
Compiler Construction

Lecture 19: Code Generation IV
(Translation Example & Correctness)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Outline

1 Repetition: Translation of EPL into AM Programs

2 A Translation Example

3 Correctness of the Translation

Compiler Construction Summer semester 2008 2

The Abstract Machine AM

Definition (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space

S := PC × DS × PS

with

the program counter PC := N,

the data stack DS := Z
∗ (top of stack to the right), and

the procedure stack (or: runtime stack) PS := Z
∗

(top of stack to the left).

Thus a state s = (l, d, p) ∈ S is given by

a program label l ∈ PC ,

a data stack d = d.r : . . . : d.1 ∈ DS , and

a procedure stack p = p.1 : . . . : p.t ∈ PS .

Compiler Construction Summer semester 2008 3

Structure of Procedure Stack

The semantics of procedure and transfer instructions requires a
particular structure of the procedure stack p ∈ PS : is must be
composed of frames (or: activation records) of the form

sl : dl : ra : v1 : . . . : vk

where

static link sl : points to frame of surrounding declaration environment
=⇒ used to access non-local variables

dynamic link dl : points to previous frame (i.e., of calling procedure)
=⇒ used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
=⇒ used to continue program execution after
termination of procedure call

local variables vi: values of locally declared variables

Compiler Construction Summer semester 2008 4

The Initial Symbol Table

By Definition 17.9, an EPL program P = in/out I1, . . . ,In;K. ∈ Pgm

has the semantics MJP K : Z
n

99K Z
n.

Given (z1, . . . , zn) ∈ Z
n, we choose the initial state

s := (1, ε, 0 : 0 : 0 : z1 : . . . : zn
︸ ︷︷ ︸

I/O frame

) ∈ S = PC × DS × PS

Thus the corresponding initial symbol table has n entries:

stI/O(Ij) := (var, 0, j) for every j ∈ [n]

Compiler Construction Summer semester 2008 5

Translation of EPL into AM Programs

Translation mapping trans : Pgm 99K AM defined using

symbol table:
Tab := {st |st : Ide 99K ({const} × Z)

∪ ({var} × Lev × Off)
∪ ({proc} × PC × Lev × Size)}

update : Dcl × Tab × Lev 99K Tab

for extending the symbol table by declarations

kt : Block × Tab × PC × Lev 99K AM for translating blocks

dt : Dcl × Tab × Lev 99K AM

for translating the bodies of procedure declarations

ct : Cmd × Tab × PC × Lev 99K AM

for translating commands

bt : BExp ×Tab × PC × Lev 99K AM

for translating Boolean expressions

at : AExp × Tab × PC × Lev 99K AM

for translating arithmetic expressions

Compiler Construction Summer semester 2008 6

Outline

1 Repetition: Translation of EPL into AM Programs

2 A Translation Example

3 Correctness of the Translation

Compiler Construction Summer semester 2008 7

Example: Factorial Function I

Example 19.1 (Factorial function)

Source code:

in/out x;
var y;
proc F;
if x > 1 then
y := y * x;
x := x - 1;
F()

y := 1;
F();
x := y.

trans(in/out I1, . . . ,In;K.) :=
1 : CALL(a,0,size(K));
2 : JMP(0);
kt(K, stI/O, a, 1)

kt(D C, st, a, l) :=

dt(D, update(D, st, l), l)
ct(C, update(D, st, l), a, l)
a′ : RET;

update(var I1, . . . ,In;, st, l) :=
st[I1 7→ (var, l, 1), . . . , In 7→ (var, l, n)]

update(proc I1;K1; . . . ;In;Kn;, st, l) :=
st[I1 7→ (proc, a1, l, size(K1)), . . . , In 7→ (proc, an, l, size(K

kt(K1, st, a1, l + 1)
...

kt(Kn, st, an, l + 1)
where st(I) = (proc, a , . . . , . . .) for every j ∈ [n]

ct(if B then C1 else C2, st, a, l) :=

Intermediate code:

trans(in/out x;K.)1 : CALL(a0,0,1);
2 : JMP(0);

kt(K, stI/O, a0, 1)
1 : CALL(a0,0,1);
2 : JMP(0);

dt(D, update(D, stI/O
ct(C, update(D, stI/O

a2 : RET;
1 : CALL(a0,0,1);
2 : JMP(0);

dt(D, st′, 1)
ct(C, st′, a0, 1)

a2 : RET;
1 : CALL(a0,0,1);
2 : JMP(0);

kt(KF, st
′, a1, 2)

ct(C, st′, a0, 1)
a2 : RET;
1 : CALL(a0,0,1);
2 : JMP(0);

ct(CF, st
′, a1, 2)

a3 : RET;
ct(C, st′, a0, 1)Compiler Construction Summer semester 2008 8

Example: Factorial Function II

Example 19.2 (Factorial function; continued)

Code with symbolic

addresses:

1 : CALL(a0,0,1);
2 : JMP(0);

a1 : LOAD(2,1);
LIT(1);
GT;

a4 : JFALSE(a3);
LOAD(1,1);
LOAD(2,1);
MULT;
STORE(1,1);
LOAD(2,1);
LIT(1);
SUB;
STORE(2,1);
CALL(a1,1,0);

a3 : RET;
a0 : LIT(1);

STORE(0,1);
CALL(a1,0,0);
LOAD(0,1);
STORE(1,1);

a2 : RET;

Linearized

(a0 = 17, a1 = 3, a2 = 22, a3 = 16, a4 = 6):

1 : CALL(17,0,1);
2 : JMP(0);
3 : LOAD(2,1);
4 : LIT(1);
5 : GT;
6 : JFALSE(16);
7 : LOAD(1,1);
8 : LOAD(2,1);
9 : MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);
13 : SUB;
14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;
17 : LIT(1);
18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

Compiler Construction Summer semester 2008 9

Example: Factorial Function II

Example 19.3 (Factorial function; continued)

Computation for x = 2:

1 : CALL(17,0,1);
2 : JMP(0);
3 : LOAD(2,1);
4 : LIT(1);
5 : GT;
6 : JFALSE(16);
7 : LOAD(1,1);
8 : LOAD(2,1);
9 : MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);
13 : SUB;
14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;
17 : LIT(1);
18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

PC DS PS

1 ε 0 : 0 : 0 : 2
17 ε 4 : 3 : 2 : 0 : 0 : 0 : 0 : 2
18 1 4 : 3 : 2 : 0 : 0 : 0 : 0 : 2
19 ε 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
3 ε 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
4 2 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
5 2 : 1 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
6 1 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
7 ε 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
8 1 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
9 1 : 2 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2

10 2 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
11 ε 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
12 2 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
13 2 : 1 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
14 1 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
15 ε 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
3 ε 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
4 1 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
5 1 : 1 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
6 0 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1

16 ε 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
16 ε 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
20 ε 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
21 2 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
22 ε 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
2 ε 0 : 0 : 0 : 2
0 ε 0 : 0 : 0 : 2
Compiler Construction Summer semester 2008 10

Outline

1 Repetition: Translation of EPL into AM Programs

2 A Translation Example

3 Correctness of the Translation

Compiler Construction Summer semester 2008 11

Correctness of the Translation

Theorem 19.4 (Correctness of translation)

For every P ∈ Pgm, n ∈ N, and (z1, . . . , zn), (z′1, . . . , z
′

n) ∈ Z
n:

MJP K(z1, . . . , zn) = (z′1, . . . , z
′

n)
⇐⇒ Jtrans(P)K(1, ε, 0 : 0 : 0 : z1 : . . . : zn) = (0, ε, 0 : 0 : 0 : z′1 : . . . : z′n)

Proof.

see M. Mohnen: A Compiler Corectness Proof for the Static Link

Technique by means of Evolving Algebras, Fundamenta Informaticae
29(3), 1997, pp. 257–303

Compiler Construction Summer semester 2008 12

Correct Translation of Arithmetic Expressions

The simplest subcase of the correctness proof is the following.

Lemma 19.5 (Correctness of at)

Let A ∈ AExp, ρ ∈ Env, σ ∈ Stt, z ∈ Z, st ∈ Tab, a ∈ PC, l ∈ Lev,

d ∈ DS, and p ∈ PS where, for every I ∈ Ide in A,

ρ(I) = z ∈ Z =⇒ st(I) = (const, z) and

ρ(I) = α ∈ Loc, σ(α) = z =⇒ st(I) = (var, lev , off) for some

lev ∈ Lev and off ∈ Off such that p.(base(p, l− lev) + off + 2) = z.

Then, with P := at(A, st, a, l),

AJAK ρ σ = z =⇒ JP K(a, d, p) = (a + |P |, d : z, p).

Proof.

on the board

Compiler Construction Summer semester 2008 13

	Repetition: Translation of EPL into AM Programs
	A Translation Example
	Correctness of the Translation

