
Compiler Construction

Lecture 1: Introduction

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Outline

1 Preliminaries

2 Introduction

Compiler Construction Summer semester 2008 2

People

Lectures: Thomas Noll

Lehrstuhl für Informatik 2, Room 4211
E-mail noll@cs.rwth-aachen.de
Phone (0241)80-21213

Exercise classes: Daniel Klink

Lehrstuhl für Informatik 2, Room 4205
E-mail klink@cs.rwth-aachen.de
Phone (0241)80-21210

Student assistants:

Johanna Nellen (johanna.nellen@rwth-aachen.de)
Maximilian Odenbrett (maximilian.odenbrett@rwth-aachen.de)

Compiler Construction Summer semester 2008 3

noll@cs.rwth-aachen.de
klink@cs.rwth-aachen.de
johanna.nellen@rwth-aachen.de
maximilian.odenbrett@rwth-aachen.de

Target Audience

Bachelor program (Informatik): V3 Ü2
Wahlpflichtfach Theorie

Master programs (Software Systems Engineering [, Informatik]):

V4 Ü2
Theoretical (+ Practical) CS
Specialization Formal Methods, Programming Languages and

Software Validation

Diplomstudiengang (Informatik): V4 Ü2
Theoretische (+ Praktische) Informatik
Vertiefungsfach Formale Methoden, Programmiersprachen und

Softwarevalidierung

In general:
interest in implementation of (imperative) programming languages
application of theoretical concepts
compiler = example of a complex software architecture
gaining experience with tool support

Expected: basic knowledge in
imperative programming languages
formal languages and automata theory

Compiler Construction Summer semester 2008 4

Organization

Schedule:
Lecture Mon 10:00–11:30 AH2 (starting April 14)
Lecture Thu 15:00–16:30 AH5
Exercise class Wed 13:30–15:00 AH3 (starting 23.10.2006)

(see overview at
http://www-i2.informatik.rwth-aachen.de/i2/cc08/)

Today: 0th assignment sheet, presented next Wednesday

Work on assignments in groups of three

Examination:

oral for BSc candidates (6 ECTS credit points)
otherwise (8 ECTS credit points) depending on number of
candidates

Admission requires at least 50% of the points in the (non-Diplom)
exercises

Written material in English, lecture and presentation of
assignments in German, rest up to you

Compiler Construction Summer semester 2008 5

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Outline

1 Preliminaries

2 Introduction

Compiler Construction Summer semester 2008 6

What Is It All About?

Compiler = Program: Source code → Machine code

Source code: in high-level programming language, tailored to problem
(imperative/declarative [functional, logic]/
object-oriented, sequential/concurrent)

Machine code: architecture dependent
(von Neumann; RISC/CISC/parallel)

Important issues:

Correctness: “equivalence” of source and machine code
(=⇒ compiler verification, proof-carrying code, ...)

Efficiency of generated code: machine code as fast and/or memory
efficient as possible
(=⇒ program analysis and optimization)

Efficiency of compiler: translation process as fast and/or memory
efficient as possible
(=⇒ sophisticated algorithms and data structures;
bootstrapping)

Efficiency depends on system environment (mutual tradeoff)
Compiler Construction Summer semester 2008 7

Aspects of a Programming Language

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural
components)

Semantics: “What does this program mean?”

“Static semantics”: properties which are not (easily)
definable in syntax
(declaredness of identifiers, type correctness, ...)
“Dynamic semantics”: execution evokes state
transformations of an [abstract] machine

Pragmatics: length and understandability of programs
learnability of programming language
appropriateness for specific applications
...

Compiler Construction Summer semester 2008 8

Historic development

Formal syntax since 1960s (LL/LR parsing);
semantics defined by compiler/interpreter

Formal semantics since 1970s
(operational/denotational/axiomatic)

Automatic compiler generation since 1980s
([f]lex, yacc, action semantics, ...)

Compiler Construction Summer semester 2008 9

Motivation for Rigorous Formal Treatment

Examples:

1 How often is the following loop traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

2 What if p = nil in the following program?

while p <> nil and p^.key < val do ...

Pascal: strict Boolean operations ↓

Modula: non-strict Boolean operations ↑

Compiler Construction Summer semester 2008 10

Compiler Phases

Lexical analysis (Scanner):

recognition of symbols, delimiters, and comments
by regular expressions and finite automata

Syntactic analysis (Parser):

determination of hierarchical program structure
by context-free grammars and pushdown automata

Semantic analysis:

checking context dependencies, data types, ...
by attribute grammars

Generation of intermediate code:

translation into (target-independent) intermediate code
by tree translations

Code optimization: to improve runtime and/or memory behavior

Generation of target code: tailored to target system

Additionally: optimization of target code, symbol table, error handling

Compiler Construction Summer semester 2008 11

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

regular expressions/finite automata

context-free grammars/pushdown automata

attribute grammars

tree translations

x1 := y2 + 1

(id, x1)(gets,)(id, y2)(plus,)(int, 1)

Assgn

Var Exp

Sum

Var Const

Assgn

Var Exp

Sum

Var Const

Assgn

Var Exp

Sum

Var Const

ok

int int

int

int int

Assgn

Var Exp

Sum

Var Const

ok

int int

int

int int

LOAD y2; LIT 1; ADD; STO x1

...

... [omitted: symbol table, error handling]

Compiler Construction Summer semester 2008 12

Classification of Compiler Phases

Analysis: lexical/syntactic/semantic analysis
(determination of syntactic structure, error handling)

Synthesis: generation of (intermediate/machine) code + optimization

Alternatively:

Frontend: machine-independent parts
(analysis + intermediate code + machine-independent
optimizations)

Backend: machine-dependent parts
(generation + optimization of machine code)

Another classification: n-pass compiler
(number of runs through source program; nowadays mainly one-pass)

Compiler Construction Summer semester 2008 13

Literature

(also see the collection [“Handapparat”] at the CS Library)

A. Aho, R. Sethi, J. Ullman: Compilers – Principles, Techniques,

and Tools, Addison-Wesley, 1988

W. Waite, G. Goos: Compiler Construction, 2nd edition, Springer,
1985

R. Wilhelm, D. Maurer: Übersetzerbau, 2. Auflage, Springer, 1997

N. Wirth: Grundlagen und Techniken des Compilerbaus,
Addison-Wesley, 1996

J.R. Levine et al.: lex & yacc, O’Reilly, 1992

A.W. Appel, J. Palsberg: Modern Compiler Implementation in

Java, Cambridge University Press, 2002

D. Grune, H.E. Bal, C.J.H. Jacobs, K.G. Langendoen: Modern

Compiler Design, Wiley & Sons, 2000

O. Mayer: Syntaxanalyse, BI-Verlag, 1978

Compiler Construction Summer semester 2008 14

	Preliminaries
	Introduction

