Compiler Construction

Lecture 20: Code Generation V
(Jumping Code & Procedure Parameters)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

@ Repetition: Translation of EPL into AM Programs

Rm Compiler Construction Summer semester 2

Translation of EPL into AM Programs

Translation mapping trans : Pgm --+ AM defined using
@ symbol table:
Tab := {st|st : Ide --+ ({const} x Z)
U ({var} x Lev x Off)
U ({proc} x PC x Lev x Size)}

o update : Dcl x Tab x Lev --+ Tab
for extending the symbol table by declarations

o kt: Block x Tab x PC x Lev --» AM for translating blocks

@ dt: Dcl x Tab x Lev --» AM
for translating the bodies of procedure declarations

o ct: Cmd x Tab x PC x Lev --» AM
for translating commands

o bt: BExp x Tab x PC x Lev --» AM
for translating Boolean expressions

o at: AExp x Tab x PC x Lev --» AM
for translating arithmetic expressions

Rm Compiler Construction Summer semester 2008 3

Correctness of the Translation

Theorem (Correctness of translation)

For every P € Pgm, n € N, and (z1,...,2y),(21,...,2),) € Z":

M[P) (21, 2n) = (#4,...,2})
<= [trans(P)](1,6,0:0:0:21:...:2,) =(0,6,0:0:0: 2] :...:2])

see M. Mohnen: A Compiler Corectness Proof for the Static Link
Technique by means of Evolving Algebras, Fundamenta Informaticae
29(3), 1997, pp. 257-303 O

m Compiler Construction Summer semester 2008 4

© Boolean Expressions with Sequential Semantics

Rm Compiler Construction Summer semester 2

Boolean Expressions with Sequential Semantics

So far: Boolean expressions with strict semantics

b L=1
LOb=1

Now: Boolean expressions with sequential semantics

false A L = false
true V L = true

Ap—
LOb=1

Idea:
@ employ jump rather than Boolean instructions (“jumping code”)
@ equip bt and ct with two additional address parameters:

ay: target address for true
ay: target address for false

Rm Compiler Construction Summer semester 2008 6

Jumping Code for Boolean Expressions

Definition 20.1 (Jumping code for Boolean expressions)

The mapping
sbt : BEzp x Tab x PC? x Lev —-» AM
is defined by

sbt(A; < Ag,st,a,as,ap,l) = at(Ai,st, a,l)
at(Asg,st, d’,l)
a” :LT;
a” 4+ 1: JFALSE(ay) ;
a’ 42 : IMP(ay) ;

sbt(not B,st,a,as,ar,l) = sbt(B,st,a,ar,al)
sbt(B; and Bo,st,a,a,af,l) = sbt(Bi,st,a,d,ar,l)
sbt(Ba,st, d’, a,ar,1)

sbt(B1 or Ba,st,a,at,af,l) = sbt(Bi,st, a,a:,ad,l)
sbt(Ba,st, d’, a,ar,1)

m Compiler Construction Summer semester 2008

Jumping Code for Commands

Definition 20.2 (Jumping code for commands)

The mapping
sct : Omd x Tab x PC x Lev --» AM
is defined by

sct(if B then C else Cy,st,a,l) := sbt(B,st,a,as,ar,()
sct(Cy, st, ag, 1)
af—1:JIMP(d);
sct(Cy,st,ar,l)
a :
sct(while B do C,st,a,l) := sbt(B,st, a,a, ar,1)
sct(C, st, ag, 1)
af — 1:JMP(a);

af:

(remaining cases analogously)

m Compiler Construction Summer semester 2008

Example: Jumping Code

Translation of while not (x < 1) and (x < y) do C:
Strict: Sequential:
1: LOAD(x); 1: LOAD(x);
LIT(1); LIT(1);
LT; LT;
NOT; JFALSE(6) ;
LOAD(x) ; JMP(a) ;
LOAD(y) ; 6 : LOAD(x);
LIPS LOAD(y) ;
AND; LT;
JFALSE(a) ; JFALSE(a) ;
ct(C,...) JMP(11);
JMP(1); 11 : sct(C, .. .)
a:... JMP (1) ;
a:...
Ifx=0:
9 instructions executed If x = 0:
5 instructions executed
—> generally: longer code, but shorter executions

Compiler Construction Summer semester 2008

© Adding Procedure Parameters

Rm Compiler Construction Summer semester 2

Extended Syntax of EPL

Definition 20.4 (Extended syntax of EPL)

The extended syntax of EPL is defined as follows:

Cmd: C:u=1:=A]|C1;Cy|if B then C) else (|
while Bdo C | I(Ay, ..., A Vi, ...,V)

actual value and ref. parameters

Dcl : D ::= Do Dy Dp
Do i=¢|const [} :=2z1,...,I, := z,;
Dy :=c¢|var I, ... ,I,;
Dp :=¢|

proc I(Iy,...,I,; var Ji,...,J;);K; proc...

formal value and ref. parameters

where Iy, Ji, Vi, € Ide

m Compiler Construction Summer semester 2008

Extended Semantics of EPL

Procedure declaration:

o all formal parameters different and disjoint from local
variables

@ use in procedure body like variables
(read/write access)

Procedure call:

o formal value parameters implemented like local
variables (new memory locations)
— assignments have no effect on calling site
@ only variables as formal reference parameters
(all different)
o implemented by pointer to corresponding actual
address
— assignments have effect on calling site (return values)

Rm Compiler Construction Summer semester 2008 12

The Extended Abstract Machine AM

Definition 20.5 (Extended abstract machine for EPL)

The extended abstract machine for EPL (AM) is defined by the state space
S:=PC x SP x FP x IR x RS

with

the program counter PC := N,

the stack pointer SP := N,

the frame pointer FP := N,

the index register IR := N, and

the runtime stack RS := (N — Z).

e 6 6 ¢ ¢

Characteristics:

Closer to “real” machine (less powerful instructions)

Runtime stack RS combines data stack DS and procedure stack PS
Absolute addressing of stack entries

Stack pointer SP points to top of stack

Frame pointer FP points to (dynamic link field of) topmost frame
Index register IR implements dereferencing of static links

m Compiler Construction Summer semester 2008

©

¢ © ¢ ¢ ¢

Structure of Frames

par;

sl

ra
FP — | dl

locy
SP — [lock

| increasing stack addresses

actual value and reference parameters

static link to declaration environment
return address
dynamic link to previous frame

local variables

Successive construction:
@ by calling procedure:
@ Computation of actual parameters par;

@ Computation of static link s/ using index register IR
@ Jump to called procedure, setting return address ra

@ by called procedure (“entry code”):

© Store pointer to previous frame as dynamic link dl
@ Allocate memory for local variables loc;

Compiler Construction Summer semester 2008 14

New AM Instructions

Definition 20.6 (New AM instructions)

The procedure instructions (CALL(ca, dif , loc), RET) and transfer instructions
(LOAD(dif , off), STORE(dif , off)) are replaced by the following instructions
with the respective semantics [O] : S --» S:

[CALL ca

[RET
[PUSH =
[PUSH FP

a,sp, fp,ir,p) :

a, sp, fp, ir, p
a, Sp, fp, ir, p
a, sp, Jp, i, p

ca,sp+ 1, fp,ir,plsp +1+— a+1])
p(sp),sp —k —1,fp, ir,p)
S it Lo bl 1 2

(
o
(a+1,sp+1,fp,ir,p[sp + 1+ fp])
(a+1,sp+1,fp,ir,plsp + 1~ p(fp)])
Ea—|—1 ,sp+ 1, fp, ir, p[sp—|—1 — p(ir — 2)])
(

(

(

(

(

(

()

s

[PUSH <FP>](a, sp, fp, ir,p)
[PUSH <IR-2>](a, sp, fp,ir,p) :=
[POP FP](a, sp, fp,ir,p) := (a+ 1, sp — 1, p(sp), ir,p)

() = (a+1,sp— 1, fp, ir, pln > p(sp)])

()= (a+1, sp+nfp,w"p)

() a+1,sp,sp,ir,p)

() = (a+ 1, fp, fp, ir, p)

() == (a+1,sp, fp,p(n),p)

[POP <n>](a, sp, fp, ir,p
[ADD SP,n](a, sp, fp, ir,p
[LOAD FP,SP](a, sp, fp, ir,p
[LOAD SP,FP](a, sp, fp,ir,p
[LOAD IR,<n>](a, sp, fp,ir,p

Summer semester 2008 15

Compiler Construction

Processing Input and Output

For P = in/out Iy, ... ,I,; K. € Pgm:

<1
input |1 | I/O variables as value parameters
(Zla 7271) = Rn
0] sl
0] ra
SP,FP — |0] dl

output
—

21,5 %n)

Rm Compiler Construction Summer semester 2008 16

@ Translation of Procedure Parameters

Rm Compiler Construction Summer semester 2

Translation of Extended EPL into AM Programs

Goal: modification of translation mapping
trans : Pgm --+» AM

taking into account
@ Procedures with parameters
o Modified AM instruction set

Rm Compiler Construction Summer semester 2008 18

Modifying the Symbol Table

Tab := {st | st : Ide --» ({const} x Z)
U ({var} x Lev x Off)
% local variables and value parameters
U ({proc} x PC x Lev x Size)}
U ({rpar} x Lev x Off)}

% reference parameters

Position of FP = negative offsets possible — Off :=7Z
Initial symbol table for P = in/out I, ... ,I,; K. € Pgm:
st1yo(;) := (var,0,j —n — 3) for every j € [n]

update function: as before
(processing of procedure parameters by dt)

Rm Compiler Construction Summer semester 2008 19

Translation of Programs

Translation of in/out I, ...,1,;D C.:
@ Create (initial part of) MAIN frame for executing C

© Stop program execution after return

Definition 20.7 (Translation of programs)

The mapping
trans : Pgm --» AM

is defined by

trans(in/out Iy, ..., [,; K.) :=1: PUSH FP; % create static link
2: CALL a; % create return address
3:JMP 0; % STOP
kt(K7StI/07a717 \ 0 ,)

no. of parameters

m Compiler Construction Summer semester 2008 20

Translation of Blocks

Definition 20.8 (Translation of blocks)

The mapping
kt : Block x Tab x PC x Lev x N --» AM
is defined by

kt(D C,st,a,l,r)

= dt(D,update(D,st,),1)
a : PUSH FP; % entry code:
a-+1:L0OAD FP,SP; % create dynamic link and
a+2:ADD SP,size(D C); % allocate local variables
ct(C,update(D, st, 1), a + 3,1)

a' : LOAD SP,FP; % exit code:
a' +1:POP FP; % reset frame pointer and
o +2:RET r+1; % jump back

m Compiler Construction Summer semester 2008

Translation of Declarations

Definition 20.9 (Translation of declarations)

The mapping
dt : Del x Tab x Lev --» AM
is defined by
dt(Do Dy Dp,st,l) = dt(Dp,st,l)
dt(e,st,l) = ¢
dt(proc I(I1, ..., I ;var Ji, ... ,Jy) ; K;Dp,st,l)
= kt(K,st';ar,l+1,p+q)
dt(D’%, st, 1)

where st(I) = (proc,ay,...,...)
and st’ :=st[[; — (var,l+1,—p—q—2),

I, (var,l +1,—q — 3),
Jl = (rparvl+ 1) —q— 2))

Jq - (rpar,l+1,-3)]

m Compiler Construction Summer semester 2008

Translation of Commands

The mapping
ct: Cmd x Tab x PC x Lev --+ AM

needs to be adapted only for
@ assignments and
@ procedure calls;

ct is not modified otherwise.

Rm Compiler Construction Summer semester 2008 23

Translation of Assignments

Definition 20.10 (Translation of assignments)

at(A,st, a,l) if st(I) = (var, lev, off)
POP <FP+off>; and | = lev

at(A,st, a,l) if st(I) = (var, lev, off)
LOAD IR,<FP-2>; andl —lev=k+1>0

LOAD IR,<IR-2>;
k times

LOAD IR,<IR-2>;
POP <IR+off>;

ct(I := A,st,a,l) == ¢ at(A4,st, a,l) if st(I) = (rpar, lev, off)
LOAD IR,<FP+off>; and [= lev
POP <IR>;
at(A,st, a,l) if st(I) = (rpar, lev, off)
LOAD IR,<FP-2>; andl —lev=k+1>0

LOAD IR,<IR-2>;
o k times
LOAD IR,<IR-2>;
LOAD IR,<IR+off>;
POP <IR>;

m Compiler Construction Summer semester 2008 24

Translation of Procedure Calls

Definition 20.11 (Translation of procedure calls)

ct(I (A1, ..., Ap; Vi, ..., Vy),st,a,l) =
at(Aq,st,a,l)...at(Ap,st,a,l) ref(Vy,1) .. .ref(V;,1) slink(l) CALL ca;
where
st(I) = (proc, ca, lev, loc)

PUSH FP+off ; if st(V) = (var, lev, off) and | = lev
LOAD IR,<FP-2>; if st() = (var, lev, off)
LOAD IR,<IR-2>; % andl—lev=k+1>0
LOAD IR,<IR-2>;}
PUSH IR+off;

ref(V,1) := oF .
PUSH <FP+off>; if st(V) = (rpar, lev, off) and | = lev
LOAD IR,<FP-2>; if st() = (rpar, lev, off)
LOAD IR,<IR-2>; and l—lev=k+1>0
LOAD IR,<IR—2>;}
PUSH <IR+off>;
PUSH FP; if st(I) = (proc, ca, lev, loc) and | = lev
LOAD IR,<FP-2>; if st(I) = gproc, ca, lev, loc)

slink(l) := < LOAD IR,<IR‘2>;} andl —lev=k+1>0
LOAD IR,<IR-2>;
PUSH IR;

m Compiler Construction Summer semester 2008

Translation of Arithmetic Expressions

Definition 20.12 (Translation of arithmetic expressions)

In at : AExp x Tab x PC x Lev --» AM, only the handling of identifiers need
to be adapted:

PUSH z; if st(I) = (const, z)
PUSH <FP+off>; if st(I) = (var, lev, off) and | = lev
LOAD IR,<FP-2>; if st(I) = (var, lev, off)

LOAD IR,<IR-2>; andl—lev=k+1>0
k

LOAD IR,<IR-2>;
PUSH <IR+off>;
at(I,st,a,l) =

LOAD IR,<FP+off>; if st(I) = (rpar, lev, off) and | = lev
PUSH <IR>;

LOAD IR,<FP-2>; if st(I) = (rpar, lev, off)
LOAD IR,<IR-2>; and [—lev=k+1>0
k

LOAD IR,<IR-2>;
LOAD IR,<IR+off>;
PUSH <IR>;

m Compiler Construction Summer semester 2008 26

	Repetition: Translation of EPL into AM Programs
	Boolean Expressions with Sequential Semantics
	Adding Procedure Parameters
	Translation of Procedure Parameters

