Compiler Construction

Lecture 2: Lexical Analysis I (Simple Matching Problem)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Conceptual Structure of a Compiler

Source code

@Cxical analysis (Scannor)

Y
Syntactic analysis (Parser))

y
Semantic analysis)

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Summer semester 2008

@ Problem Statement

Rm Compiler Construction Summer semester 2

Lexical Structures

o Starting point: source program P as a character sequence
o) (finite) character set (e.g., ASCII, ISO Latin-1, Unicode, ...)
e a,b,c,... € Q characters (= lexical atoms)
e P € Q* source program
(of course, not every w € 2* is a valid program)

Rm Compiler Construction Summer semester 2008

Lexical Structures

o Starting point: source program P as a character sequence
o) (finite) character set (e.g., ASCII, ISO Latin-1, Unicode, ...)
e a,b,c,... € Q characters (= lexical atoms)
e P € Q* source program
(of course, not every w € 2* is a valid program)
@ P exhibits lexical structures:
o natural language for keywords, identifiers, ...
e mathematical notation for numbers, formulae, ...
(e.g., 2 ~ x*x2)
@ spaces, linebreaks, indentation
o comments and compiler directives (pragmas)

@ Translation of P follows its hierarchical structure (later)

e Pragmatic aspects mostly irrelevant (e.g., x**2 or x~2 for 22)

Rm Compiler Construction Summer semester 2008

Observations

@ Syntactic atoms (called symbols) are represented as sequences of
lexical atoms, called lexemes

First goal of lexical analysis

Decomposition of P into a sequence of lexemes

Rm Compiler Construction Summer semester 2008

Observations

@ Syntactic atoms (called symbols) are represented as sequences of
lexical atoms, called lexemes

First goal of lexical analysis

Decomposition of P into a sequence of lexemes

© Differences between similar lexemes are (mostly) irrelevant
(e.g., identifiers do not need to be distinguished)

e lexemes grouped into symbol classes
(e.g., identifiers, numbers, ...)

o symbol classes abstractly represented by tokens

o symbols identified by additional attributes
(e.g., identifier names, numerical values, ...; required for semantic
analysis and code generation)
= symbol = (token, attribute)

Second goal of lexical analysis

Transformation of a sequence of lexemes into a sequence of symbols

m' Compiler Construction Summer semester 2008

Lexical Analysis

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of
symbols.

m' Compiler Construction Summer semester 2008

Lexical Analysis

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of
symbols.

The corresponding program is called a scanner:

(token[,attribute])
Source program —><Scanner Je i(Parser)— --->

get next token

Symbol table

m' Compiler Construction Summer semester 2008

Lexical Analysis

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of
symbols.

The corresponding program is called a scanner:

(token[,attribute])
Source program —><Scanner Je i(Parser)— --->

get next token

Symbol table

Example: coenxlnrEy2+ol0. .

4
... (id, p1)(gets,)(id, p2)(plus,) (int, 1)(sem,) ...

m' Compiler Construction Summer semester 2008 6

Important Classes of Symbols

Identifiers: @ for naming variables, constants, types, procedures, classes,

@ usually a sequence of letters and digits, starting with a
letter
® keywords usually forbidden; length possibly restricted

Rm Compiler Construction Summer semester 2008

Important Classes of Symbols

Identifiers: @ for naming variables, constants, types, procedures, classes,

@ usually a sequence of letters and digits, starting with a
letter
® keywords usually forbidden; length possibly restricted

Keywords: @ identifiers with a predefined meaning
@ for representing control structures (while), operators
(and), ...

Rm Compiler Construction Summer semester 2008

Important Classes of Symbols

Identifiers: @ for naming variables, constants, types, procedures, classes,

@ usually a sequence of letters and digits, starting with a
letter
® keywords usually forbidden; length possibly restricted

Keywords: @ identifiers with a predefined meaning
@ for representing control structures (while), operators
(and), ...

Numerals: certain sequences of digits, +, -, letters (for exponent and
hexadecimal representation)

Rm Compiler Construction Summer semester 2008

Important Classes of Symbols

Identifiers: @ for naming variables, constants, types, procedures, classes,

@ usually a sequence of letters and digits, starting with a
letter
® keywords usually forbidden; length possibly restricted

Keywords: @ identifiers with a predefined meaning
@ for representing control structures (while), operators
(and), ...

Numerals: certain sequences of digits, +, -, letters (for exponent and
hexadecimal representation)

Simple symbols: @ one special character, e.g., +, *, <, (, ;, ...
@ each makes up a symbol class (plus, ...)

Rm Compiler Construction Summer semester 2008

Important Classes of Symbols

Identifiers: @ for naming variables, constants, types, procedures, classes,

@ usually a sequence of letters and digits, starting with a
letter
® keywords usually forbidden; length possibly restricted

Keywords: @ identifiers with a predefined meaning
@ for representing control structures (while), operators
(and), ...

Numerals: certain sequences of digits, +, -, letters (for exponent and
hexadecimal representation)

Simple symbols: @ one special character, e.g., +, *, <, (, ;, ...
@ each makes up a symbol class (plus, ...)

Composite symbols: @ two or more special characters, e.g., :=, *x*, <= ...
@ each makes up a symbol class (gets, ...)

Rm Compiler Construction Summer semester 2008

Important Classes of Symbols

Identifiers: @ for naming variables, constants, types, procedures, classes,

@ usually a sequence of letters and digits, starting with a
letter
® keywords usually forbidden; length possibly restricted

Keywords: @ identifiers with a predefined meaning
@ for representing control structures (while), operators
(and), ...

Numerals: certain sequences of digits, +, -, letters (for exponent and
hexadecimal representation)

Simple symbols: @ one special character, e.g., +, *, <, (, ;, ...
@ each makes up a symbol class (plus, ...)

Composite symbols: @ two or more special characters, e.g., :=, *x*, <= ...
@ each makes up a symbol class (gets, ...)

White spaces: @ blanks, tabs, linebreaks, ...
@ usually for separating symbols (exception: FORTRAN)

Rm Compiler Construction Summer semester 2008

Specification and Implementation of Scanners

Representation of symbols: symbol = (token, attribute)
Token: (binary) denotation of symbol class (id, gets, plus, ...)
Attribute: additional information required in later compilation
phases

@ reference to symbol table

o value of numeral

° ..

o usually empty for singleton symbol classes

Rm Compiler Construction Summer semester 2008 8

Specification and Implementation of Scanners

Representation of symbols: symbol = (token, attribute)
Token: (binary) denotation of symbol class (id, gets, plus, ...)

Attribute: additional information required in later compilation
phases

@ reference to symbol table

o value of numeral

° ..

o usually empty for singleton symbol classes

Observation: symbol classes are regular sets

= @ specification by regular expressions
@ recognition by finite automata

@ enables automatic generation of scanners ([f]lex)

Rm Compiler Construction Summer semester 2008

© Specification of Symbol Classes

Rm Compiler Construction Summer semester 2

Regular Expressions 1

Definition 2.2 (Syntax of regular expressions)

Given some alphabet 2, the set of regular expressions over (), REq, is
the least set with

o A € REq,
o O C REq, and
@ whenever o, 3 € REq, also a + 3,a - 3,a* € REq.

m' Compiler Construction Summer semester 2008 10

Regular Expressions 1

Definition 2.2 (Syntax of regular expressions)

Given some alphabet 2, the set of regular expressions over (), REq, is
the least set with

o A € REq,
o O C REq, and
@ whenever o, 3 € REq, also a + 3,a - 3,a* € REq.

Remarks:
@ abbreviation: a™ = a - a*
@ « - [often written as af3

@ * binds stronger than -, - binds stronger than +
(ie,a+b-c*:=a+ (b-(c")))

m Compiler Construction Summer semester 2008

Regular Expressions 11

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)

The semantics of a regular expression is defined by the mapping

[]: REq — 2% where
[A] =0
[a] := {a}
[o+ 4] == [a] U [A]
[o- 8] == [e] - [A]
[@*] == [a]”

m Compiler Construction Summer semester 2008

Regular Expressions 11

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)

The semantics of a regular expression is defined by the mapping

[]: REq — 2% where

Remarks: for formal languages L, M C Q*, we have
o L-M:={vw|veLweM}
o L*:=)2, L™ where LY := {e} and L™ := L. L"
(= L*={wwy...wy, |n€N,w; € L} and € € L*)
o [A*] =[A]" = 0" = {e}

m Compiler Construction Summer semester 2008

© The Simple Matching Problem

Rm Compiler Construction Summer semester 2

The Simple Matching Problem I

Problem 2.4 (Simple matching problem)

Given a € REq and w € Q*, decide whether w € [o] or not.

Rm Compiler Construction Summer semester 2008 13

The Simple Matching Problem I

Problem 2.4 (Simple matching problem)

Given a € REq and w € Q*, decide whether w € [o] or not.

This problem can be solved using the following concept:

Definition 2.5 (Finite automaton)

A nondeterministic finite automaton (NFA) is of the form

A =(Q,Q,0,q, F) where

Q is a finite set of states

Q denotes the input alphabet

§:Q x Q. — 29 is the transition function where Q. := QU {e}
qo € @ is the initial state

F C @ is the set of final states

The set of all NFA over € is denoted by NFAq.

If 6(q,e) = 0 and |6(q,a)] =1 for every ¢ € Q and a € Q (i.e.,
0:QxQ— @), then A is called deterministic (DFA). Notation: DFAq

¢ © ¢ ¢ ¢

v

m Compiler Construction Summer semester 2008 13

The Simple Matching Problem II

Definition 2.6 (Acceptance condition)

Let 2l = (Q,Q,6,q0, F') € NFAq.
@ The e-closure (T') C @ of a subset T' C @ is defined by
o T Ce(T) and
o if g € (T), then d(q,e) C ¢(T)

m Compiler Construction Summer semester 2008

The Simple Matching Problem II

Definition 2.6 (Acceptance condition)

Let 2 =(Q,Q,9,q0, F) € NFAq.

@ The e-closure (T') C @ of a subset T' C @ is defined by
o T Ce(T) and
o if g € (T), then d(q,e) C ¢(T)

@ The extended transition function of 2, 6:29 x QF — 2@ is given

T,e):=e(T) and
o (T, wa) :=¢ (qué(Tyw) 5(q,a)) (weQ* aeN)

m Compiler Construction

Summer semester 2008 14

The Simple Matching Problem II

Definition 2.6 (Acceptance condition)

Let 2l = (Q,Q,6,q0, F') € NFAq.

@ The e-closure (T') C @ of a subset T' C @ is defined by

o T Ce(T) and

o if g € (T), then d(q,e) C ¢(T)
@ The extended transition function of 2, 6:29 x QF — 2@ is given

b,
yo §(T,e) := &(T) and

o (T, wa) :=¢ (qué(Tyw) 5(q,a)) (weQ* aeN)

@ 2 recognizes the language
L) := {w € 9 | 5({go},w) N F # 0}

m Compiler Construction Summer semester 2008 14

The Simple Matching Problem II

Definition 2.6 (Acceptance condition)

Let 2l = (Q,Q,6,q0, F') € NFAq.

@ The e-closure (T') C @ of a subset T' C @ is defined by

o T Ce(T) and

o if g € (T), then d(q,e) C ¢(T)
@ The extended transition function of 2, 6:29 x QF — 2@ is given

b,
yo §(T,e) := &(T) and

o (T, wa) :=¢ (qué(Tyw) 5(q,a)) (weQ* aeN)

@ 2 recognizes the language
L) := {w € 9 | 5({go},w) N F # 0}

NFA for a*b+ a* (on the board)

m Compiler Construction Summer semester 2008 14

The Simple Matching Problem III

Remarks:

o NFA as specified in Definition 2.5 are sometimes called NFA with
e-transitions (e-NFA).

Rm Compiler Construction Summer semester 2008 15

The Simple Matching Problem III

Remarks:

o NFA as specified in Definition 2.5 are sometimes called NFA with
e-transitions (e-NFA).

o For QlAE DFAq, the acceptance COI}ditiOD yields 5 Qx0*—Q
with §(q,e) = ¢ and 0(q, wa) = §(6(q,w),a), and

L) = {w € Q| §(qo, w) € F}.

Rm Compiler Construction Summer semester 2008

The DFA Method

Known from Automata Theory and Formal Languages:

Algorithm 2.8 (DFA method)

Input: regular expression o € REq, input string w € Q*

m Compiler Construction Summer semester 2008 16

The DFA Method

Known from Automata Theory and Formal Languages:

Algorithm 2.8 (DFA method)
Input: regular expression oo € REq, input string w € Q*

Procedure: @ using Kleene’s Theorem, construct A, € NFAq such
that L(Ay) = [o]
© apply powerset construction to obtain
L =1(Q, 0,9, q, F") € DFAq with
L(2,) = L(%a) = [o]
© solve the matching problem by deciding whether
5(qh, w) € F’

m Compiler Construction Summer semester 2008 16

The DFA Method

Known from Automata Theory and Formal Languages:

Algorithm 2.8 (DFA method)

Input: regular expression oo € REq, input string w € Q*

Procedure: @ using Kleene’s Theorem, construct A, € NFAq such
that L(Ay) = [o]
© apply powerset construction to obtain
L =1(Q, 0,9, q, F") € DFAq with
L(2,) = L(%a) = [o]
© solve the matching problem by deciding whether
5(qh, w) € F’

Output: “yes” or “no”

m Compiler Construction Summer semester 2008 16

The DFA Method

Known from Automata Theory and Formal Languages:

Algorithm 2.8 (DFA method)

Input: regular expression oo € REq, input string w € Q*

Procedure: @ using Kleene’s Theorem, construct A, € NFAq such
that L(Ay) = [o]
© apply powerset construction to obtain
L =1(Q, 0,9, q, F") € DFAq with
L(2,) = L(%a) = [o]
© solve the matching problem by deciding whether
5(qh, w) € F’

Output: “yes” or “no”

Q Kleene’s Theorem (on the board)

© Powerset construction (on the board)

m Compiler Construction Summer semester 2008

Time and Space Complexity of DFA Method

@ in construction phase:

o Kleene method: time and space O(|a|) (Jo| := length of «)
o Powerset construction: time and space O(2/%«l) = O(2l)
(|2,] := # of states)

Rm Compiler Construction Summer semester 2008 17

Time and Space Complexity of DFA Method

@ in construction phase:
o Kleene method: time and space O(|a]) (]| := length of o)
o Powerset construction: time and space O(2/%«l) = O(2l)
(|| := # of states)
Q at runtime:
o Word problem: time O(|w|) (Jw| := length of w), space O(1)
(but O(2/e!) for storing DFA)

Rm Compiler Construction Summer semester 2008 17

Time and Space Complexity of DFA Method

@ in construction phase:
o Kleene method: time and space O(|a]) (]| := length of o)
o Powerset construction: time and space O(2/%«l) = O(2l)
(|2,] := # of states)
Q at runtime:
o Word problem: time O(|w|) (Jw| := length of w), space O(1)
(but O(2!1) for storing DFA)
— nice runtime behavior but memory requirements too high
(and exponential time in construction phase)

Rm Compiler Construction Summer semester 2008 17

The NFA Method

Idea: decrease memory requirements by applying powerset
construction at runtime, i.e., only “to the run of w through ,”
(direct computation of d({qo}, w); see Example 2.7)

Rm Compiler Construction Summer semester 2008 18

The NFA Method

Idea: decrease memory requirements by applying powerset
construction at runtime, i.e., only “to the run of w through ,”
(direct computation of d({qo}, w); see Example 2.7)

Algorithm 2.10 (NFA method)

Input: automaton A, = (Q,Q, 0,90, F') € NFAq,
mnput string w € QF

m Compiler Construction Summer semester 2008

The NFA Method

Idea: decrease memory requirements by applying powerset
construction at runtime, i.e., only “to the run of w through ,”
(direct computation of d({qo}, w); see Example 2.7)

Algorithm 2.10 (NFA method)

Input: automaton A, = (Q,Q, 0,90, F') € NFAq,
mnput string w € QF
Variables: T C Q, a € Q, w' € QF

Procedure: T :=e({qo0});
while w # ¢ do

m Compiler Construction Summer semester 2008

The NFA Method

Idea: decrease memory requirements by applying powerset
construction at runtime, i.e., only “to the run of w through ,”
(direct computation of d({qo}, w); see Example 2.7)

Algorithm 2.10 (NFA method)

Input: automaton A, = (Q,Q, 0,90, F') € NFAq,
mnput string w € QF
Variables: T C Q, a € Q, w' € QF

Procedure: T :=e({qo0});
while w # ¢ do

Output: if TN F # 0 then “yes” else “no”

m Compiler Construction Summer semester 2008

Complexity Analysis

For NFA Method at runtime:
e Space: O(|a|) (for storing NFA and T')
o Time: O(|a] - |w|)
(in the loop’s body, |T'| states need to be considered)
— trades exponential space for increase in time

Rm Compiler Construction Summer semester 2008 19

Complexity Analysis

For NFA Method at runtime:
e Space: O(|a|) (for storing NFA and T')
o Time: O(|a] - |w|)
(in the loop’s body, |T'| states need to be considered)
— trades exponential space for increase in time

Comparison:

Method | Space Time (for “w € [a]?”)
DFA | O(2°) O(|wl)
NFA | O(af) O(la] - [wl)

m' Compiler Construction Summer semester 2008

Complexity Analysis

For NFA Method at runtime:
e Space: O(|a|) (for storing NFA and T')
o Time: O(|a] - |w|)
(in the loop’s body, |T'| states need to be considered)
— trades exponential space for increase in time

Comparison:

Method | Space Time (for “w € [a]?”)
DFA | O(2l°l) O(|wl)
NFA | O(af) O(la] - [wl)

In practice:
o Exponential blowup of DFA methode usually does not occur in
“real” applications (= used in [f]1lex)
o Improvement of NFA method: caching of transitions 4 (T, a)
= combination of both methods

m' Compiler Construction Summer semester 2008

	Problem Statement
	Specification of Symbol Classes
	The Simple Matching Problem

