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The Abstract Machine AM

Definition (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space

S := PC × DS × PS

with

the program counter PC := N,

the data stack DS := Z
∗ (top of stack to the right), and

the procedure stack (or: runtime stack) PS := Z
∗

(top of stack to the left).

Thus a state s = (l, d, p) ∈ S is given by

a program label l ∈ PC ,

a data stack d = d.r : . . . : d.1 ∈ DS , and

a procedure stack p = p.1 : . . . : p.t ∈ PS .
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Structure of Procedure Stack

The semantics of procedure and transfer instructions requires a
particular structure of the procedure stack p ∈ PS : is must be
composed of frames (or: activation records) of the form

sl : dl : ra : v1 : . . . : vk

where

static link sl : points to frame of surrounding declaration environment
=⇒ used to access non-local variables

dynamic link dl : points to previous frame (i.e., of calling procedure)
=⇒ used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
=⇒ used to continue program execution after
termination of procedure call

local variables vi: values of locally declared variables
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The Initial Symbol Table

By Definition 17.9, an EPL program P = in/out I1, . . . ,In;K. ∈ Pgm

has the semantics MJP K : Z
n

99K Z
n.

Given (z1, . . . , zn) ∈ Z
n, we choose the initial state

s := (1, ε, 0 : 0 : 0 : z1 : . . . : zn
︸ ︷︷ ︸

I/O frame

) ∈ S = PC × DS × PS

Thus the corresponding initial symbol table has n entries:

stI/O(Ij) := (var, 0, j) for every j ∈ [n]
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Translation of EPL into AM Programs

Translation mapping trans : Pgm 99K AM defined using

symbol table:
Tab := {st |st : Ide 99K ({const} × Z)

∪ ({var} × Lev × Off )
∪ ({proc} × PC × Lev × Size)}

update : Dcl × Tab × Lev 99K Tab

for extending the symbol table by declarations

kt : Block × Tab × PC × Lev 99K AM for translating blocks

dt : Dcl × Tab × Lev 99K AM

for translating the bodies of procedure declarations

ct : Cmd × Tab × PC × Lev 99K AM

for translating commands

bt : BExp ×Tab × PC × Lev 99K AM

for translating Boolean expressions

at : AExp × Tab × PC × Lev 99K AM

for translating arithmetic expressions
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Example: Factorial Function I

Example 19.1 (Factorial function)

Source code:

in/out x;
var y;
proc F;
if x > 1 then
y := y * x;
x := x - 1;
F()

y := 1;
F();
x := y.

trans(in/out I1, . . . ,In;K.) :=
1 : CALL(a,0,size(K));
2 : JMP(0);
kt(K, stI/O, a, 1)

kt(D C, st, a, l) :=

dt(D, update(D, st, l), l)
ct(C, update(D, st, l), a, l)
a′ : RET;

update(var I1, . . . ,In;, st, l) :=
st[I1 7→ (var, l, 1), . . . , In 7→ (var, l, n)]

update(proc I1;K1; . . . ;In;Kn;, st, l) :=
st[I1 7→ (proc, a1, l, size(K1)), . . . , In 7→ (proc, an, l, size(K

kt(K1, st, a1, l + 1)
...

kt(Kn, st, an, l + 1)
where st(I ) = (proc, a , . . . , . . .) for every j ∈ [n]

ct(if B then C1 else C2, st, a, l) :=

Intermediate code:

trans(in/out x;K.)1 : CALL(a0,0,1);
2 : JMP(0);

kt(K, stI/O, a0, 1)
1 : CALL(a0,0,1);
2 : JMP(0);

dt(D, update(D, stI/O
ct(C, update(D, stI/O

a2 : RET;
1 : CALL(a0,0,1);
2 : JMP(0);

dt(D, st′, 1)
ct(C, st′, a0, 1)

a2 : RET;
1 : CALL(a0,0,1);
2 : JMP(0);

kt(KF, st
′, a1, 2)

ct(C, st′, a0, 1)
a2 : RET;
1 : CALL(a0,0,1);
2 : JMP(0);

ct(CF, st
′, a1, 2)

a3 : RET;
ct(C, st′, a0, 1)Compiler Construction Summer semester 2008 8



Example: Factorial Function II

Example 19.2 (Factorial function; continued)

Code with symbolic

addresses:

1 : CALL(a0,0,1);
2 : JMP(0);

a1 : LOAD(2,1);
LIT(1);
GT;

a4 : JFALSE(a3);
LOAD(1,1);
LOAD(2,1);
MULT;
STORE(1,1);
LOAD(2,1);
LIT(1);
SUB;
STORE(2,1);
CALL(a1,1,0);

a3 : RET;
a0 : LIT(1);

STORE(0,1);
CALL(a1,0,0);
LOAD(0,1);
STORE(1,1);

a2 : RET;

Linearized

(a0 = 17, a1 = 3, a2 = 22, a3 = 16, a4 = 6):

1 : CALL(17,0,1);
2 : JMP(0);
3 : LOAD(2,1);
4 : LIT(1);
5 : GT;
6 : JFALSE(16);
7 : LOAD(1,1);
8 : LOAD(2,1);
9 : MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);
13 : SUB;
14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;
17 : LIT(1);
18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;
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Example: Factorial Function II

Example 19.3 (Factorial function; continued)

Computation for x = 2:

1 : CALL(17,0,1);
2 : JMP(0);
3 : LOAD(2,1);
4 : LIT(1);
5 : GT;
6 : JFALSE(16);
7 : LOAD(1,1);
8 : LOAD(2,1);
9 : MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);
13 : SUB;
14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;
17 : LIT(1);
18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

PC DS PS

1 ε 0 : 0 : 0 : 2
17 ε 4 : 3 : 2 : 0 : 0 : 0 : 0 : 2
18 1 4 : 3 : 2 : 0 : 0 : 0 : 0 : 2
19 ε 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
3 ε 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
4 2 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
5 2 : 1 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
6 1 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
7 ε 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
8 1 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
9 1 : 2 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2

10 2 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
11 ε 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
12 2 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
13 2 : 1 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
14 1 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
15 ε 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
3 ε 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
4 1 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
5 1 : 1 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
6 0 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1

16 ε 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
16 ε 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
20 ε 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
21 2 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
22 ε 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
2 ε 0 : 0 : 0 : 2
0 ε 0 : 0 : 0 : 2
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Correctness of the Translation

Theorem 19.4 (Correctness of translation)

For every P ∈ Pgm, n ∈ N, and (z1, . . . , zn), (z′1, . . . , z
′

n) ∈ Z
n:

MJP K(z1, . . . , zn) = (z′1, . . . , z
′

n)
⇐⇒ Jtrans(P )K(1, ε, 0 : 0 : 0 : z1 : . . . : zn) = (0, ε, 0 : 0 : 0 : z′1 : . . . : z′n)

Proof.

see M. Mohnen: A Compiler Corectness Proof for the Static Link

Technique by means of Evolving Algebras, Fundamenta Informaticae
29(3), 1997, pp. 257–303
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Correct Translation of Arithmetic Expressions

The simplest subcase of the correctness proof is the following.

Lemma 19.5 (Correctness of at)

Let A ∈ AExp, ρ ∈ Env, σ ∈ Stt, z ∈ Z, st ∈ Tab, a ∈ PC, l ∈ Lev,

d ∈ DS, and p ∈ PS where, for every I ∈ Ide in A,

ρ(I) = z ∈ Z =⇒ st(I) = (const, z) and

ρ(I) = α ∈ Loc, σ(α) = z =⇒ st(I) = (var, lev , off ) for some

lev ∈ Lev and off ∈ Off such that p.(base(p, l− lev) + off + 2) = z.

Then, with P := at(A, st, a, l),

AJAK ρ σ = z =⇒ JP K(a, d, p) = (a + |P |, d : z, p).

Proof.

on the board
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