx — a1,y — ag] oplag — 1, ag — 4]
(Ex. 17.8) = oplag — 2,9 — 4]

— M[P](0,4) = (2,4)

Compiler Construction Summer semester 2008

© Intermediate Code for EPL

Rm Compiler Construction Summer semester 2

The Abstract Machine AM

Definition 17.11 (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space
S:=PC x DS x PS

with
@ the program counter PC' := N,
o the data stack DS := Z* (top of stack to the right), and

@ the procedure stack (or: runtime stack) PS := Z*
(top of stack to the left).

Thus a state s = (I,d,p) € S is given by
@ a program label [€ PC,
o adatastack d=d.r:...:d.1 € DS, and
@ a procedure stack p=p.1:...:pt € PS.

m Compiler Construction Summer semester 2008

AM Instructions

Definition 17.12 (AM instructions)

The set of AM instructions is divided into

arithmetic instructions: ADD, MULT, ...

Boolean instructions: NOT, AND, OR, LT, ...

jumping instructions: JMP(ca), JFALSE(ca) (ca € PC)

procedure instructions: CALL(ca, dif ,loc) (ca € PC, dif,loc € N), RET

transfer instructions: LOAD(dif , off), STORE(dif , off) (dif, off € N),
LIT(2) (z € Z)

m Compiler Construction Summer semester 2008 21

Semantics of Instructions

Definition 17.13 (Semantics of AM instructions (1st part))

The semantics of an AM instruction O
[O]:5--»S
is defined as follows:
[ADD[(l,d : 21 : z2,p) := (I 4+ 1,d: 21 + 22,p)
[NOT](l,d : b,p) := (I + 1,d : —b,p) if b e {0,1}
[[AND]](Z d: by : bs,) = (l +1,d:b1 A bg,p) if b1,b9 € {0,1}
HORH(l,delibg, p):=(l+1,d:byVby,p) ifbl,bQE{O,l}
o _J+1,d:1,p) if z1 < 29
[LT](l,d : 21 : 22,Dp) _{(l+1,d 0,p) if 21 > 2
[3MPCead (1, d,p) = (ca,d,p)
_ J(ea,d,p) ifb=
[JFALSE(ca)](l,d : b,p) := {(+1,d,p) Fh—1

m Compiler Construction Summer semester 2008

	Repetition: The Example Programming Language EPL
	Dynamic Semantics of EPL
	Intermediate Code for EPL

