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The Abstract Machine AM

Definition (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space

S := PC × DS × PS

with

the program counter PC := N,

the data stack DS := Z
∗ (top of stack to the right), and

the procedure stack (or: runtime stack) PS := Z
∗

(top of stack to the left).

Thus a state s = (l, d, p) ∈ S is given by

a program label l ∈ PC ,

a data stack d = d.r : . . . : d.1 ∈ DS , and

a procedure stack p = p.1 : . . . : p.t ∈ PS .
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AM Instructions

Definition (AM instructions)

The set of AM instructions is divided into

arithmetic instructions: ADD, MULT, ...

Boolean instructions: NOT, AND, OR, LT, ...

jumping instructions: JMP(ca), JFALSE(ca) (ca ∈ PC )

procedure instructions: CALL(ca,dif ,loc) (ca ∈ PC , dif , loc ∈ N), RET

transfer instructions: LOAD(dif ,off ), STORE(dif ,off ) (dif , off ∈ N),
LIT(z) (z ∈ Z)
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Semantics of Instructions

Definition (Semantics of AM instructions (1st part))

The semantics of an AM instruction O

JOK : S 99K S

is defined as follows:

JADDK(l, d : z1 : z2, p) := (l + 1, d : z1 + z2, p)
JNOTK(l, d : b, p) := (l + 1, d : ¬b, p) if b ∈ {0, 1}

JANDK(l, d : b1 : b2, p) := (l + 1, d : b1 ∧ b2, p) if b1, b2 ∈ {0, 1}
JORK(l, d : b1 : b2, p) := (l + 1, d : b1 ∨ b2, p) if b1, b2 ∈ {0, 1}

JLTK(l, d : z1 : z2, p) :=

{
(l + 1, d : 1, p) if z1 < z2

(l + 1, d : 0, p) if z1 ≥ z2

JJMP(ca)K(l, d, p) := (ca, d, p)

JJFALSE(ca)K(l, d : b, p) :=

{
(ca, d, p) if b = 0
(l + 1, d, p) if b = 1
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Structure of Procedure Stack I

The semantics of procedure and transfer instructions requires a
particular structure of the procedure stack p ∈ PS : is must be
composed of frames (or: activation records) of the form

sl : dl : ra : v1 : . . . : vk

where

static link sl : points to frame of surrounding declaration environment
=⇒ used to access non-local variables

dynamic link dl : points to previous frame (i.e., of calling procedure)
=⇒ used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
=⇒ used to continue program execution after
termination of procedure call

local variables vi: values of locally declared variables
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Structure of Procedure Stack II

Frames are created whenever a procedure call is performed

Two special frames:

I/O frame: for keeping values of in/out variables
(sl = dl = ra = 0)

MAIN frame: for keeping values of top-level block
(sl = dl = I/O frame)

Compiler Construction Summer semester 2008 8



Structure of Procedure Stack III

Example 18.1 (cf. Example 16.8)

in/out x;
const c = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;
[... P() ...]

[... Q() ...]
proc R;

[... P() ...]
[... P() ...].

Procedure stack after second call of P:

0

P() Q() P() MAIN I/O

15 4 5 4 5 4 4 3 0 0

rasl dl xyzyzxzy
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Structure of Procedure Stack IV

Observation:

The usage of a variable in a procedure body refers to its innermost declaration.

If the level difference between the usage and the declaration is dif , then a
chain of dif static links has to be followed to access the corresponding frame.

Example 18.2 (cf. Example 18.1)

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... P() ...]
[... x ... y ... Q() ...]

proc R;

[... P() ...]
[... P() ...].

Procedure stack after second call of P:

0

P() Q() P() MAIN I/O

15 4 5 4 5 4 4 3 0 0
rasl dl xyzyzxzy

P uses x =⇒ dif = 2 P uses y =⇒ dif = 0
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The base Function

Upon procedure call, the static link information is computed by the
following auxiliary function which, given a procedure stack and a level
difference, determines the begin of the corresponding frame.

Definition 18.3 (base function)

The function
base : PS × N 99K N

is given by
base(p, 0) := 1

base(p, dif + 1) := base(p, dif ) + p.base(p, dif )

Example 18.4 (cf. Example 18.2)

In the second call of P (from Q): dif = 2
base(p, 0) = 1

=⇒ base(p, 1) = 1 + p.1 = 6
=⇒ base(p, 2) = 6 + p.6 = 11

=⇒ sl = base(p, 2) + 2
︸︷︷︸

y,z

+ 2
︸︷︷︸

ra,dl

= 15
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Semantics of Procedure Instructions

CALL(ca,dif ,loc) with

code address ca ∈ PC

level difference dif ∈ N

number of local variables loc ∈ N

creates the new frame and jumps to the given address
(= starting address of procedure)

RET removes the topmost frame and returns to the calling site

Definition 18.5 (Semantics of procedure instructions)

The semantics of a procedure instruction O, JOK : S 99K S, is defined as
follows:

JCALL(ca,dif ,loc)K(l, d, p)

:= (ca, d, (base(p, dif ) + loc + 2)
︸ ︷︷ ︸

sl

: (loc + 2)
︸ ︷︷ ︸

dl

: (l + 1)
︸ ︷︷ ︸

ra

: 0 : . . . : 0
︸ ︷︷ ︸

loc times

: p)

JRETK(l, d, p.1 : . . . : p.t)

:= ( p.3
︸︷︷︸

ra

, d, p.( p.2
︸︷︷︸

dl

+2) : . . . : p.t) if t ≥ p.2 + 2
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Semantics of Transfer Instructions

LOAD(dif ,off ) and STORE(dif ,off ) with

level difference dif ∈ N

variable offset off ∈ N

respectively load and store variable values between data and
procedure stack, following a chain of dif static links

LIT(z) loads the literal constant z ∈ Z

Definition 18.6 (Semantics of transfer instructions)

The semantics of a transfer instruction O, JOK : S 99K S, is defined as
follows:

JLOAD(dif ,off )K(l, d, p) := (l + 1, d : p.(base(p, dif ) + off + 2), p)
JSTORE(dif ,off )K(l, d : z, p) := (l + 1, d, p[base(p, dif ) + off + 2 7→ z])

JLIT(z)K(l, d, p) := (l + 1, d : z, p)
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AM Programs and Their Semantics

Definition 18.7 (Semantics of AM programs)

An AM program is a sequence of k ≥ 1 labeled AM instructions:

P = a1 : Oa1
; . . . ; ak : Oak

where ai ∈ PC with ai = a1 + i − 1 for every i ∈ [k]. The set of all AM
programs is denoted by AM .

The semantics of AM programs is determined by

J.K : AM × S 99K S

with

JP K(l, d, p) :=

{
JP K(JOlK(l, d, p)) if l ∈ {a1, . . . , ak}
(l, d, p) otherwise
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Translation of EPL into AM Programs

Goal: define translation mapping

trans : Pgm 99K AM

The translation employs a symbol table:

Tab := {st | st : Ide 99K ({const} × Z)
∪ ({var} × Lev × Off )
∪ ({proc} × PC × Lev × Size)}

whose entries are created by declarations and are used for translating
commands:

variable declarations: declaration level lev ∈ Lev := N,
offset off ∈ Off := N

(offset and difference between usage and declaration level
determine procedure stack entry)

procedure declarations: code address ca ∈ PC , declaration level
lev ∈ Lev , number of local variables loc ∈ Size := N
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Maintaining the Symbol Table

The symbol table is maintained by the function update(D, st, l) which
specifies the update of symbol table st according to declaration D (with
respect to current level l):

Definition 18.8 (update function)

update : Dcl × Tab × Lev 99K Tab

is defined by

update(DC DV DP , st, l)
:= update(DP , update(DV , update(DC , st, l), l), l)

if all identifiers in DC DV DP different
update(ε, st, l)

:= st
update(const I1 := z1, . . . ,In := zn;, st, l)

:= st[I1 7→ (const, z1), . . . , In 7→ (const, zn)]
update(var I1, . . .,In;, st, l)

:= st[I1 7→ (var, l, 1), . . . , In 7→ (var, l, n)]
update(proc I1;K1; . . . ;In;Kn;, st, l)

:= st[I1 7→ (proc, a1, l, size(K1)), . . . , In 7→ (proc, an, l, size(Kn))]
with “fresh” addresses a1, . . . , an

where size(DC var I1, . . .,In; DP C) := n
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The Initial Symbol Table

By Definition 17.9, an EPL program P = in/out I1, . . . ,In;K. ∈ Pgm

has the semantics MJP K : Z
n

99K Z
n.

Given (z1, . . . , zn) ∈ Z
n, we choose the initial state

s := (1, ε, 0 : 0 : 0 : z1 : . . . : zn
︸ ︷︷ ︸

I/O frame

) ∈ S = PC × DS × PS

Thus the corresponding initial symbol table has n entries:

stI/O(Ij) := (var, 0, j) for every j ∈ [n]
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Translation of Programs

Translation of in/out I1, . . . ,In;D C.:

1 Create MAIN frame for executing C

2 Stop program execution after return

Definition 18.9 (Translation of programs)

The mapping
trans : Pgm 99K AM

is defined by

trans(in/out I1, . . . ,In;K.) := 1 : CALL(a,0,size(K));
2 : JMP(0);
kt(K, stI/O, a, 1)
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Translation of Blocks

Translation of D C:

1 Update symbol table according to D

2 Create code for procedures declared in D

(using the updated symbol table – recursion!)

3 Create code for C (using the updated symbol table)

Definition 18.10 (Translation of blocks)

The mapping

kt : Block × Tab × PC × Lev 99K AM

is defined by

kt(D C, st, a, l) := dt(D,update(D, st, l), l)
ct(C,update(D, st, l), a, l)
a′ : RET;
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Translation of Declarations

Translation of D:

Generate code for the procedures declared in D

Definition 18.11 (Translation of declarations)

The mapping
dt : Dcl × Tab × Lev 99K AM

is defined by

dt(DC DV DP , st, l)

:= dt(DP , st, l)

dt(ε, st, l)

:= ε

dt(proc I1;K1; . . . ;In;Kn;, st, l)

:= kt(K1, st, a1, l + 1)
...

kt(Kn, st, an, l + 1)
where st(Ij) = (proc, aj , . . . , . . .) for every j ∈ [n]

Compiler Construction Summer semester 2008 21



Translation of Commands

Definition 18.12 (Translation of commands)

The mapping
ct : Cmd × Tab × PC × Lev 99K AM

is defined by
ct(I := A, st, a, l) := at(A, st, a, l)

a′ : STORE(l− lev,off );
if st(I) = (var, lev , off )

ct(I(), st, a, l) := a : CALL(ca,l − lev,loc);
if st(I) = (proc, ca, lev , loc)

ct(C1;C2, st, a, l) := ct(C1, st, a, l)
ct(C2, st, a

′, l)
ct(if B then C1 else C2, st, a, l) := bt(B, st, a, l)

a′ : JFALSE(a′′);
ct(C1, st, a

′ + 1, l)
a′′ − 1 : JMP(a′′′);
ct(C2, st, a

′′, l)
a′′′ :

ct(while B do C, st, a, l) := bt(B, st, a, l)
a′ : JFALSE(a′′ + 1);
ct(C, st, a′ + 1, l)
a′′ : JMP(a);
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Translation of Boolean Expressions

Definition 18.13 (Translation of Boolean expressions)

The mapping
bt : BExp × Tab × PC × Lev 99K AM

is defined by

bt(A1 < A2, st, a, l) := at(A1, st, a, l)
at(A2, st, a

′, l)
a′′ : LT;

bt(not B, st, a, l) := bt(B, st, a, l)
a′ : NOT;

bt(B1 and B2, st, a, l) := bt(B1, st, a, l)
bt(B2, st, a

′, l)
a′′ : AND;

bt(B1 or B2, st, a, l) := bt(B1, st, a, l)
bt(B2, st, a

′, l)
a′′ : OR;
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Translation of Arithmetic Expressions

Definition 18.14 (Translation of arithmetic expressions)

The mapping

at : AExp × Tab × PC × Lev 99K AM

is defined by

at(z, st, a, l) := a : LIT(z);

at(I, st, a, l) :=

{
a : LIT(z); if st(I) = (const, z)
a : LOAD(l − lev,off ); if st(I) = (var, lev , off )

at(A1 + A2, st, a, l) := at(A1, st, a, l)
at(A2, st, a

′, l)
a′′ : ADD;
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