Compiler Construction

Lecture 19: Code Generation IV
(Translation Example & Correctness)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

© Repetition: Translation of EPL into AM Programs

Rm Compiler Construction Summer semester 2

The Abstract Machine AM

Definition (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space
S:=PC x DS x PS

with
@ the program counter PC' := N,
o the data stack DS := Z* (top of stack to the right), and

@ the procedure stack (or: runtime stack) PS := Z*
(top of stack to the left).

Thus a state s = (I,d,p) € S is given by
@ a program label [€ PC,
o adatastack d=d.r:...:d.1 € DS, and
@ a procedure stack p=p.1:...:pt € PS.

m Compiler Construction Summer semester 2008

Structure of Procedure Stack

The semantics of procedure and transfer instructions requires a
particular structure of the procedure stack p € PS: is must be
composed of frames (or: activation records) of the form

sl:dl:ra:vy:...: v

where

static link s/: points to frame of surrounding declaration environment
= used to access non-local variables

dynamic link dl: points to previous frame (i.e., of calling procedure)

= used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
—> used to continue program execution after
termination of procedure call

local variables v;: values of locally declared variables

m' Compiler Construction Summer semester 2008

The Initial Symbol Table

By Definition 17.9, an EPL program P = in/out I1, ... ,I,; K. € Pgm
has the semantics IMM[P] : Z" --» Z"™.

Given (z1,...,2,) € Z™, we choose the initial state
s:=(1,6,0:0:0:21:...:2,) €S =PCx DS x PS
I/0 frame

Thus the corresponding initial symbol table has n entries:

st1/o0(1;) == (var,0, j) for every j € [n]

Rm Compiler Construction Summer semester 2008 5

Translation of EPL into AM Programs

Translation mapping trans : Pgm --+ AM defined using
@ symbol table:
Tab := {st|st : Ide --+ ({const} x Z)
U ({var} x Lev x Off)
U ({proc} x PC x Lev x Size)}

o update : Dcl x Tab x Lev --+ Tab
for extending the symbol table by declarations

o kt: Block x Tab x PC x Lev --» AM for translating blocks

@ dt: Dcl x Tab x Lev --» AM
for translating the bodies of procedure declarations

o ct: Cmd x Tab x PC x Lev --» AM
for translating commands

o bt: BExp x Tab x PC x Lev --» AM
for translating Boolean expressions

o at: AExp x Tab x PC x Lev --» AM
for translating arithmetic expressions

Rm Compiler Construction Summer semester 2008 6

© A Translation Example

Rm Compiler Construction Summer semester 2

Example: Factorial Function I

Example 19.1 (Factorial function)

Source code:

in/out x; trans(in/out x; K .)1: CALL(a0,0,1);
var y; 2 : JMP(0);
proc F; kt (K, str/0, ag, 1)
if x > 1 then 1: CALL(ap,0,1);
y =Yy * X5 2: JMP(0);
X i=x -1 dt(D, update(D, s
FO ct(C, update(D, st
y = 1; a2 : RET;
FO; 1: CALL(ao,0,1);
=y 2: JMP(0);
trans(in/out I, ... ,[,; K.) := dt(D,S‘5,'7 1)
1: CALL(a,0,size(K)) ;kt(D C,st,a,l) := ct(C,st’, ao, 1)
: 0,V,1)3
kt(K, StI/u,a, 1) 9. JMP(O)

dt(D, update(D, st,l),l) update(var I, ... ,In ;. st, 1

ct(C,update(D, st,1),a,l) st[l1 — (var,i,1),.

a’ : RET; update(proc [1;K1; ..
st[I1 — (proc,as,l, s1ze(K1

kt(K1,st,a1,l + 1)

1./ T” i T 1)

Compiler Construction

ct(if B then

Intermediate code:

)
I — var,l,n)ﬁ KF’St 01, 2)
In,Kn, stl t(C

St a(),

ct(Cp,st ai, 2
: RET;

S ummer semester 2008

%g;c, fn1 ;5 size

t

-

—~
~

Example: Factorial Function I1

Example 19.2 (Factorial function; continued)

Code with symbolic Linearized
addresses: (ap = 17,a1 = 3,a2 = 22,a3 = 16, a4 = 6):
1: CALL(Cap,0,1); 1:CALL(17,0,1);
2 : JMP(0) ; 2 : JMP(0) ;

a1 : LOAD(2,1); 3: LOAD(2,1);
LIT(1); 4 :LIT(1);
GT; 5: GT;

a4 : JFALSE(as3) ; 6 : JFALSE(16) ;
LOAD(1,1); 7 :LOAD(1,1);
LOAD(2,1); 8 : LOAD(2,1);
MULT; 9 : MULT;
STORE(1,1); 10 : STORE(1,1);
LOAD(2,1); 11 : LOAD(2,1);
LIT(1); 12 : LIT(1);
SUB; 13 : SUB;
STORE(2,1) ; 14 : STORE(2,1);
CALL(Ca1,1,0); 15 : CALL(3,1,0);

as : RET; 16 : RET;

ao : LIT(1); 17 : LIT(1);
STORE(0,1) ; 18 : STORE(0,1);
CALL(a;,0,0); 19 : CALL(3,0,0);
LOAD(0,1); 20 : LOAD(0,1);
STORE(1,1); 21 : STORE(1,1);

as : RET; 22 : RET;

Compiler Construction

Summer semester 2008

[7a) o\ [l |l | e [[(e (oY (e | (e] o i | o Fia ot | (N | [}
=] el (en] @n] en} @n]en) s} en] @] @] @] (@]] @] (en] @] @] @] en) en] (en] @) (@] (@] ()]
o] el (en] @] en} @n]en) s} en] @] @] @] (@] o] @] en] @] @] @] en) en] (en] @) (@] (@] () m
PoCIOICICICCORLICICICICICICICIOICIOCIOOLICICICICIC m
(o] (en) |~ [alaN]lar][t [[av]\ [at e\ laNlaN] o\ la) o\ o\] 4
[a\l[at] e\]ia] [\ laNlat]aN]at]aN] el et o) laX](at] o] at] e laX]at o] at] N | at]aN] m
g
[ap]las] (ap] ap]lap]apliapliap] aplapl apl aplianliaslias] as] aallas]aalaplian] aplaslapliae] El
Al il il il sl il il il sl il il asal sl il il isal sl sl il sl il sl il
oIS (en]lev](en] (] (] (ev][ev] e} (en] an)
AN AN AN AN
- 1% aejeujen N[ev v jealevafea
m [aplarllanliaplias] o] ap] aplapllapliapliapl aplap] aplianliaslas] o) o
n = 00 00 00 00 00 g
e ©oloro[o)O 3
@) = | = ©
+ o B A &
) s ©olokokolko =
n =) O
— &
u m — ™ — — =
F m D5515522151125221551105552555 w
= O
— — o — —— NN
o — I
~ &)
1 B:
—
) @)
=
o B
[T
e Ao
.2 3 rm - o A~ e o~ e ~O NO cn~
e (@) o ~ O~ ~— ~ ~ N e
[= ~ — o~ ~ fO -
p bl O N~ h an a4 o A N A O a A
S S H AN~ - AN ~ AN~ ~ AN~ M O~
.M.L B O N ea[r] — [~ — []~ 1]
~ B = S AABREA~ rm Al
] © Hoy<Bb << J0O<HMOJHEHOJI<SOR
4] =l 0 <SO0OHEMLOOPDEHOHDE<SMHHE<OHIK
E W O — N FIN OO0 O — N IO O 00 DD — A
= e R R R R R R R R Re ot Ko

© Correctness of the Translation

Rm Compiler Construction Summer semester 2

Correctness of the Translation

Theorem 19.4 (Correctness of translation)

For every P € Pgm, n € N, and (z1,...,2y),(21,...,2),) € Z":

M[P) (21, 2n) = (#4,...,2})
<= [trans(P)](1,6,0:0:0:21:...:2,) =(0,6,0:0:0: 2] :...:2])

see M. Mohnen: A Compiler Corectness Proof for the Static Link
Technique by means of Evolving Algebras, Fundamenta Informaticae
29(3), 1997, pp. 257-303 O

m Compiler Construction Summer semester 2008 12

Correct Translation of Arithmetic Expressions

The simplest subcase of the correctness proof is the following.

Lemma 19.5 (Correctness of at)

Let A€ AFxp, p € Env, o € Stt, z € Z, st € Tab, a € PC, | € Lev,
d € DS, and p € PS where, for every I € Ide in A,

o p(I)=2€Z = st(I) = (const, z) and
o p(I)=a € Loc,o(a) =z = st(I) = (var, lev, off) for some
lev € Lev and off € Off such that p.(base(p,l — lev) + off +2) = z.
Then, with P := at(A,st,a,l),

A[A] po =2z = [P](a,d,p) = (a+ |P|,d: z,p).

on the board O

m Compiler Construction Summer semester 2008 13

	Repetition: Translation of EPL into AM Programs
	A Translation Example
	Correctness of the Translation

