
Compiler Construction

Lecture 20: Code Generation V
(Jumping Code & Procedure Parameters)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Outline

1 Repetition: Translation of EPL into AM Programs

2 Boolean Expressions with Sequential Semantics

3 Adding Procedure Parameters

4 Translation of Procedure Parameters

Compiler Construction Summer semester 2008 2

Translation of EPL into AM Programs

Translation mapping trans : Pgm 99K AM defined using

symbol table:
Tab := {st |st : Ide 99K ({const} × Z)

∪ ({var} × Lev × Off)
∪ ({proc} × PC × Lev × Size)}

update : Dcl × Tab × Lev 99K Tab

for extending the symbol table by declarations

kt : Block × Tab × PC × Lev 99K AM for translating blocks

dt : Dcl × Tab × Lev 99K AM

for translating the bodies of procedure declarations

ct : Cmd × Tab × PC × Lev 99K AM

for translating commands

bt : BExp ×Tab × PC × Lev 99K AM

for translating Boolean expressions

at : AExp × Tab × PC × Lev 99K AM

for translating arithmetic expressions

Compiler Construction Summer semester 2008 3

Correctness of the Translation

Theorem (Correctness of translation)

For every P ∈ Pgm, n ∈ N, and (z1, . . . , zn), (z′1, . . . , z
′

n) ∈ Z
n:

MJP K(z1, . . . , zn) = (z′1, . . . , z
′

n)
⇐⇒ Jtrans(P)K(1, ε, 0 : 0 : 0 : z1 : . . . : zn) = (0, ε, 0 : 0 : 0 : z′1 : . . . : z′n)

Proof.

see M. Mohnen: A Compiler Corectness Proof for the Static Link

Technique by means of Evolving Algebras, Fundamenta Informaticae
29(3), 1997, pp. 257–303

Compiler Construction Summer semester 2008 4

Outline

1 Repetition: Translation of EPL into AM Programs

2 Boolean Expressions with Sequential Semantics

3 Adding Procedure Parameters

4 Translation of Procedure Parameters

Compiler Construction Summer semester 2008 5

Boolean Expressions with Sequential Semantics

So far: Boolean expressions with strict semantics

b1
∧
∨ ⊥ = ⊥

⊥ ∧
∨ b2 = ⊥

Now: Boolean expressions with sequential semantics

false ∧ ⊥ = false

true ∨ ⊥ = true

⊥ ∧
∨ b = ⊥

Idea:

employ jump rather than Boolean instructions (“jumping code”)

equip bt and ct with two additional address parameters:

at: target address for true

af : target address for false

Compiler Construction Summer semester 2008 6

Jumping Code for Boolean Expressions

Definition 20.1 (Jumping code for Boolean expressions)

The mapping
sbt : BExp × Tab × PC 3 × Lev 99K AM

is defined by

sbt(A1 < A2, st, a, at, af , l) := at(A1, st, a, l)
at(A2, st, a

′, l)
a′′ : LT;
a′′ + 1 : JFALSE(af);
a′′ + 2 : JMP(at);

sbt(not B, st, a, at, af , l) := sbt(B, st, a, af , at, l)

sbt(B1 and B2, st, a, at, af , l) := sbt(B1, st, a, a′, af , l)
sbt(B2, st, a

′, at, af , l)

sbt(B1 or B2, st, a, at, af , l) := sbt(B1, st, a, at, a
′, l)

sbt(B2, st, a
′, at, af , l)

Compiler Construction Summer semester 2008 7

Jumping Code for Commands

Definition 20.2 (Jumping code for commands)

The mapping
sct : Cmd × Tab × PC × Lev 99K AM

is defined by

sct(if B then C1 else C2, st, a, l) := sbt(B, st, a, at, af , l)
sct(C1, st, at, l)
af − 1 : JMP(a′);
sct(C2, st, af , l)
a′ :

sct(while B do C, st, a, l) := sbt(B, st, a, at, af , l)
sct(C, st, at, l)
af − 1 : JMP(a);
af :

(remaining cases analogously)

Compiler Construction Summer semester 2008 8

Example: Jumping Code

Example 20.3

Translation of while not (x < 1) and (x < y) do C:

Strict:

1 : LOAD(x);
LIT(1);
LT;
NOT;
LOAD(x);
LOAD(y);
LT;
AND;
JFALSE(a);
ct(C, . . .)
JMP(1);

a : . . .

If x = 0:
9 instructions executed

Sequential:

1 : LOAD(x);
LIT(1);
LT;
JFALSE(6);
JMP(a);

6 : LOAD(x);
LOAD(y);
LT;
JFALSE(a);
JMP(11);

11 : sct(C, . . .)
JMP(1);

a : . . .

If x = 0:
5 instructions executed

=⇒ generally: longer code, but shorter executions

Compiler Construction Summer semester 2008 9

Outline

1 Repetition: Translation of EPL into AM Programs

2 Boolean Expressions with Sequential Semantics

3 Adding Procedure Parameters

4 Translation of Procedure Parameters

Compiler Construction Summer semester 2008 10

Extended Syntax of EPL

Definition 20.4 (Extended syntax of EPL)

The extended syntax of EPL is defined as follows:

...
Cmd : C ::= I := A | C1;C2 | if B then C1 else C2 |

while B do C | I(A1, . . . ,Ap;V1, . . . ,Vq
︸ ︷︷ ︸

actual value and ref. parameters

)

Dcl : D ::= DC DV DP

DC ::= ε | const I1 := z1, . . . ,In := zn;
DV ::= ε | var I1, . . . ,In;
DP ::= ε |

proc I(I1, . . . ,Ip; var J1, . . . ,Jq
︸ ︷︷ ︸

formal value and ref. parameters

);K; proc . . .

...

where Ik, Jk, Vk ∈ Ide

Compiler Construction Summer semester 2008 11

Extended Semantics of EPL

Procedure declaration:

all formal parameters different and disjoint from local
variables
use in procedure body like variables
(read/write access)

Procedure call:

formal value parameters implemented like local
variables (new memory locations)

=⇒ assignments have no effect on calling site
only variables as formal reference parameters
(all different)
implemented by pointer to corresponding actual
address

=⇒ assignments have effect on calling site (return values)

Compiler Construction Summer semester 2008 12

The Extended Abstract Machine AM

Definition 20.5 (Extended abstract machine for EPL)

The extended abstract machine for EPL (AM) is defined by the state space
S := PC × SP × FP × IR × RS

with

the program counter PC := N,

the stack pointer SP := N,

the frame pointer FP := N,

the index register IR := N, and

the runtime stack RS := (N → Z).

Characteristics:
Closer to “real” machine (less powerful instructions)

Runtime stack RS combines data stack DS and procedure stack PS

Absolute addressing of stack entries

Stack pointer SP points to top of stack

Frame pointer FP points to (dynamic link field of) topmost frame

Index register IR implements dereferencing of static links

Compiler Construction Summer semester 2008 13

Structure of Frames

... ↓ increasing stack addresses
par

1

... actual value and reference parameters
par r
sl static link to declaration environment
ra return address

FP → dl dynamic link to previous frame
loc1

... local variables
SP → lock

... Successive construction:
by calling procedure:

1 Computation of actual parameters par i

2 Computation of static link sl using index register IR
3 Jump to called procedure, setting return address ra

by called procedure (“entry code”):

4 Store pointer to previous frame as dynamic link dl
5 Allocate memory for local variables locj

Compiler Construction Summer semester 2008 14

New AM Instructions

Definition 20.6 (New AM instructions)

The procedure instructions (CALL(ca,dif ,loc), RET) and transfer instructions
(LOAD(dif ,off), STORE(dif ,off)) are replaced by the following instructions
with the respective semantics JOK : S 99K S:

JCALL caK(a, sp, fp, ir , p) := (ca, sp + 1, fp, ir , p[sp + 1 7→ a + 1])
JRET kK(a, sp, fp, ir , p) := (p(sp), sp − k − 1, fp, ir , p)

JPUSH zK(a, sp, fp, ir , p) := (a + 1, sp + 1, fp, ir , p[sp + 1 7→ z])
JPUSH FPK(a, sp, fp, ir , p) := (a + 1, sp + 1, fp, ir , p[sp + 1 7→ fp])

JPUSH <FP>K(a, sp, fp, ir , p) := (a + 1, sp + 1, fp, ir , p[sp + 1 7→ p(fp)])
JPUSH <IR-2>K(a, sp, fp, ir , p) := (a + 1, sp + 1, fp, ir , p[sp + 1 7→ p(ir − 2)])

JPOP FPK(a, sp, fp, ir , p) := (a + 1, sp − 1, p(sp), ir , p)
JPOP <n>K(a, sp, fp, ir , p) := (a + 1, sp − 1, fp, ir , p[n 7→ p(sp)])

JADD SP,nK(a, sp, fp, ir , p) := (a + 1, sp + n, fp, ir , p)
JLOAD FP,SPK(a, sp, fp, ir , p) := (a + 1, sp, sp, ir , p)
JLOAD SP,FPK(a, sp, fp, ir , p) := (a + 1, fp, fp, ir , p)

JLOAD IR,<n>K(a, sp, fp, ir , p) := (a + 1, sp, fp, p(n), p)

Compiler Construction Summer semester 2008 15

Processing Input and Output

For P = in/out I1, . . . ,In;K. ∈ Pgm:

(z1, . . . , zn)
input
7→

z1
... I/O variables as value parameters

zn

0 sl
0 ra

SP ,FP → 0 dl

output
7→ (z1, . . . , zn)

Compiler Construction Summer semester 2008 16

Outline

1 Repetition: Translation of EPL into AM Programs

2 Boolean Expressions with Sequential Semantics

3 Adding Procedure Parameters

4 Translation of Procedure Parameters

Compiler Construction Summer semester 2008 17

Translation of Extended EPL into AM Programs

Goal: modification of translation mapping

trans : Pgm 99K AM

taking into account

Procedures with parameters

Modified AM instruction set

Compiler Construction Summer semester 2008 18

Modifying the Symbol Table

Tab := {st | st : Ide 99K ({const} × Z)
∪ ({var} × Lev × Off)

% local variables and value parameters
∪ ({proc} × PC × Lev × Size)}
∪ ({rpar} × Lev × Off)}

% reference parameters

Position of FP =⇒ negative offsets possible =⇒ Off := Z

Initial symbol table for P = in/out I1, . . . ,In;K. ∈ Pgm:

stI/O(Ij) := (var, 0, j − n − 3) for every j ∈ [n]

update function: as before
(processing of procedure parameters by dt)

Compiler Construction Summer semester 2008 19

Translation of Programs

Translation of in/out I1, . . . ,In;D C.:

1 Create (initial part of) MAIN frame for executing C

2 Stop program execution after return

Definition 20.7 (Translation of programs)

The mapping
trans : Pgm 99K AM

is defined by

trans(in/out I1, . . . ,In;K.) := 1 : PUSH FP; % create static link
2 : CALL a; % create return address
3 : JMP 0; % STOP
kt(K, stI/O, a, 1, 0

︸︷︷︸

no. of parameters

)

Compiler Construction Summer semester 2008 20

Translation of Blocks

Definition 20.8 (Translation of blocks)

The mapping

kt : Block × Tab × PC × Lev × N 99K AM

is defined by

kt(D C, st, a, l, r)

:= dt(D,update(D, st, l), l)
a : PUSH FP; % entry code:

a + 1 : LOAD FP,SP; % create dynamic link and
a + 2 : ADD SP,size(D C); % allocate local variables
ct(C,update(D, st, l), a + 3, l)

a′ : LOAD SP,FP; % exit code:
a′ + 1 : POP FP; % reset frame pointer and
a′ + 2 : RET r + 1; % jump back

Compiler Construction Summer semester 2008 21

Translation of Declarations

Definition 20.9 (Translation of declarations)

The mapping
dt : Dcl × Tab × Lev 99K AM

is defined by

dt(DC DV DP , st, l) := dt(DP , st, l)

dt(ε, st, l) := ε

dt(proc I(I1, . . .,Ip;var J1, . . .,Jq);K;D′

P , st, l)

:= kt(K, st′, aI , l + 1, p + q)
dt(D′

P , st, l)

where st(I) = (proc, aI , . . . , . . .)
and st′ := st[I1 7→ (var, l + 1,−p− q − 2),

...
Ip 7→ (var, l + 1,−q − 3),
J1 7→ (rpar, l + 1,−q − 2),

...
Jq 7→ (rpar, l + 1,−3)]

Compiler Construction Summer semester 2008 22

Translation of Commands

The mapping

ct : Cmd × Tab × PC × Lev 99K AM

needs to be adapted only for

assignments and

procedure calls;

ct is not modified otherwise.

Compiler Construction Summer semester 2008 23

Translation of Assignments

Definition 20.10 (Translation of assignments)

ct(I := A, st, a, l) :=







at(A, st, a, l)
POP <FP+off >;

if st(I) = (var, lev , off)
and l = lev

at(A, st, a, l)
LOAD IR,<FP-2>;
LOAD IR,<IR-2>;
. . .
LOAD IR,<IR-2>;

}

k times

POP <IR+off >;

if st(I) = (var, lev , off)
and l − lev = k + 1 > 0

at(A, st, a, l)
LOAD IR,<FP+off >;
POP <IR>;

if st(I) = (rpar, lev , off)
and l = lev

at(A, st, a, l)
LOAD IR,<FP-2>;
LOAD IR,<IR-2>;
. . .
LOAD IR,<IR-2>;

}

k times

LOAD IR,<IR+off >;
POP <IR>;

if st(I) = (rpar, lev , off)
and l − lev = k + 1 > 0

Compiler Construction Summer semester 2008 24

Translation of Procedure Calls

Definition 20.11 (Translation of procedure calls)

ct(I(A1, . . . ,Ap;V1, . . . ,Vq), st, a, l) :=
at(A1, st, a, l) . . . at(Ap, st, a, l) ref(V1, l) . . . ref(Vq, l) slink(l) CALL ca;

where
st(I) = (proc, ca , lev , loc)

ref(V, l) :=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

PUSH FP+off ; if st(V) = (var, lev , off) and l = lev

LOAD IR,<FP-2>;
LOAD IR,<IR-2>;

. . .
LOAD IR,<IR-2>;

ff

k

PUSH IR+off ;

if st(V) = (var, lev , off)
and l − lev = k + 1 > 0

PUSH <FP+off >; if st(V) = (rpar, lev , off) and l = lev

LOAD IR,<FP-2>;
LOAD IR,<IR-2>;

. . .
LOAD IR,<IR-2>;

ff

k

PUSH <IR+off >;

if st(V) = (rpar, lev , off)
and l − lev = k + 1 > 0

slink(l) :=

8

>

>

>

<

>

>

>

:

PUSH FP; if st(I) = (proc, ca , lev , loc) and l = lev

LOAD IR,<FP-2>;
LOAD IR,<IR-2>;

. . .
LOAD IR,<IR-2>;

ff

k

PUSH IR;

if st(I) = (proc, ca , lev , loc)
and l − lev = k + 1 > 0

Compiler Construction Summer semester 2008 25

Translation of Arithmetic Expressions

Definition 20.12 (Translation of arithmetic expressions)

In at : AExp × Tab × PC × Lev 99K AM , only the handling of identifiers need
to be adapted:

at(I, st, a, l) :=







PUSH z; if st(I) = (const, z)

PUSH <FP+off >; if st(I) = (var, lev , off) and l = lev

LOAD IR,<FP-2>;
LOAD IR,<IR-2>;

. . .
LOAD IR,<IR-2>;

}

k

PUSH <IR+off >;

if st(I) = (var, lev , off)
and l − lev = k + 1 > 0

LOAD IR,<FP+off >;
PUSH <IR>;

if st(I) = (rpar, lev , off) and l = lev

LOAD IR,<FP-2>;
LOAD IR,<IR-2>;

. . .
LOAD IR,<IR-2>;

}

k

LOAD IR,<IR+off >;
PUSH <IR>;

if st(I) = (rpar, lev , off)
and l − lev = k + 1 > 0

Compiler Construction Summer semester 2008 26

	Repetition: Translation of EPL into AM Programs
	Boolean Expressions with Sequential Semantics
	Adding Procedure Parameters
	Translation of Procedure Parameters

