
Compiler Construction

Lecture 18: Code Generation III
(Translation to Intermediate Code)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Outline

1 Repetition: Intermediate Code for EPL

2 The Procedure Stack

3 Translation of EPL into AM Programs

Compiler Construction Summer semester 2008 2

The Abstract Machine AM

Definition (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space

S := PC × DS × PS

with

the program counter PC := N,

the data stack DS := Z
∗ (top of stack to the right), and

the procedure stack (or: runtime stack) PS := Z
∗

(top of stack to the left).

Thus a state s = (l, d, p) ∈ S is given by

a program label l ∈ PC ,

a data stack d = d.r : . . . : d.1 ∈ DS , and

a procedure stack p = p.1 : . . . : p.t ∈ PS .

Compiler Construction Summer semester 2008 3

AM Instructions

Definition (AM instructions)

The set of AM instructions is divided into

arithmetic instructions: ADD, MULT, ...

Boolean instructions: NOT, AND, OR, LT, ...

jumping instructions: JMP(ca), JFALSE(ca) (ca ∈ PC)

procedure instructions: CALL(ca,dif ,loc) (ca ∈ PC , dif , loc ∈ N), RET

transfer instructions: LOAD(dif ,off), STORE(dif ,off) (dif , off ∈ N),
LIT(z) (z ∈ Z)

Compiler Construction Summer semester 2008 4

Semantics of Instructions

Definition (Semantics of AM instructions (1st part))

The semantics of an AM instruction O

JOK : S 99K S

is defined as follows:

JADDK(l, d : z1 : z2, p) := (l + 1, d : z1 + z2, p)
JNOTK(l, d : b, p) := (l + 1, d : ¬b, p) if b ∈ {0, 1}

JANDK(l, d : b1 : b2, p) := (l + 1, d : b1 ∧ b2, p) if b1, b2 ∈ {0, 1}
JORK(l, d : b1 : b2, p) := (l + 1, d : b1 ∨ b2, p) if b1, b2 ∈ {0, 1}

JLTK(l, d : z1 : z2, p) :=

{
(l + 1, d : 1, p) if z1 < z2

(l + 1, d : 0, p) if z1 ≥ z2

JJMP(ca)K(l, d, p) := (ca, d, p)

JJFALSE(ca)K(l, d : b, p) :=

{
(ca, d, p) if b = 0
(l + 1, d, p) if b = 1

Compiler Construction Summer semester 2008 5

Outline

1 Repetition: Intermediate Code for EPL

2 The Procedure Stack

3 Translation of EPL into AM Programs

Compiler Construction Summer semester 2008 6

Structure of Procedure Stack I

The semantics of procedure and transfer instructions requires a
particular structure of the procedure stack p ∈ PS : is must be
composed of frames (or: activation records) of the form

sl : dl : ra : v1 : . . . : vk

where

static link sl : points to frame of surrounding declaration environment
=⇒ used to access non-local variables

dynamic link dl : points to previous frame (i.e., of calling procedure)
=⇒ used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
=⇒ used to continue program execution after
termination of procedure call

local variables vi: values of locally declared variables

Compiler Construction Summer semester 2008 7

Structure of Procedure Stack II

Frames are created whenever a procedure call is performed

Two special frames:

I/O frame: for keeping values of in/out variables
(sl = dl = ra = 0)

MAIN frame: for keeping values of top-level block
(sl = dl = I/O frame)

Compiler Construction Summer semester 2008 8

Structure of Procedure Stack III

Example 18.1 (cf. Example 16.8)

in/out x;
const c = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;
[... P() ...]

[... Q() ...]
proc R;

[... P() ...]
[... P() ...].

Procedure stack after second call of P:

0

P() Q() P() MAIN I/O

15 4 5 4 5 4 4 3 0 0

rasl dl xyzyzxzy

Compiler Construction Summer semester 2008 9

Structure of Procedure Stack IV

Observation:

The usage of a variable in a procedure body refers to its innermost declaration.

If the level difference between the usage and the declaration is dif , then a
chain of dif static links has to be followed to access the corresponding frame.

Example 18.2 (cf. Example 18.1)

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... P() ...]
[... x ... y ... Q() ...]

proc R;

[... P() ...]
[... P() ...].

Procedure stack after second call of P:

0

P() Q() P() MAIN I/O

15 4 5 4 5 4 4 3 0 0
rasl dl xyzyzxzy

P uses x =⇒ dif = 2 P uses y =⇒ dif = 0

Compiler Construction Summer semester 2008 10

The base Function

Upon procedure call, the static link information is computed by the
following auxiliary function which, given a procedure stack and a level
difference, determines the begin of the corresponding frame.

Definition 18.3 (base function)

The function
base : PS × N 99K N

is given by
base(p, 0) := 1

base(p, dif + 1) := base(p, dif) + p.base(p, dif)

Example 18.4 (cf. Example 18.2)

In the second call of P (from Q): dif = 2
base(p, 0) = 1

=⇒ base(p, 1) = 1 + p.1 = 6
=⇒ base(p, 2) = 6 + p.6 = 11

=⇒ sl = base(p, 2) + 2
︸︷︷︸

y,z

+ 2
︸︷︷︸

ra,dl

= 15

Compiler Construction Summer semester 2008 11

Semantics of Procedure Instructions

CALL(ca,dif ,loc) with

code address ca ∈ PC

level difference dif ∈ N

number of local variables loc ∈ N

creates the new frame and jumps to the given address
(= starting address of procedure)

RET removes the topmost frame and returns to the calling site

Definition 18.5 (Semantics of procedure instructions)

The semantics of a procedure instruction O, JOK : S 99K S, is defined as
follows:

JCALL(ca,dif ,loc)K(l, d, p)

:= (ca, d, (base(p, dif) + loc + 2)
︸ ︷︷ ︸

sl

: (loc + 2)
︸ ︷︷ ︸

dl

: (l + 1)
︸ ︷︷ ︸

ra

: 0 : . . . : 0
︸ ︷︷ ︸

loc times

: p)

JRETK(l, d, p.1 : . . . : p.t)

:= (p.3
︸︷︷︸

ra

, d, p.(p.2
︸︷︷︸

dl

+2) : . . . : p.t) if t ≥ p.2 + 2

Compiler Construction Summer semester 2008 12

Semantics of Transfer Instructions

LOAD(dif ,off) and STORE(dif ,off) with

level difference dif ∈ N

variable offset off ∈ N

respectively load and store variable values between data and
procedure stack, following a chain of dif static links

LIT(z) loads the literal constant z ∈ Z

Definition 18.6 (Semantics of transfer instructions)

The semantics of a transfer instruction O, JOK : S 99K S, is defined as
follows:

JLOAD(dif ,off)K(l, d, p) := (l + 1, d : p.(base(p, dif) + off + 2), p)
JSTORE(dif ,off)K(l, d : z, p) := (l + 1, d, p[base(p, dif) + off + 2 7→ z])

JLIT(z)K(l, d, p) := (l + 1, d : z, p)

Compiler Construction Summer semester 2008 13

AM Programs and Their Semantics

Definition 18.7 (Semantics of AM programs)

An AM program is a sequence of k ≥ 1 labeled AM instructions:

P = a1 : Oa1
; . . . ; ak : Oak

where ai ∈ PC with ai = a1 + i − 1 for every i ∈ [k]. The set of all AM
programs is denoted by AM .

The semantics of AM programs is determined by

J.K : AM × S 99K S

with

JP K(l, d, p) :=

{
JP K(JOlK(l, d, p)) if l ∈ {a1, . . . , ak}
(l, d, p) otherwise

Compiler Construction Summer semester 2008 14

Outline

1 Repetition: Intermediate Code for EPL

2 The Procedure Stack

3 Translation of EPL into AM Programs

Compiler Construction Summer semester 2008 15

Translation of EPL into AM Programs

Goal: define translation mapping

trans : Pgm 99K AM

The translation employs a symbol table:

Tab := {st | st : Ide 99K ({const} × Z)
∪ ({var} × Lev × Off)
∪ ({proc} × PC × Lev × Size)}

whose entries are created by declarations and are used for translating
commands:

variable declarations: declaration level lev ∈ Lev := N,
offset off ∈ Off := N

(offset and difference between usage and declaration level
determine procedure stack entry)

procedure declarations: code address ca ∈ PC , declaration level
lev ∈ Lev , number of local variables loc ∈ Size := N

Compiler Construction Summer semester 2008 16

Maintaining the Symbol Table

The symbol table is maintained by the function update(D, st, l) which
specifies the update of symbol table st according to declaration D (with
respect to current level l):

Definition 18.8 (update function)

update : Dcl × Tab × Lev 99K Tab

is defined by

update(DC DV DP , st, l)
:= update(DP , update(DV , update(DC , st, l), l), l)

if all identifiers in DC DV DP different
update(ε, st, l)

:= st
update(const I1 := z1, . . . ,In := zn;, st, l)

:= st[I1 7→ (const, z1), . . . , In 7→ (const, zn)]
update(var I1, . . .,In;, st, l)

:= st[I1 7→ (var, l, 1), . . . , In 7→ (var, l, n)]
update(proc I1;K1; . . . ;In;Kn;, st, l)

:= st[I1 7→ (proc, a1, l, size(K1)), . . . , In 7→ (proc, an, l, size(Kn))]
with “fresh” addresses a1, . . . , an

where size(DC var I1, . . .,In; DP C) := n
Compiler Construction Summer semester 2008 17

The Initial Symbol Table

By Definition 17.9, an EPL program P = in/out I1, . . . ,In;K. ∈ Pgm

has the semantics MJP K : Z
n

99K Z
n.

Given (z1, . . . , zn) ∈ Z
n, we choose the initial state

s := (1, ε, 0 : 0 : 0 : z1 : . . . : zn
︸ ︷︷ ︸

I/O frame

) ∈ S = PC × DS × PS

Thus the corresponding initial symbol table has n entries:

stI/O(Ij) := (var, 0, j) for every j ∈ [n]

Compiler Construction Summer semester 2008 18

Translation of Programs

Translation of in/out I1, . . . ,In;D C.:

1 Create MAIN frame for executing C

2 Stop program execution after return

Definition 18.9 (Translation of programs)

The mapping
trans : Pgm 99K AM

is defined by

trans(in/out I1, . . . ,In;K.) := 1 : CALL(a,0,size(K));
2 : JMP(0);
kt(K, stI/O, a, 1)

Compiler Construction Summer semester 2008 19

Translation of Blocks

Translation of D C:

1 Update symbol table according to D

2 Create code for procedures declared in D

(using the updated symbol table – recursion!)

3 Create code for C (using the updated symbol table)

Definition 18.10 (Translation of blocks)

The mapping

kt : Block × Tab × PC × Lev 99K AM

is defined by

kt(D C, st, a, l) := dt(D,update(D, st, l), l)
ct(C,update(D, st, l), a, l)
a′ : RET;

Compiler Construction Summer semester 2008 20

Translation of Declarations

Translation of D:

Generate code for the procedures declared in D

Definition 18.11 (Translation of declarations)

The mapping
dt : Dcl × Tab × Lev 99K AM

is defined by

dt(DC DV DP , st, l)

:= dt(DP , st, l)

dt(ε, st, l)

:= ε

dt(proc I1;K1; . . . ;In;Kn;, st, l)

:= kt(K1, st, a1, l + 1)
...

kt(Kn, st, an, l + 1)
where st(Ij) = (proc, aj , . . . , . . .) for every j ∈ [n]

Compiler Construction Summer semester 2008 21

Translation of Commands

Definition 18.12 (Translation of commands)

The mapping
ct : Cmd × Tab × PC × Lev 99K AM

is defined by
ct(I := A, st, a, l) := at(A, st, a, l)

a′ : STORE(l− lev,off);
if st(I) = (var, lev , off)

ct(I(), st, a, l) := a : CALL(ca,l − lev,loc);
if st(I) = (proc, ca, lev , loc)

ct(C1;C2, st, a, l) := ct(C1, st, a, l)
ct(C2, st, a

′, l)
ct(if B then C1 else C2, st, a, l) := bt(B, st, a, l)

a′ : JFALSE(a′′);
ct(C1, st, a

′ + 1, l)
a′′ − 1 : JMP(a′′′);
ct(C2, st, a

′′, l)
a′′′ :

ct(while B do C, st, a, l) := bt(B, st, a, l)
a′ : JFALSE(a′′ + 1);
ct(C, st, a′ + 1, l)
a′′ : JMP(a);

Compiler Construction Summer semester 2008 22

Translation of Boolean Expressions

Definition 18.13 (Translation of Boolean expressions)

The mapping
bt : BExp × Tab × PC × Lev 99K AM

is defined by

bt(A1 < A2, st, a, l) := at(A1, st, a, l)
at(A2, st, a

′, l)
a′′ : LT;

bt(not B, st, a, l) := bt(B, st, a, l)
a′ : NOT;

bt(B1 and B2, st, a, l) := bt(B1, st, a, l)
bt(B2, st, a

′, l)
a′′ : AND;

bt(B1 or B2, st, a, l) := bt(B1, st, a, l)
bt(B2, st, a

′, l)
a′′ : OR;

Compiler Construction Summer semester 2008 23

Translation of Arithmetic Expressions

Definition 18.14 (Translation of arithmetic expressions)

The mapping

at : AExp × Tab × PC × Lev 99K AM

is defined by

at(z, st, a, l) := a : LIT(z);

at(I, st, a, l) :=

{
a : LIT(z); if st(I) = (const, z)
a : LOAD(l − lev,off); if st(I) = (var, lev , off)

at(A1 + A2, st, a, l) := at(A1, st, a, l)
at(A2, st, a

′, l)
a′′ : ADD;

Compiler Construction Summer semester 2008 24

	Repetition: Intermediate Code for EPL
	The Procedure Stack
	Translation of EPL into AM Programs

