Compiler Construction

Lecture 21: Code Generation VI
(Translation Example & Static Data Structures)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

@ Correction: update Function

Rm Compiler nstruction Summer semester 2

Correction: update Function

The symbol table is maintained by the function update(D, st, a,l) which
specifies the update of symbol table st according to declaration D (with
respect to next free code address a and current level):

Definition (update function)
update : Del x Tab x PC' x Lev --» Tab

is defined by
update(Dc Dy Dp,st, a,l)
:= update(Dp, update(Dy, update(D¢, st, a,l), a,l),a,l)
if all identifiers in Do Dy Dp different
update(e, st, a,)

= st
update(const 1 := 21, ...,1L, 1= z,;,st,a,1)
:= st[[; — (comst, z1),..., I, — (const, z,)]

update(var I, ..., 1,;,st,a,l)
= sty — (var,l,1),..., I, — (var,l,n)]
update(proc I1; K1; ... ;1 Knj;,st,a,l)
= st[[; — (proc,as,l,size(K1)),. .., I — (proc,an,l,size(K,))]
with “fresh” addresses a,...,a,
where size(D¢ var Iy, ...,I,; DpC):=n
m Compiler Construction Summer semester 2008

© Repetition: Procedures with Parameters

Rm Compiler Construction Summer semester 2

Extended Syntax of EPL

Definition (Extended syntax of EPL)

The extended syntax of EPL is defined as follows:

Cmd: C:u=1:=A]|C1;Cy|if B then C) else (|
while Bdo C | I(Ay, ..., A Vi, ...,V)

actual value and ref. parameters

Dcl : D ::= Do Dy Dp
Do i=¢|const [} :=2z1,...,I, := z,;
Dy :=c¢|var I, ... ,I,;
Dp :=¢|

proc I(Iy,...,I,; var Ji,...,J;);K; proc...

formal value and ref. parameters

where Iy, Ji, Vi, € Ide

m Compiler Construction Summer semester 2008

Definition (Extended abstract machine for EPL)

The extended abstract machine for EPL (AM) is defined by the state
space

S:=PCxSPx FP x IR xRS
with
@ the program counter PC := N,
the stack pointer SP := N,
the frame pointer FP := N,
the index register IR := N, and
the runtime stack RS := (N — Z).

¢ © ¢ ¢

Characteristics:
@ Closer to “real” machine (less powerful instructions)

@ Runtime stack RS combines data stack DS and procedure stack
PS

Absolute addressing of stack entries

Stack pointer SP points to top of stack

Frame pointer F'P points to (dynamic link field of) topmost frame
Index register IR implements dereferencing of static links

m' Compiler Construction Summer semester 2008 6

¢ © ¢ ¢

Structure of Frames

par;

sl

ra
FP — | dl

locy
SP — [lock

| increasing stack addresses

actual value and reference parameters

static link to declaration environment
return address
dynamic link to previous frame

local variables

Successive construction:
@ by calling procedure:
@ Computation of actual parameters par;

@ Computation of static link s/ using index register IR
@ Jump to called procedure, setting return address ra

@ by called procedure (“entry code”):

© Store pointer to previous frame as dynamic link dl
@ Allocate memory for local variables loc;

Compiler Construction Summer semester 2008

Translation of Extended EPL into AM Programs

Goal: modification of translation mapping
trans : Pgm --+» AM

taking into account
@ Procedures with parameters
o Modified AM instruction set

Rm Compiler Construction Summer semester 2008

Modifying the Symbol Table

Tab := {st | st : Ide --» ({const} x Z)
U ({var} x Lev x Off)
% local variables and value parameters
U ({proc} x PC x Lev x Size)}
U ({rpar} x Lev x Off)}

% reference parameters

Position of FP = negative offsets possible — Off :=7Z
Initial symbol table for P = in/out I, ... ,I,; K. € Pgm:
st1yo(;) := (var,0,j —n — 3) for every j € [n]

update function: as before
(processing of procedure parameters by dt)

Rm Compiler Construction Summer semester 2008 9

© A Translation Example

Rm Compiler nstruction Summer semester 2

Translation Example I

Example 21.1 (Factorial function)

P = in/out x,y; where st’
proc F(x;var y); = update(D, st1/0, 1)
if x>1 then D = st1o[F — (proc,ai,1,0)]
e e NG K dt(D,st’, 1
F(xly); (D, st’,)”
= kt(CF, st”, a1, 2, 2)
F(x y) } C = ay : PUSH FP; % dynamic link
LOAD FP,SP; % set FP
trans(P) = 1 : PUSH FP; % static link ADD SP,0: % lgcal RIS
2: CALL ao; ct(Ck S%N,(h +3,2)
3:JMP 0; % STOP LOAD ’SP,I’?P; ’
) kt (K, st1/o, ao, 1,0) POP FP; % reset FP
|waere RET 3; % j back
StI/Cl = [X = (Var707 _4)7y = (Vara 03 _3)] where st” —(%) Jummp bac
kt(K, st1/0, a0, 1,0 st'[x — (var, 2, —4),y — (rpar, 2, —3
, v (=p
= dt(D,St 71) Ct(VF StH a1 +3 2)
ao : PUSH FP; % dynamic link — bt(x>1.5t” ay 4 3 2)
LOAD FP,SP; % set FP " JFALSE asi
ADD SP,size(K); % local vars ct(y:=y*x; F(x-1;y),st",a’,2)
) as .
Ct(O st/ , @Q + 3, 1) bt(X>1>StN~, a1 + 3, 2)
LOAD SP,FP; = PUSH <FP-4>; % x
POP FP; % reset FP 18‘,1{$H LN
RET 1; % jump back)

Compiler Construction Summer semester 2008 11

Translation Example 11

Example 21.1 (Factorial function; continued)

ct(y:=y*x; F(x-1;y),st”,d’,2)
= ct(y: y*x7st”.a',2)
ct(F(x-1; 5y st” a”,2)
ct(y:=y*x,st”, a’ 2)
= at(y*x, st”7 a', 2)
LOAD IR,<FP-3>; % adr(y)
POP <IR>; % assign
at(y*x,st”, a’,2)
= LOAD IR,<FP-3>; % adr(y)
PUSH <IR>; % y
PUSH <FP-4>; % x
MULT;
ct(F(x-1;y),st” a”,2)
= at(x-1, st” ”,2)
PUSH <FP-3>; % adr(y)
LOAD IR,<FP-2>;
PUSH IR; % static link
CALL ai;

at(x-1,st”,a”,2)

= PUSH <FP-4>; % x
PUSH 1;
SUB;

ct(C,st’, a0 + 3, 1)

= ct(y:=17st',a0 +3, 1)
ct(F(x; y) st’,a’, 1)

ct(y:=1,st’ a0+3 1)

—='PUSH 1,
LOAD IR,<FP-2>; % adr(y)
POP <IR-3>; 7% assign

ct(F(x;y),st’,d’, 1)

= at(x,st’,a’, 1)
LOAD IR,<FP-2>;
PUSH IR-3; % adr(y)
PUSH FP; % static link
CALL ai;

at(x,st’,a’, 1)

= LOAD IR,<FP-2>;
PUSH <IR-4>

r Construction

Summer semester 2008

Translation Example III

Example 21.1 (Factorial function; continued)

‘;*lzt]‘))ugsit?;“ For x =1, y = 0 (bottom = p(1), top = SP, FP, IR):
g : gﬁ]}sLo?ﬂ PC RS

aidus Ry % ety } TH0i0i0: 5

gEADDSP,é;’ o %’g ::U:U:U:O:g:% 5

: PUSH <FP-4>; 6 x>1 [:0:0:0:0:5:3:

8 : PUSH 1; 000N

e 29 1:0:0:0:0:5:3:5

}?5%1&51324; . 30 T0:0:0:0:5:3:5

: LOAD IR,<FP-3>; 0 y:i=y*xX H H H H : N N M

e g% :0:8:8:0:5:%:5:1

13 I0i5" m cre-s>; B TTI00. 5

iR e %Rty 5 DrgoinisEgi

19:su8; 37 1:1:0:0:0:5:3:5:1:2

e T 38 1:1:0:0:0:5:3:5:1:2:8
oo I
35 i popEr; % exit F 6 1:1:0:0:0:5:3:5:1:2:8:39:8
ggfggg}{sép- SO — 7 :1:0:0:0:5:3:5:1:2:8:39:8
REs i ahenan il
30 : PUSH 1; % y:i=1 10 1:1:0:0:0:5:3:5:1:2:8:39:8:0
e R anlaanacot
H R g LS 2 : 282820355%55315258539'

: 5 SFP=2>5 :1:0:0:0:5:3:5

gg}ggggég;& 40 :1:0:0:0:5:3:5

38 : CALL 4; 41 :1:0:0:0:5:3

28 : IﬁgéDFgg,FP; % exit MAIN 3 ~1:0:0:0

41;RET1;’ 0 1:1:0:0:0

m Compiler Construction Summer semester 2008 13

@ Alternative Implementation of Static Links

Rm Compiler Construction Summer semester 2

Alternative Implementation of Static Links

o Alternative implementation of static link dereferencing:
display technique

o Display directly returns frame pointer for given level difference

o Usually organized as array

@ Possible implementations:

Local displays: called procedure maintains display array in its
frame

Global displays: frame pointer stored in global Static Link Array
(SLA)

o For details see Aho/Lam/Sethi/Ullman: Compilers: Principles,
Techniques, and Tools, 2nd ed., p. 449 ff)

Rm Compiler Construction Summer semester 2008 15

© Intermediate Code for Data Structures

Rm Compiler Construction Summer semester 2

Translation of Data Structures

Source code: data structures = arrays, records, lists, trees, ...
= structured state space, variables with components
Abstract machine: linear memory structure, cells for storing atomic
data
Translation: mapping of structured state space to linear memory
(= address computation)
o static data structures: memory reqirements known at
compile time
@ dynamic data structures: memory reqirements
runtime dependent
—> heap, pointers, garbage collection, ...

First step:
@ static data structures (arrays and records)

@ inductive type definitions

@ no procedures (for simplification; “orthogonal” extension)

Rm Compiler Construction Summer semester 2008 17

© Static Data Structures

Rm Compiler nstruction Summer semester 2

Modified Syntax of EPL

Definition 21.2 (Modified syntax of EPL)

The modified syntax of EPL is defined as follows (where n>1):
Z: z (* z is an integer *)
B: b ::= true | false
R: r (* r is a real number *)
Con : cu=z|b|r
Ide : I (* I is an identifier *)
Type : T ::=bool | int | real | I | array[z;..22] of T |

record I1:Ty;...;1,:T, end
Var : Vo=I|VIE]1|V.I
Exp : E:=c|V|Ei+Ey|Ey<Ey|E)and Es | ...
Cmd: Cu=V:=E|C;;C|
if F then C] else (5 | while F do C
Dcl : D::DcDTDV
D¢ :=¢|const [1:=c1;...;1,:=cp;
Dy =¢e|type I1:=T1;...;1,:=T),;
Dy :=¢|var I1:Ty;...;1,: Ty
Pgm : P:=DC

m Compiler Construction Summer semester 2008

Static Semantics 1

©

All identifiers in a declaration D have to be different.

In T = record I;:T1;...;1,:T), end, all selectors I; must be
different.

InT = arraylz;..22] of T, 21 < 29.

Type definitions must not be recursive:

it Dr = type I1:=T1;...;1,:=T,; and identifier I occurs in T},
then I € {Il, S 7Ij—1}-

The type identifiers used in in a variable declaration Dy must be
declared.

Every identifier used in a command C must be declared in D (as a
constant or variable).

Variables in expressions and assignments have a base type
(bool/int/real; possibly via type identifiers).

m' Compiler Construction Summer semester 2008 20

Static Semantics 11

o Array indices must have type int.
@ Execution conditions (while) and branching expressions (if) must
have type bool.
o The types of the left-hand side and of the right-hand side types of
an assignment must be compatible.
o Type compatibility: Z C R in mathematics, but not on computers
(different representation)
= type casts
weak typing: implicit casting by compiler (2.5 + 1,1 + "42")
— risc of undetected “real” errors;
for programming-in-the-small (script languages)
strong typing: explicit casting by programmer
—> enhanced software reliability;
for programming-in-the-large
o Instantiation of operators/functions/procedures/... for different
parameter types: polymorphism or overloading
+:int X int — int +:real X real — real

Rm Compiler Construction Summer semester 2008

@ Modifying the Abstract Machine

Rm Compiler Construction Summer semester 2

The Modified Abstract Machine AM

Since (recursive) procedures are no longer supported, a procedure stack
is not required anymore.

Definition 21.3 (Modified abstract machine for EPL)

The modified abstract machine for EPL (AM) is defined by the state

space
S := PC x DS x MS

with

@ the program counter PC := N,
o the data stack DS := R*, and
@ the main storage MS := {o | o0 : N — R}.

m Compiler Construction Summer semester 2008

New AM Instructions

Definition 21.4 (New AM instructions)

@ Procedure instructions are no longer needed.

@ Transfer instructions (LOAD (dif , off), STORE(dif , off)) are replaced by
the following instructions with the respective semantics [O] : S --» S:

[LoAD](a,d : n,o0) := (a+1,d: o(n),o)
ifneN

[STORE](a,d : n:1,0) := (a+ 1,d,0[n > r])
ifneN

® Moreover the following instruction for checking array bounds is
introduced:

(a+1,d: z,0) if z€{z1,...,22}
[CAB(z1,22)](a,d : z,0) := {(O,d: RTE ,0) otherwise

runtime error

m Compiler Construction Summer semester 2008 24

	Correction: update Function
	Repetition: Procedures with Parameters
	A Translation Example
	Alternative Implementation of Static Links
	Intermediate Code for Data Structures
	Static Data Structures
	Modifying the Abstract Machine

