Compiler Construction

Lecture 18: Code Generation III
(Translation to Intermediate Code)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

© Repetition: Intermediate Code for EPL

Rm Compiler Construction Summer semester 2

The Abstract Machine AM

Definition (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space
S:=PC x DS x PS

with
@ the program counter PC' := N,
o the data stack DS := Z* (top of stack to the right), and

@ the procedure stack (or: runtime stack) PS := Z*
(top of stack to the left).

Thus a state s = (I,d,p) € S is given by
@ a program label [€ PC,
o adatastack d=d.r:...:d.1 € DS, and
@ a procedure stack p=p.1:...:pt € PS.

m Compiler Construction Summer semester 2008

AM Instructions

Definition (AM instructions)

The set of AM instructions is divided into

arithmetic instructions: ADD, MULT, ...

Boolean instructions: NOT, AND, OR, LT, ...

jumping instructions: JMP(ca), JFALSE(ca) (ca € PC)

procedure instructions: CALL(ca, dif ,loc) (ca € PC, dif,loc € N), RET

transfer instructions: LOAD(dif , off), STORE(dif , off) (dif, off € N),
LIT(2) (z € Z)

m Compiler Construction Summer semester 2008 4

Semantics of Instructions

Definition (Semantics of AM instructions (1st part))

The semantics of an AM instruction O
[O]:5--»S
is defined as follows:
[ADD[(l,d : 21 : z2,p) := (I 4+ 1,d: 21 + 22,p)
[NOT](l,d : b,p) := (I + 1,d : —b,p) if b e {0,1}
[[AND]](Z d: by : bs,) = (l +1,d:b1 A bg,p) if b1,b9 € {0,1}
HORH(l,delibg, p):=(l+1,d:byVby,p) ifbl,bQE{O,l}
o _J+1,d:1,p) if z1 < 29
[LT](l,d : 21 : 22,Dp) _{(l+1,d 0,p) if 21 > 2
[3MPCead (1, d,p) = (ca,d,p)
_ J(ea,d,p) ifb=
[JFALSE(ca)](l,d : b,p) := {(+1,d,p) Fh—1

m Compiler Construction Summer semester 2008 5

© The Procedure Stack

Rm Compiler Construction Summer semester 2

Structure of Procedure Stack 1

The semantics of procedure and transfer instructions requires a
particular structure of the procedure stack p € PS: is must be
composed of frames (or: activation records) of the form

sl:dl:ra:vy:...: v

where

static link s/: points to frame of surrounding declaration environment
= used to access non-local variables

dynamic link dl: points to previous frame (i.e., of calling procedure)

= used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
—> used to continue program execution after
termination of procedure call

local variables v;: values of locally declared variables

m' Compiler Construction Summer semester 2008

Structure of Procedure Stack 11

@ Frames are created whenever a procedure call is performed
o Two special frames:

I1/0 frame: for keeping values of in/out variables
(sl=dl=1ra=0)
MAIN frame: for keeping values of top-level block
(sl = dl =1/0 frame)

Rm Compiler Construction Summer semester 2008 8

Structure of Procedure Stack 111

Example 18.1 (cf. Example 16.8)

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;
[.. PO ..]
[QO ...
proc R;
[. PO]
[. PO ...

Procedure stack after second call of P:

: Ii :
| L [3 [——
[s[al [[[s[af [[[s[al [[[afs] | [ofo]o] |
y z- x z. y z- y:sl dl ra x
PO : QO : PO : MAIN : 1/0

m Compiler Construction Summer semester 2008 9

Structure of Procedure Stack IV

Observation:
@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a
chain of dif static links has to be followed to access the corresponding frame.

Example 18.2 (cf. Example 18.1)

in/out x;
const ¢ = 10;
var y;
proc P; Procedure stack after second call of P:

var y, z;

. | 5[1 i—
proc & Lofa] | [[5]4] [[[s]4] [[[4[3[| [ofo]oO] |
var x, z; y z x z y z: ysldlira x
[.. PO ..] PO . Q0 . PO . MAIN | I/O

[2.y Q0] pusesx — dif =2Pusesy = dif =0
proc R;

[... PO ..]
[.. PO ..].

m Compiler Construction Summer semester 2008 10

The base Function

Upon procedure call, the static link information is computed by the
following auxiliary function which, given a procedure stack and a level
difference, determines the begin of the corresponding frame.

Definition 18.3 (base function)

The function
base : PS X N --» N
is given by
base(p,0) =1
base(p, dif + 1) := base(p, dif) + p.base(p, dif)

Example 18.4 (cf. Example 18.2)

In the second call of P (from Q): dif = 2
base(p,0) =
—> base(p,1) = 1—|—p1 =6
= base(p,2) =6+ p.6 =11
=15

= sl = base(p,2) + +

Y,z
m Compiler Construction Summer semester 2008

2
~—
ra,dl

Semantics of Procedure Instructions

® CALL(ca,dif ,loc) with
@ code address ca € PC
o level difference dif € N
e number of local variables loc € N
creates the new frame and jumps to the given address
(= starting address of procedure)
@ RET removes the topmost frame and returns to the calling site

Definition 18.5 (Semantics of procedure instructions)

The semantics of a procedure instruction O, [O] : S --+ S, is defined as
follows:

[CALL Cca, dif ,loc)] (I, d, p)

= (ca,d, (base(p, dif) + loc +2) : (loc+2) : (I+1):0:...:0:p
(((3)(dl><>‘”,>
s ra oc times
[RET](l,d,p.1:...: p.t)
= (p3,d,p.(p2 +2):...:p.t) ift >p2+2
~ ~—
ra dl

m Compiler Construction Summer semester 2008

Semantics of Transfer Instructions

o LOAD(dif , off) and STORE(dif , off) with
o level difference dif € N
o variable offset off € N

respectively load and store variable values between data and
procedure stack, following a chain of dif static links

@ LIT(z) loads the literal constant z € Z

Definition 18.6 (Semantics of transfer instructions)

The semantics of a transfer instruction O, [O] : S --» S, is defined as
follows:

[LOAD (dif , off)] (L, d,p) := (I + 1,d : p.(base(p, dif) + off + 2),p)
[STORE(dif , off)] (1,d : z,p) := (I 4+ 1,d, p[base(p, dif) + off + 2+ z])
[LIT(2)](l,d,p) := (I +1,d: z,p)

m Compiler Construction Summer semester 2008 13

AM Programs and Their Semantics

Definition 18.7 (Semantics of AM programs)

An AM program is a sequence of k > 1 labeled AM instructions:
P=ay:04;...;a5: O,

where a; € PC with a; = a; +i — 1 for every i € [k]. The set of all AM
programs is denoted by AM.

The semantics of AM programs is determined by
[.]: AM xS --» S

with

[P](l, d,p) = {E[P ([0, d,p)) ifle€ {ar,...,ax}

I
l,d,p) otherwise

m Compiler Construction Summer semester 2008 14

© Translation of EPL into AM Programs

Rm Compiler Construction Summer semester 2

Translation of EPL into AM Programs

Goal: define translation mapping
trans : Pgm --» AM
The translation employs a symbol table:

Tab := {st | st : Ide --+ ({const} X Z)
U ({var} x Lev x Off)
U ({proc} x PC x Lev x Size)}

whose entries are created by declarations and are used for translating
commands:
variable declarations: declaration level lev € Lev := N,
offset off € Off :=N
(offset and difference between usage and declaration level
determine procedure stack entry)
procedure declarations: code address ca € PC, declaration level
lev € Lev, number of local variables loc € Size := N

Rm Compiler Construction Summer semester 2008 16

Maintaining the Symbol Table

The symbol table is maintained by the function update(D, st,) which
specifies the update of symbol table st according to declaration D (with
respect to current level [):

Definition 18.8 (update function)
update : Dcl X Tab x Lev --» Tab

is defined by
update(D¢o Dy Dp,st,l)
:= update(Dp, update(Dy, update(D¢, st, 1),1),1)
if all identifiers in Do Dy Dp different
update(e, st,)

= st
update(const Iy := 21, ...,L, := z,;,st,1)
:= st[[; — (comst, z1),..., I, — (const, z,)]

update(var Iy, ..., 1,;,st,1)
= sty — (var,l,1),..., I, — (var,l,n)]
update(proc I1; K15 ... ;1 Kpj;,st,l)
.= st[[; — (proc,as,l,size(K1)),. .., I — (proc,an,l,size(K,))]
with “fresh” addresses a,...,a,
where size(D¢ var Iy, ...,I,; DpC):=n
m Compiler Construction Summer semester 2008

The Initial Symbol Table

By Definition 17.9, an EPL program P = in/out Iy, ... ,I,; K. € Pgm
has the semantics M[P] : Z™ --» Z"™.

Given (z1,...,2,) € Z™, we choose the initial state

s:=(1,6,0:0:0:21:...:2,) €S =PC x DS x PS

I/0 frame

Thus the corresponding initial symbol table has n entries:

str/o(I;) == (var,0, j) for every j € [n]

Rm Compiler Construction Summer semester 2008 18

Translation of Programs

Translation of in/out I1,...,1,;D C.:
@ Create MAIN frame for executing C

@ Stop program execution after return

Definition 18.9 (Translation of programs)

The mapping
trans : Pgm --» AM

is defined by
trans(in/out Iy, ...,[,; K.) :=1:CALL(a,0,size(K)) ;

2 : JMP(0);
kt(Kv StI/Uvav 1)

m Compiler Construction Summer semester 2008

Translation of Blocks

Translation of D C"
© Update symbol table according to D

@ Create code for procedures declared in D
(using the updated symbol table — recursion!)

@ Create code for C' (using the updated symbol table)

Definition 18.10 (Translation of blocks)

The mapping
kt : Block x Tab x PC x Lev --+ AM
is defined by
kt(D C,st,a,l) := dt(D,update(D,st,1),1)

ct(C, update(D, st, 1), a,l)
a' : RET;

m Compiler Construction Summer semester 2008

Translation of Declarations

Translation of D:
@ Generate code for the procedures declared in D

Definition 18.11 (Translation of declarations)

The mapping
dt : Del x Tab x Lev --» AM
is defined by
dt(DC Dy DP,St,l)
= dt(Dp,st,l)
dt(e, st, 1)
= €
dt(proc I1; Ky ... 51 Ky, sty 1)
= kt(Ky,st,a,l+1)

kt(Ky, st, an,l + 1)
where st(I;) = (proc,aj,...,...) for every j € [n]

m Compiler Construction Summer semester 2008 21

Translation of Commands

Definition 18.12 (Translation of commands)

The mapping
ct: Cmd X Tab x PC' x Lev --+ AM
is defined by
ct(l := A, st,a,l) := at(4,st,a,l)
a' : STORE(I — lev, off) ;
if st(I) = (var, lev, off)
ct(IO,st,a,l) ;== a: CALL(ca,l — lev,loc) ;
if st(I) = (proc, ca, lev, loc)
ct(Cq;Ca,st,a,l) := ct(Ch,st, a,l)
(025 st, Cl,, l)
ct(if B then C else Cy,st,a,l) := t(,st,a,l)
a JFALSE(a”)
ct(C’l,bt a +1 l)
" 1 JMP (a/I/)
t(Ca, st, a”, 1)

I/,

a !
ct(while B do C,st,a,l) := bt(B,st,a,l)

al

c

Q

JFALSE(a” +1);
t(C,st,a’ +1,1)
a” - JMP(a) :
m Compiler Construction Summer semester 2008

Translation of Boolean Expressions

Definition 18.13 (Translation of Boolean expressions)

The mapping
bt : BExzp x Tab x PC x Lev --» AM
is defined by

bt(A; < Ag,st,a,l) = at(Ay,st,a,l)
at(Ag,st,d’,1)

a” : LT;
bt(not B,st,a,l) := bt(B,st,a,l)

a’ : NOT;
bt(B; and Ba,st,a,l) := bt(Bi,st, a,l)
bt(Ba,st,a’, 1)

a” : AND;
bt(B; or Bsg,st,a,l) := bt(By,st,a,l)
bt(Ba,st,a’, 1)

a” : OR;

m Compiler Construction Summer semester 2008

Translation of Arithmetic Expressions

Definition 18.14 (Translation of arithmetic expressions)

The mapping
at : AFxp x Tab x PC x Lev --» AM

is defined by

at(z,st,a,l) := a:LIT(2);
a:LIT(z); if st(I) = (const, 2z
at(l,st,a,1) == a :LOAD(l — lev,off); if stglg = Evar, lev,)oﬁ)
at(A; + Ag,st,a,l) := at(Ay,st,a,l)
at(Asg,st, d,1)
a"” : ADD;

m Compiler Construction Summer semester 2008 24

	Repetition: Intermediate Code for EPL
	The Procedure Stack
	Translation of EPL into AM Programs

