
Compiler Construction

Lecture 21: Code Generation VI
(Translation Example & Static Data Structures)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Outline

1 Correction: update Function

2 Repetition: Procedures with Parameters

3 A Translation Example

4 Alternative Implementation of Static Links

5 Intermediate Code for Data Structures

6 Static Data Structures

7 Modifying the Abstract Machine

8 Translation of EPL with Static Data Structures into AM Programs

Compiler Construction Summer semester 2008 2

Correction: update Function

The symbol table is maintained by the function update(D, st, a, l) which
specifies the update of symbol table st according to declaration D (with
respect to next free code address a and current level l):

Definition (update function)

update : Dcl × Tab × PC × Lev 99K Tab

is defined by

update(DC DV DP , st, a, l)
:= update(DP , update(DV , update(DC , st, a, l), a, l), a, l)

if all identifiers in DC DV DP different
update(ε, st, a, l)

:= st
update(const I1 := z1, . . . ,In := zn;, st, a, l)

:= st[I1 7→ (const, z1), . . . , In 7→ (const, zn)]
update(var I1, . . .,In;, st, a, l)

:= st[I1 7→ (var, l, 1), . . . , In 7→ (var, l, n)]
update(proc I1;K1; . . . ;In;Kn;, st, a, l)

:= st[I1 7→ (proc, a1, l, size(K1)), . . . , In 7→ (proc, an, l, size(Kn))]
with “fresh” addresses a1, . . . , an

where size(DC var I1, . . .,In; DP C) := n
Compiler Construction Summer semester 2008 3

Correction: update Function

The symbol table is maintained by the function update(D, st, l) which
specifies the update of symbol table st according to declaration D (with
respect to current level l):

Definition (update function)

update : Dcl × Tab × Lev 99K Tab

is defined by

update(DC DV DP , st, l)
:= update(DP , update(DV , update(DC , st, l), l), l)

if all identifiers in DC DV DP different
update(ε, st, l)

:= st
update(const I1 := z1, . . . ,In := zn;, st, l)

:= st[I1 7→ (const, z1), . . . , In 7→ (const, zn)]
update(var I1, . . .,In;, st, l)

:= st[I1 7→ (var, l, 1), . . . , In 7→ (var, l, n)]
update(proc I1;K1; . . . ;In;Kn;, st, l)

:= st[I1 7→ (proc, a1, l, size(K1)), . . . , In 7→ (proc, an, l, size(Kn))]
with “fresh” addresses a1, . . . , an

where size(DC var I1, . . .,In; DP C) := n
Compiler Construction Summer semester 2008 3

Outline

1 Correction: update Function

2 Repetition: Procedures with Parameters

3 A Translation Example

4 Alternative Implementation of Static Links

5 Intermediate Code for Data Structures

6 Static Data Structures

7 Modifying the Abstract Machine

8 Translation of EPL with Static Data Structures into AM Programs

Compiler Construction Summer semester 2008 4

Extended Syntax of EPL

Definition (Extended syntax of EPL)

The extended syntax of EPL is defined as follows:

...
Cmd : C ::= I := A | C1;C2 | if B then C1 else C2 |

while B do C | I(A1, . . . ,Ap;V1, . . . ,Vq
︸ ︷︷ ︸

actual value and ref. parameters

)

Dcl : D ::= DC DV DP

DC ::= ε | const I1 := z1, . . . ,In := zn;
DV ::= ε | var I1, . . . ,In;
DP ::= ε |

proc I(I1, . . . ,Ip; var J1, . . . ,Jq
︸ ︷︷ ︸

formal value and ref. parameters

);K; proc . . .

...

where Ik, Jk, Vk ∈ Ide

Compiler Construction Summer semester 2008 5

Definition (Extended abstract machine for EPL)

The extended abstract machine for EPL (AM) is defined by the state
space

S := PC × SP × FP × IR × RS

with

the program counter PC := N,
the stack pointer SP := N,
the frame pointer FP := N,
the index register IR := N, and
the runtime stack RS := (N → Z).

Characteristics:
Closer to “real” machine (less powerful instructions)
Runtime stack RS combines data stack DS and procedure stack
PS
Absolute addressing of stack entries
Stack pointer SP points to top of stack
Frame pointer FP points to (dynamic link field of) topmost frame
Index register IR implements dereferencing of static links

Compiler Construction Summer semester 2008 6

Structure of Frames

... ↓ increasing stack addresses
par

1

... actual value and reference parameters
par r
sl static link to declaration environment
ra return address

FP → dl dynamic link to previous frame
loc1

... local variables
SP → lock

... Successive construction:
by calling procedure:

1 Computation of actual parameters par i

2 Computation of static link sl using index register IR
3 Jump to called procedure, setting return address ra

by called procedure (“entry code”):

4 Store pointer to previous frame as dynamic link dl
5 Allocate memory for local variables locj

Compiler Construction Summer semester 2008 7

Translation of Extended EPL into AM Programs

Goal: modification of translation mapping

trans : Pgm 99K AM

taking into account

Procedures with parameters

Modified AM instruction set

Compiler Construction Summer semester 2008 8

Modifying the Symbol Table

Tab := {st | st : Ide 99K ({const} × Z)
∪ ({var} × Lev × Off)

% local variables and value parameters
∪ ({proc} × PC × Lev × Size)}
∪ ({rpar} × Lev × Off)}

% reference parameters

Position of FP =⇒ negative offsets possible =⇒ Off := Z

Initial symbol table for P = in/out I1, . . . ,In;K. ∈ Pgm:

stI/O(Ij) := (var, 0, j − n − 3) for every j ∈ [n]

update function: as before
(processing of procedure parameters by dt)

Compiler Construction Summer semester 2008 9

Outline

1 Correction: update Function

2 Repetition: Procedures with Parameters

3 A Translation Example

4 Alternative Implementation of Static Links

5 Intermediate Code for Data Structures

6 Static Data Structures

7 Modifying the Abstract Machine

8 Translation of EPL with Static Data Structures into AM Programs

Compiler Construction Summer semester 2008 10

Translation Example I

Example 21.1 (Factorial function)

P = in/out x,y;
proc F(x;var y);

if x>1 then
y:=y*x;
F(x-1;y);

)

CF

9

=

;
D

y:=1;
F(x,y)

o

C

9

>>>=

>>>;

K

Compiler Construction Summer semester 2008 11

Translation Example I

Example 21.1 (Factorial function)

P = in/out x,y;
proc F(x;var y);

if x>1 then
y:=y*x;
F(x-1;y);

)

CF

9

=

;
D

y:=1;
F(x,y)

o

C

9

>>>=

>>>;

K

trans(P) = 1 : PUSH FP; % static link
2 : CALL a0;
3 : JMP 0; % STOP
kt(K, stI/O, a0, 1, 0)

where
stI/O = [x 7→ (var, 0,−4), y 7→ (var, 0,−3)]

Compiler Construction Summer semester 2008 11

Translation Example I

Example 21.1 (Factorial function)

P = in/out x,y;
proc F(x;var y);

if x>1 then
y:=y*x;
F(x-1;y);

)

CF

9

=

;
D

y:=1;
F(x,y)

o

C

9

>>>=

>>>;

K

trans(P) = 1 : PUSH FP; % static link
2 : CALL a0;
3 : JMP 0; % STOP
kt(K, stI/O, a0, 1, 0)

where
stI/O = [x 7→ (var, 0,−4), y 7→ (var, 0,−3)]

kt(K, stI/O, a0, 1, 0)
= dt(D, st′, 1)

a0 : PUSH FP; % dynamic link
LOAD FP,SP; % set FP
ADD SP,size(K)

| {z }

0

; % local vars

ct(C, st′, a0 + 3, 1)
LOAD SP,FP;
POP FP; % reset FP
RET 1; % jump back

where st′

= update(D, stI/O, 1)
= stI/O[F 7→ (proc, a1, 1, 0)]

Compiler Construction Summer semester 2008 11

Translation Example I

Example 21.1 (Factorial function)

P = in/out x,y;
proc F(x;var y);

if x>1 then
y:=y*x;
F(x-1;y);

)

CF

9

=

;
D

y:=1;
F(x,y)

o

C

9

>>>=

>>>;

K

trans(P) = 1 : PUSH FP; % static link
2 : CALL a0;
3 : JMP 0; % STOP
kt(K, stI/O, a0, 1, 0)

where
stI/O = [x 7→ (var, 0,−4), y 7→ (var, 0,−3)]

kt(K, stI/O, a0, 1, 0)
= dt(D, st′, 1)

a0 : PUSH FP; % dynamic link
LOAD FP,SP; % set FP
ADD SP,size(K)

| {z }

0

; % local vars

ct(C, st′, a0 + 3, 1)
LOAD SP,FP;
POP FP; % reset FP
RET 1; % jump back

where st′

= update(D, stI/O, 1)
= stI/O[F 7→ (proc, a1, 1, 0)]

dt(D, st′, 1)
= kt(CF, st

′′, a1, 2, 2)
= a1 : PUSH FP; % dynamic link

LOAD FP,SP; % set FP
ADD SP,0; % local vars
ct(CF, st

′′, a1 + 3, 2)
LOAD SP,FP;
POP FP; % reset FP
RET 3; % jump back

where st′′ =
st′[x 7→ (var, 2,−4), y 7→ (rpar, 2,−3)]

Compiler Construction Summer semester 2008 11

Translation Example I

Example 21.1 (Factorial function)

P = in/out x,y;
proc F(x;var y);

if x>1 then
y:=y*x;
F(x-1;y);

)

CF

9

=

;
D

y:=1;
F(x,y)

o

C

9

>>>=

>>>;

K

trans(P) = 1 : PUSH FP; % static link
2 : CALL a0;
3 : JMP 0; % STOP
kt(K, stI/O, a0, 1, 0)

where
stI/O = [x 7→ (var, 0,−4), y 7→ (var, 0,−3)]

kt(K, stI/O, a0, 1, 0)
= dt(D, st′, 1)

a0 : PUSH FP; % dynamic link
LOAD FP,SP; % set FP
ADD SP,size(K)

| {z }

0

; % local vars

ct(C, st′, a0 + 3, 1)
LOAD SP,FP;
POP FP; % reset FP
RET 1; % jump back

where st′

= update(D, stI/O, 1)
= stI/O[F 7→ (proc, a1, 1, 0)]

dt(D, st′, 1)
= kt(CF, st

′′, a1, 2, 2)
= a1 : PUSH FP; % dynamic link

LOAD FP,SP; % set FP
ADD SP,0; % local vars
ct(CF, st

′′, a1 + 3, 2)
LOAD SP,FP;
POP FP; % reset FP
RET 3; % jump back

where st′′ =
st′[x 7→ (var, 2,−4), y 7→ (rpar, 2,−3)]

ct(CF, st
′′, a1 + 3, 2)

= bt(x>1, st′′, a1 + 3, 2)
JFALSE a2;
ct(y:=y*x; F(x-1;y), st′′, a′, 2)
a2 :

Compiler Construction Summer semester 2008 11

Translation Example I

Example 21.1 (Factorial function)

P = in/out x,y;
proc F(x;var y);

if x>1 then
y:=y*x;
F(x-1;y);

)

CF

9

=

;
D

y:=1;
F(x,y)

o

C

9

>>>=

>>>;

K

trans(P) = 1 : PUSH FP; % static link
2 : CALL a0;
3 : JMP 0; % STOP
kt(K, stI/O, a0, 1, 0)

where
stI/O = [x 7→ (var, 0,−4), y 7→ (var, 0,−3)]

kt(K, stI/O, a0, 1, 0)
= dt(D, st′, 1)

a0 : PUSH FP; % dynamic link
LOAD FP,SP; % set FP
ADD SP,size(K)

| {z }

0

; % local vars

ct(C, st′, a0 + 3, 1)
LOAD SP,FP;
POP FP; % reset FP
RET 1; % jump back

where st′

= update(D, stI/O, 1)
= stI/O[F 7→ (proc, a1, 1, 0)]

dt(D, st′, 1)
= kt(CF, st

′′, a1, 2, 2)
= a1 : PUSH FP; % dynamic link

LOAD FP,SP; % set FP
ADD SP,0; % local vars
ct(CF, st

′′, a1 + 3, 2)
LOAD SP,FP;
POP FP; % reset FP
RET 3; % jump back

where st′′ =
st′[x 7→ (var, 2,−4), y 7→ (rpar, 2,−3)]

ct(CF, st
′′, a1 + 3, 2)

= bt(x>1, st′′, a1 + 3, 2)
JFALSE a2;
ct(y:=y*x; F(x-1;y), st′′, a′, 2)
a2 :

bt(x>1, st′′, a1 + 3, 2)
= PUSH <FP-4>; % x

PUSH 1;
GT;

Compiler Construction Summer semester 2008 11

Translation Example II

Example 21.1 (Factorial function; continued)

ct(y:=y*x; F(x-1;y), st′′, a′, 2)
= ct(y:=y*x, st′′, a′, 2)

ct(F(x-1;y), st′′, a′′, 2)

Compiler Construction Summer semester 2008 12

Translation Example II

Example 21.1 (Factorial function; continued)

ct(y:=y*x; F(x-1;y), st′′, a′, 2)
= ct(y:=y*x, st′′, a′, 2)

ct(F(x-1;y), st′′, a′′, 2)
ct(y:=y*x, st′′, a′, 2)
= at(y*x, st′′, a′, 2)

LOAD IR,<FP-3>; % adr(y)
POP <IR>; % assign

Compiler Construction Summer semester 2008 12

Translation Example II

Example 21.1 (Factorial function; continued)

ct(y:=y*x; F(x-1;y), st′′, a′, 2)
= ct(y:=y*x, st′′, a′, 2)

ct(F(x-1;y), st′′, a′′, 2)
ct(y:=y*x, st′′, a′, 2)
= at(y*x, st′′, a′, 2)

LOAD IR,<FP-3>; % adr(y)
POP <IR>; % assign

at(y*x, st′′, a′, 2)
= LOAD IR,<FP-3>; % adr(y)

PUSH <IR>; % y
PUSH <FP-4>; % x
MULT;

Compiler Construction Summer semester 2008 12

Translation Example II

Example 21.1 (Factorial function; continued)

ct(y:=y*x; F(x-1;y), st′′, a′, 2)
= ct(y:=y*x, st′′, a′, 2)

ct(F(x-1;y), st′′, a′′, 2)
ct(y:=y*x, st′′, a′, 2)
= at(y*x, st′′, a′, 2)

LOAD IR,<FP-3>; % adr(y)
POP <IR>; % assign

at(y*x, st′′, a′, 2)
= LOAD IR,<FP-3>; % adr(y)

PUSH <IR>; % y
PUSH <FP-4>; % x
MULT;

ct(F(x-1;y), st′′, a′′, 2)
= at(x-1, st′′, a′′, 2)

PUSH <FP-3>; % adr(y)
LOAD IR,<FP-2>;
PUSH IR; % static link
CALL a1;

Compiler Construction Summer semester 2008 12

Translation Example II

Example 21.1 (Factorial function; continued)

ct(y:=y*x; F(x-1;y), st′′, a′, 2)
= ct(y:=y*x, st′′, a′, 2)

ct(F(x-1;y), st′′, a′′, 2)
ct(y:=y*x, st′′, a′, 2)
= at(y*x, st′′, a′, 2)

LOAD IR,<FP-3>; % adr(y)
POP <IR>; % assign

at(y*x, st′′, a′, 2)
= LOAD IR,<FP-3>; % adr(y)

PUSH <IR>; % y
PUSH <FP-4>; % x
MULT;

ct(F(x-1;y), st′′, a′′, 2)
= at(x-1, st′′, a′′, 2)

PUSH <FP-3>; % adr(y)
LOAD IR,<FP-2>;
PUSH IR; % static link
CALL a1;

at(x-1, st′′, a′′, 2)
= PUSH <FP-4>; % x

PUSH 1;
SUB;

Compiler Construction Summer semester 2008 12

Translation Example II

Example 21.1 (Factorial function; continued)

ct(y:=y*x; F(x-1;y), st′′, a′, 2)
= ct(y:=y*x, st′′, a′, 2)

ct(F(x-1;y), st′′, a′′, 2)
ct(y:=y*x, st′′, a′, 2)
= at(y*x, st′′, a′, 2)

LOAD IR,<FP-3>; % adr(y)
POP <IR>; % assign

at(y*x, st′′, a′, 2)
= LOAD IR,<FP-3>; % adr(y)

PUSH <IR>; % y
PUSH <FP-4>; % x
MULT;

ct(F(x-1;y), st′′, a′′, 2)
= at(x-1, st′′, a′′, 2)

PUSH <FP-3>; % adr(y)
LOAD IR,<FP-2>;
PUSH IR; % static link
CALL a1;

at(x-1, st′′, a′′, 2)
= PUSH <FP-4>; % x

PUSH 1;
SUB;

ct(C, st′, a0 + 3, 1)
= ct(y:=1, st′, a0 + 3, 1)

ct(F(x;y), st′, a′, 1)

Compiler Construction Summer semester 2008 12

Translation Example II

Example 21.1 (Factorial function; continued)

ct(y:=y*x; F(x-1;y), st′′, a′, 2)
= ct(y:=y*x, st′′, a′, 2)

ct(F(x-1;y), st′′, a′′, 2)
ct(y:=y*x, st′′, a′, 2)
= at(y*x, st′′, a′, 2)

LOAD IR,<FP-3>; % adr(y)
POP <IR>; % assign

at(y*x, st′′, a′, 2)
= LOAD IR,<FP-3>; % adr(y)

PUSH <IR>; % y
PUSH <FP-4>; % x
MULT;

ct(F(x-1;y), st′′, a′′, 2)
= at(x-1, st′′, a′′, 2)

PUSH <FP-3>; % adr(y)
LOAD IR,<FP-2>;
PUSH IR; % static link
CALL a1;

at(x-1, st′′, a′′, 2)
= PUSH <FP-4>; % x

PUSH 1;
SUB;

ct(C, st′, a0 + 3, 1)
= ct(y:=1, st′, a0 + 3, 1)

ct(F(x;y), st′, a′, 1)
ct(y:=1, st′, a0 + 3, 1)
= PUSH 1;

LOAD IR,<FP-2>; % adr(y)
POP <IR-3>; % assign

Compiler Construction Summer semester 2008 12

Translation Example II

Example 21.1 (Factorial function; continued)

ct(y:=y*x; F(x-1;y), st′′, a′, 2)
= ct(y:=y*x, st′′, a′, 2)

ct(F(x-1;y), st′′, a′′, 2)
ct(y:=y*x, st′′, a′, 2)
= at(y*x, st′′, a′, 2)

LOAD IR,<FP-3>; % adr(y)
POP <IR>; % assign

at(y*x, st′′, a′, 2)
= LOAD IR,<FP-3>; % adr(y)

PUSH <IR>; % y
PUSH <FP-4>; % x
MULT;

ct(F(x-1;y), st′′, a′′, 2)
= at(x-1, st′′, a′′, 2)

PUSH <FP-3>; % adr(y)
LOAD IR,<FP-2>;
PUSH IR; % static link
CALL a1;

at(x-1, st′′, a′′, 2)
= PUSH <FP-4>; % x

PUSH 1;
SUB;

ct(C, st′, a0 + 3, 1)
= ct(y:=1, st′, a0 + 3, 1)

ct(F(x;y), st′, a′, 1)
ct(y:=1, st′, a0 + 3, 1)
= PUSH 1;

LOAD IR,<FP-2>; % adr(y)
POP <IR-3>; % assign

ct(F(x;y), st′, a′, 1)
= at(x, st′, a′, 1)

LOAD IR,<FP-2>;
PUSH IR-3; % adr(y)
PUSH FP; % static link
CALL a1;

Compiler Construction Summer semester 2008 12

Translation Example II

Example 21.1 (Factorial function; continued)

ct(y:=y*x; F(x-1;y), st′′, a′, 2)
= ct(y:=y*x, st′′, a′, 2)

ct(F(x-1;y), st′′, a′′, 2)
ct(y:=y*x, st′′, a′, 2)
= at(y*x, st′′, a′, 2)

LOAD IR,<FP-3>; % adr(y)
POP <IR>; % assign

at(y*x, st′′, a′, 2)
= LOAD IR,<FP-3>; % adr(y)

PUSH <IR>; % y
PUSH <FP-4>; % x
MULT;

ct(F(x-1;y), st′′, a′′, 2)
= at(x-1, st′′, a′′, 2)

PUSH <FP-3>; % adr(y)
LOAD IR,<FP-2>;
PUSH IR; % static link
CALL a1;

at(x-1, st′′, a′′, 2)
= PUSH <FP-4>; % x

PUSH 1;
SUB;

ct(C, st′, a0 + 3, 1)
= ct(y:=1, st′, a0 + 3, 1)

ct(F(x;y), st′, a′, 1)
ct(y:=1, st′, a0 + 3, 1)
= PUSH 1;

LOAD IR,<FP-2>; % adr(y)
POP <IR-3>; % assign

ct(F(x;y), st′, a′, 1)
= at(x, st′, a′, 1)

LOAD IR,<FP-2>;
PUSH IR-3; % adr(y)
PUSH FP; % static link
CALL a1;

at(x, st′, a′, 1)
= LOAD IR,<FP-2>;

PUSH <IR-4>

Compiler Construction Summer semester 2008 12

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
37 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
37 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2
38 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
37 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2
38 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8
4 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
37 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2
38 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8
4 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
5 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
37 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2
38 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8
4 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
5 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
6 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
37 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2
38 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8
4 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
5 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
6 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
7 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
37 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2
38 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8
4 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
5 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
6 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
7 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
8 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
37 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2
38 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8
4 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
5 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
6 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
7 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
8 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1
9 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1 : 1

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
37 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2
38 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8
4 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
5 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
6 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
7 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
8 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1
9 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1 : 1

10 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 0

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
37 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2
38 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8
4 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
5 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
6 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
7 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
8 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1
9 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1 : 1

10 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 0
24 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
37 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2
38 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8
4 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
5 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
6 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
7 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
8 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1
9 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1 : 1

10 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 0
24 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
25 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
37 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2
38 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8
4 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
5 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
6 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
7 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
8 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1
9 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1 : 1

10 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 0
24 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
25 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
26 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
37 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2
38 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8
4 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
5 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
6 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
7 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
8 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1
9 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1 : 1

10 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 0
24 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
25 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
26 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
39 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
37 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2
38 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8
4 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
5 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
6 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
7 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
8 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1
9 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1 : 1

10 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 0
24 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
25 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
26 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
39 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
40 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
37 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2
38 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8
4 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
5 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
6 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
7 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
8 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1
9 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1 : 1

10 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 0
24 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
25 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
26 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
39 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
40 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
41 1 : 1 : 0 : 0 : 0 : 5 : 3

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
37 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2
38 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8
4 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
5 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
6 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
7 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
8 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1
9 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1 : 1

10 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 0
24 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
25 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
26 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
39 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
40 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
41 1 : 1 : 0 : 0 : 0 : 5 : 3
3 1 : 1 : 0 : 0 : 0

Compiler Construction Summer semester 2008 13

Translation Example III

Example 21.1 (Factorial function; continued)
Altogether:
1 : PUSH FP;
2 : CALL 27;
3 : JMP 0;
4 : PUSH FP; % entry F
5 : LOAD FP,SP;
6 : ADD SP,0;
7 : PUSH <FP-4>; % x>1
8 : PUSH 1;
9 : GT;

10 : JFALSE 24;
11 : LOAD IR,<FP-3>; % y:=y*x
12 : PUSH <IR>;
13 : PUSH <FP-4>;
14 : MULT;
15 : LOAD IR,<FP-3>;
16 : POP <IR>;
17 : PUSH <FP-4>; % F(x-1;y)
18 : PUSH 1;
19 : SUB;
20 : PUSH <FP-3>;
21 : LOAD IR,<FP-2>;
22 : PUSH IR;
23 : CALL 4;
24 : LOAD SP,FP; % exit F
25 : POP FP;
26 : RET 3;
27 : PUSH FP; % entry MAIN
28 : LOAD FP;SP;
29 : ADD SP,0;
30 : PUSH 1; % y:=1
31 : LOAD IR,<FP-2>;
32 : POP <IR-3>;
33 : LOAD IR,<FP-2>; % F(x;y)
34 : PUSH <IR-4>;
35 : LOAD IR,<FP-2>;
36 : PUSH IR-3;
37 : PUSH FP;
38 : CALL 4;
39 : LOAD SP,FP; % exit MAIN
40 : POP FP;
41 : RET 1;

For x = 1, y = 0 (bottom = p(1), top = SP , FP , IR):
PC RS

1 1 : 0 : 0 : 0 : 0
2 1 : 0 : 0 : 0 : 0 : 5

27 1 : 0 : 0 : 0 : 0 : 5 : 3
28 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
29 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
30 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5
31 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
32 1 : 0 : 0 : 0 : 0 : 5 : 3 : 5 : 1
33 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
34 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
35 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
36 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1
37 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2
38 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8
4 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
5 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
6 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
7 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
8 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1
9 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 1 : 1

10 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8 : 0
24 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
25 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39 : 8
26 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5 : 1 : 2 : 8 : 39
39 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
40 1 : 1 : 0 : 0 : 0 : 5 : 3 : 5
41 1 : 1 : 0 : 0 : 0 : 5 : 3
3 1 : 1 : 0 : 0 : 0
0 1 : 1 : 0 : 0 : 0

Compiler Construction Summer semester 2008 13

Outline

1 Correction: update Function

2 Repetition: Procedures with Parameters

3 A Translation Example

4 Alternative Implementation of Static Links

5 Intermediate Code for Data Structures

6 Static Data Structures

7 Modifying the Abstract Machine

8 Translation of EPL with Static Data Structures into AM Programs

Compiler Construction Summer semester 2008 14

Alternative Implementation of Static Links

Alternative implementation of static link dereferencing:
display technique

Compiler Construction Summer semester 2008 15

Alternative Implementation of Static Links

Alternative implementation of static link dereferencing:
display technique

Display directly returns frame pointer for given level difference

Compiler Construction Summer semester 2008 15

Alternative Implementation of Static Links

Alternative implementation of static link dereferencing:
display technique

Display directly returns frame pointer for given level difference

Usually organized as array

Compiler Construction Summer semester 2008 15

Alternative Implementation of Static Links

Alternative implementation of static link dereferencing:
display technique

Display directly returns frame pointer for given level difference

Usually organized as array

Possible implementations:

Local displays: called procedure maintains display array in its
frame

Global displays: frame pointer stored in global Static Link Array
(SLA)

Compiler Construction Summer semester 2008 15

Alternative Implementation of Static Links

Alternative implementation of static link dereferencing:
display technique

Display directly returns frame pointer for given level difference

Usually organized as array

Possible implementations:

Local displays: called procedure maintains display array in its
frame

Global displays: frame pointer stored in global Static Link Array
(SLA)

For details see Aho/Lam/Sethi/Ullman: Compilers: Principles,

Techniques, and Tools, 2nd ed., p. 449 ff)

Compiler Construction Summer semester 2008 15

Outline

1 Correction: update Function

2 Repetition: Procedures with Parameters

3 A Translation Example

4 Alternative Implementation of Static Links

5 Intermediate Code for Data Structures

6 Static Data Structures

7 Modifying the Abstract Machine

8 Translation of EPL with Static Data Structures into AM Programs

Compiler Construction Summer semester 2008 16

Translation of Data Structures

Source code: data structures = arrays, records, lists, trees, ...
=⇒ structured state space, variables with components

Compiler Construction Summer semester 2008 17

Translation of Data Structures

Source code: data structures = arrays, records, lists, trees, ...
=⇒ structured state space, variables with components

Abstract machine: linear memory structure, cells for storing atomic
data

Compiler Construction Summer semester 2008 17

Translation of Data Structures

Source code: data structures = arrays, records, lists, trees, ...
=⇒ structured state space, variables with components

Abstract machine: linear memory structure, cells for storing atomic
data

Translation: mapping of structured state space to linear memory
(= address computation)

static data structures: memory reqirements known at
compile time
dynamic data structures: memory reqirements
runtime dependent
=⇒ heap, pointers, garbage collection, ...

Compiler Construction Summer semester 2008 17

Translation of Data Structures

Source code: data structures = arrays, records, lists, trees, ...
=⇒ structured state space, variables with components

Abstract machine: linear memory structure, cells for storing atomic
data

Translation: mapping of structured state space to linear memory
(= address computation)

static data structures: memory reqirements known at
compile time
dynamic data structures: memory reqirements
runtime dependent
=⇒ heap, pointers, garbage collection, ...

First step:

static data structures (arrays and records)

inductive type definitions

no procedures (for simplification; “orthogonal” extension)

Compiler Construction Summer semester 2008 17

Outline

1 Correction: update Function

2 Repetition: Procedures with Parameters

3 A Translation Example

4 Alternative Implementation of Static Links

5 Intermediate Code for Data Structures

6 Static Data Structures

7 Modifying the Abstract Machine

8 Translation of EPL with Static Data Structures into AM Programs

Compiler Construction Summer semester 2008 18

Modified Syntax of EPL

Definition 21.2 (Modified syntax of EPL)

The modified syntax of EPL is defined as follows (where n ≥ 1):
Z : z (* z is an integer *)
B : b ::= true | false
R : r (* r is a real number *)
Con : c ::= z | b | r
Ide : I (* I is an identifier *)
Type : T ::= bool | int | real | I | array[z1..z2] of T |

record I1:T1;. . .;In:Tn end
Var : V ::= I | V [E] | V .I
Exp : E ::= c | V | E1 + E2 | E1 < E2 | E1 and E2 | . . .
Cmd : C ::= V :=E | C1;C2 |

if E then C1 else C2 | while E do C
Dcl : D ::= DC DT DV

DC ::= ε | const I1:=c1;. . .;In:=cn;
DT ::= ε | type I1:=T1;. . .;In:=Tn;
DV ::= ε | var I1:T1;. . .;In:Tn;

Pgm : P ::= D C

Compiler Construction Summer semester 2008 19

Static Semantics I

All identifiers in a declaration D have to be different.

Compiler Construction Summer semester 2008 20

Static Semantics I

All identifiers in a declaration D have to be different.

In T = record I1:T1;. . .;In:Tn end, all selectors Ij must be
different.

Compiler Construction Summer semester 2008 20

Static Semantics I

All identifiers in a declaration D have to be different.

In T = record I1:T1;. . .;In:Tn end, all selectors Ij must be
different.

In T = array[z1..z2] of T , z1 ≤ z2.

Compiler Construction Summer semester 2008 20

Static Semantics I

All identifiers in a declaration D have to be different.

In T = record I1:T1;. . .;In:Tn end, all selectors Ij must be
different.

In T = array[z1..z2] of T , z1 ≤ z2.

Type definitions must not be recursive:
if DT = type I1:=T1;. . .;In:=Tn; and identifier I occurs in Tj ,
then I ∈ {I1, . . . , Ij−1}.

Compiler Construction Summer semester 2008 20

Static Semantics I

All identifiers in a declaration D have to be different.

In T = record I1:T1;. . .;In:Tn end, all selectors Ij must be
different.

In T = array[z1..z2] of T , z1 ≤ z2.

Type definitions must not be recursive:
if DT = type I1:=T1;. . .;In:=Tn; and identifier I occurs in Tj ,
then I ∈ {I1, . . . , Ij−1}.

The type identifiers used in in a variable declaration DV must be
declared.

Compiler Construction Summer semester 2008 20

Static Semantics I

All identifiers in a declaration D have to be different.

In T = record I1:T1;. . .;In:Tn end, all selectors Ij must be
different.

In T = array[z1..z2] of T , z1 ≤ z2.

Type definitions must not be recursive:
if DT = type I1:=T1;. . .;In:=Tn; and identifier I occurs in Tj ,
then I ∈ {I1, . . . , Ij−1}.

The type identifiers used in in a variable declaration DV must be
declared.

Every identifier used in a command C must be declared in D (as a
constant or variable).

Compiler Construction Summer semester 2008 20

Static Semantics I

All identifiers in a declaration D have to be different.

In T = record I1:T1;. . .;In:Tn end, all selectors Ij must be
different.

In T = array[z1..z2] of T , z1 ≤ z2.

Type definitions must not be recursive:
if DT = type I1:=T1;. . .;In:=Tn; and identifier I occurs in Tj ,
then I ∈ {I1, . . . , Ij−1}.

The type identifiers used in in a variable declaration DV must be
declared.

Every identifier used in a command C must be declared in D (as a
constant or variable).

Variables in expressions and assignments have a base type
(bool/int/real; possibly via type identifiers).

Compiler Construction Summer semester 2008 20

Static Semantics II

Array indices must have type int.

Compiler Construction Summer semester 2008 21

Static Semantics II

Array indices must have type int.

Execution conditions (while) and branching expressions (if) must
have type bool.

Compiler Construction Summer semester 2008 21

Static Semantics II

Array indices must have type int.

Execution conditions (while) and branching expressions (if) must
have type bool.

The types of the left-hand side and of the right-hand side types of
an assignment must be compatible.

Compiler Construction Summer semester 2008 21

Static Semantics II

Array indices must have type int.

Execution conditions (while) and branching expressions (if) must
have type bool.

The types of the left-hand side and of the right-hand side types of
an assignment must be compatible.

Type compatibility: Z ⊆ R in mathematics, but not on computers
(different representation)
=⇒ type casts

weak typing: implicit casting by compiler (2.5 + 1, 1 + "42")
=⇒ risc of undetected “real” errors;

for programming-in-the-small (script languages)
strong typing: explicit casting by programmer

=⇒ enhanced software reliability;
for programming-in-the-large

Compiler Construction Summer semester 2008 21

Static Semantics II

Array indices must have type int.

Execution conditions (while) and branching expressions (if) must
have type bool.

The types of the left-hand side and of the right-hand side types of
an assignment must be compatible.

Type compatibility: Z ⊆ R in mathematics, but not on computers
(different representation)
=⇒ type casts

weak typing: implicit casting by compiler (2.5 + 1, 1 + "42")
=⇒ risc of undetected “real” errors;

for programming-in-the-small (script languages)
strong typing: explicit casting by programmer

=⇒ enhanced software reliability;
for programming-in-the-large

Instantiation of operators/functions/procedures/... for different
parameter types: polymorphism or overloading

+ : int× int → int + : real× real → real

Compiler Construction Summer semester 2008 21

Outline

1 Correction: update Function

2 Repetition: Procedures with Parameters

3 A Translation Example

4 Alternative Implementation of Static Links

5 Intermediate Code for Data Structures

6 Static Data Structures

7 Modifying the Abstract Machine

8 Translation of EPL with Static Data Structures into AM Programs

Compiler Construction Summer semester 2008 22

The Modified Abstract Machine AM

Since (recursive) procedures are no longer supported, a procedure stack
is not required anymore.

Definition 21.3 (Modified abstract machine for EPL)

The modified abstract machine for EPL (AM) is defined by the state
space

S := PC ×DS × MS

with

the program counter PC := N,
the data stack DS := R

∗, and
the main storage MS := {σ | σ : N → R}.

Compiler Construction Summer semester 2008 23

New AM Instructions

Definition 21.4 (New AM instructions)

Procedure instructions are no longer needed.

Compiler Construction Summer semester 2008 24

New AM Instructions

Definition 21.4 (New AM instructions)

Procedure instructions are no longer needed.

Transfer instructions (LOAD(dif ,off), STORE(dif ,off)) are replaced by
the following instructions with the respective semantics JOK : S 99K S:

JLOADK(a, d : n, σ) := (a + 1, d : σ(n), σ)
if n ∈ N

JSTOREK(a, d : n : r, σ) := (a + 1, d, σ[n 7→ r])
if n ∈ N

Compiler Construction Summer semester 2008 24

New AM Instructions

Definition 21.4 (New AM instructions)

Procedure instructions are no longer needed.

Transfer instructions (LOAD(dif ,off), STORE(dif ,off)) are replaced by
the following instructions with the respective semantics JOK : S 99K S:

JLOADK(a, d : n, σ) := (a + 1, d : σ(n), σ)
if n ∈ N

JSTOREK(a, d : n : r, σ) := (a + 1, d, σ[n 7→ r])
if n ∈ N

Moreover the following instruction for checking array bounds is
introduced:

JCAB(z1,z2)K(a, d : z, σ) :=

{
(a + 1, d : z, σ) if z ∈ {z1, . . . , z2}
(0, d : RTE

︸︷︷︸

runtime error

, σ) otherwise

Compiler Construction Summer semester 2008 24

	Correction: update Function
	Repetition: Procedures with Parameters
	A Translation Example
	Alternative Implementation of Static Links
	Intermediate Code for Data Structures
	Static Data Structures
	Modifying the Abstract Machine
	Translation of EPL with Static Data Structures into AM Programs

