
Compiler Construction

Lecture 22: Code Generation VII
(Static & Dynamic Data Structures)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Outline

1 Repetition: Static Data Structures

2 Translation of Static Data Structures into AM Programs

3 A Translation Example

4 Dynamic Data Structures

Compiler Construction Summer semester 2008 2

Modified Syntax of EPL

Definition (Modified syntax of EPL)

The modified syntax of EPL is defined as follows (where n ≥ 1):
Z : z (* z is an integer *)
B : b ::= true | false
R : r (* r is a real number *)
Con : c ::= z | b | r
Ide : I (* I is an identifier *)
Type : T ::= bool | int | real | I | array[z1..z2] of T |

record I1:T1;. . .;In:Tn end
Var : V ::= I | V [E] | V .I
Exp : E ::= c | V | E1 + E2 | E1 < E2 | E1 and E2 | . . .
Cmd : C ::= V :=E | C1;C2 |

if E then C1 else C2 | while E do C
Dcl : D ::= DC DT DV

DC ::= ε | const I1:=c1;. . .;In:=cn;
DT ::= ε | type I1:=T1;. . .;In:=Tn;
DV ::= ε | var I1:T1;. . .;In:Tn;

Pgm : P ::= D C

Compiler Construction Summer semester 2008 3

The Modified Abstract Machine AM

Since (recursive) procedures are no longer supported, a procedure stack
is not required anymore.

Definition (Modified abstract machine for EPL)

The modified abstract machine for EPL (AM) is defined by the state
space

S := PC ×DS ×MS

with

the program counter PC := N,
the data stack DS := R

∗, and
the main storage MS := {σ | σ : N→ R}.

Compiler Construction Summer semester 2008 4

New AM Instructions

Definition (New AM instructions)

Procedure instructions are no longer needed.

Transfer instructions (LOAD(dif ,off), STORE(dif ,off)) are replaced by
the following instructions with the respective semantics JOK : S 99K S:

JLOADK(a, d : n, σ) := (a + 1, d : σ(n), σ)
if n ∈ N

JSTOREK(a, d : n : r, σ) := (a + 1, d, σ[n 7→ r])
if n ∈ N

Moreover the following instruction for checking array bounds is
introduced:

JCAB(z1,z2)K(a, d : z, σ) :=

{
(a + 1, d : z, σ) if z ∈ {z1, . . . , z2}
(0, d : RTE

︸︷︷︸

runtime error

, σ) otherwise

Compiler Construction Summer semester 2008 5

Outline

1 Repetition: Static Data Structures

2 Translation of Static Data Structures into AM Programs

3 A Translation Example

4 Dynamic Data Structures

Compiler Construction Summer semester 2008 6

Modifying the Symbol Table

Tab := {st | st : Ide 99K ({const} × (B ∪ Z ∪ R))
∪ ({var} × Ide × N)
∪ ({type} × {bool, int, real} × {1})
∪ ({type} × {array} × Z

2 × Ide × N)
∪ ({type} × {record} × (Ide2 × N)∗ × N)}

Remarks:

Variable descriptor (var, I, n): type I, memory address n

Last component of type entry: memory requirement
(base types: 1 “cell”)

Array descriptor (type, array, z1, z2, I, n):
bounds z1, z2, component type I

Record descriptor (type, record, I1, J1, o1, . . . , Il, Jl, ol, n): selector
Ik, component type Jk, memory offset ok

“Indexed” table lookup: st(I.Ik) := (Jk, ok)
if st(I) = (type, record, . . . , Ik, Jk, ok, . . . , n)

Compiler Construction Summer semester 2008 7

Maintaining the Symbol Table I

The symbol table is again maintained by the function update(D, st)
which specifies the update of symbol table st according to declaration
D.

Compiler Construction Summer semester 2008 8

Maintaining the Symbol Table I

The symbol table is again maintained by the function update(D, st)
which specifies the update of symbol table st according to declaration
D.

For the sake of simplificity we assume that D = DC DT DV ∈ Dcl is
flattened, i.e., that every subtype is named by an identifier:

If DT = type I1:=T1;. . .;In:=Tn;, then for every k ∈ [n]

Tk ∈ {bool, int, real} or
Tk ∈ {I1, . . . , Ik−1} or
Tk = array[z1..z2] of Ij where j ∈ [k − 1] or
Tk = record J1:Ij1;. . .;Jl:Ijl

end where j1, . . . , jl ∈ [k − 1]

For DT as above, DV must be of the form
DV = var J1:Ij1;. . .;Jk:Ijk

; where j1, . . . , jk ∈ [n]

Compiler Construction Summer semester 2008 8

Maintaining the Symbol Table II

Definition 22.1 (Modified update function)

update : Dcl × Tab 99K Tab is defined by
update(DC DT DV , st) := update(DV , update(DT , update(DC , st)))

update(ε, st) := st

Compiler Construction Summer semester 2008 9

Maintaining the Symbol Table II

Definition 22.1 (Modified update function)

update : Dcl × Tab 99K Tab is defined by
update(DC DT DV , st) := update(DV , update(DT , update(DC , st)))

update(ε, st) := st
update(const I1:=c1;. . .;In:=cn;, st)

:= st[I1 7→ (const, c1), . . . , In 7→ (const, cn)]

Compiler Construction Summer semester 2008 9

Maintaining the Symbol Table II

Definition 22.1 (Modified update function)

update : Dcl × Tab 99K Tab is defined by
update(DC DT DV , st) := update(DV , update(DT , update(DC , st)))

update(ε, st) := st
update(const I1:=c1;. . .;In:=cn;, st)

:= st[I1 7→ (const, c1), . . . , In 7→ (const, cn)]
update(type I:=bool;D′

T , st) := update(type D′
T , st[I 7→ (type, bool, 1)])

update(type I:=int;D′
T , st) := update(type D′

T , st[I 7→ (type, int, 1)])
update(type I:=real;D′

T , st) := update(type D′
T , st[I 7→ (type, real, 1)])

update(type I:=J;D′
T , st) := update(type D′

T , st[I 7→ st(J)])
update(type I:=array[z1..z2] of J;D′

T , st)
:= update(type D′

T ,
st[I 7→ (type, array, z1, z2, J, k · n)])
if st(J) = (type, . . . , n) and k = z2 − z1 + 1

update(type I:=record I1:J1;. . .;Il:Jl end;D′
T , st)

:= update(type D′
T , st[I 7→

(type, record, I1, J1, 0, I2, J2, n1, . . . ,

Il, Jl,
P

l−1

i=1
ni,

P

l

i=1
ni)])

if st(Ji) = (type, . . . , ni) for i ∈ [l]

Compiler Construction Summer semester 2008 9

Maintaining the Symbol Table II

Definition 22.1 (Modified update function)

update : Dcl × Tab 99K Tab is defined by
update(DC DT DV , st) := update(DV , update(DT , update(DC , st)))

update(ε, st) := st
update(const I1:=c1;. . .;In:=cn;, st)

:= st[I1 7→ (const, c1), . . . , In 7→ (const, cn)]
update(type I:=bool;D′

T , st) := update(type D′
T , st[I 7→ (type, bool, 1)])

update(type I:=int;D′
T , st) := update(type D′

T , st[I 7→ (type, int, 1)])
update(type I:=real;D′

T , st) := update(type D′
T , st[I 7→ (type, real, 1)])

update(type I:=J;D′
T , st) := update(type D′

T , st[I 7→ st(J)])
update(type I:=array[z1..z2] of J;D′

T , st)
:= update(type D′

T ,
st[I 7→ (type, array, z1, z2, J, k · n)])
if st(J) = (type, . . . , n) and k = z2 − z1 + 1

update(type I:=record I1:J1;. . .;Il:Jl end;D′
T , st)

:= update(type D′
T , st[I 7→

(type, record, I1, J1, 0, I2, J2, n1, . . . ,

Il, Jl,
P

l−1

i=1
ni,

P

l

i=1
ni)])

if st(Ji) = (type, . . . , ni) for i ∈ [l]
update(var I1:J1;. . .;In:Jn;, st) := st[I1 7→ (var, J1, 0), I2 7→ (var, J2, n1), . . . ,

In 7→ (var, Jn,
P

n−1

i=1
ni)]

if st(Ji) = (type, . . . , ni) for i ∈ [l]

Compiler Construction Summer semester 2008 9

Maintaining the Symbol Table III

Example 22.2 (Modified update function)

Let D := type Bool=bool; Int=int;
Array=array[1..20] of Bool;
Record=record S:Array; T:Int end;

var x:Int; y:Array; z:Record;

Compiler Construction Summer semester 2008 10

Maintaining the Symbol Table III

Example 22.2 (Modified update function)

Let D := type Bool=bool; Int=int;
Array=array[1..20] of Bool;
Record=record S:Array; T:Int end;

var x:Int; y:Array; z:Record;

Then
update(D, st) = st[Bool 7→ (type, bool, 1),

Int 7→ (type, int, 1),
Array 7→ (type, array, 1, 20, Bool, 20),

Record 7→ (type, record, S, Array, 0, T, Int, 20, 21),
x 7→ (var, Int, 0),
y 7→ (var, Array, 1),
z 7→ (var, Record, 21)]

Compiler Construction Summer semester 2008 10

Translation of Variables I

The translation employs the following auxiliary function to determine
the type identifier of a given variable:

Definition 22.3 (vtype function)

The mapping
vtype : Var × Tab 99K Ide

is given by

vtype(I, st) := J
if st(I) = (var, J, n)

vtype(V [E], st) := J
if vtype(V, st) = I
and st(I) = (type, array, z1, z2, J, n)

vtype(V .I, st) := J
if vtype(V, st) = I ′ and st(I ′.I) = (J, o)

Compiler Construction Summer semester 2008 11

Translation of Variables II

The function vt generates code for computing the memory address of a
variable (and storing it on the data stack):

Definition 22.4 (Translation of variables)

The mapping
vt : Var × Tab 99K AM

is given by
vt(I, st) := LIT(n);

if st(I) = (var, J, n)
vt(V [E], st) := vt(V, st) % address of V

et(E, st) % array index
CAB(z1,z2); % bounds checking
LIT(z1); SUB; % index difference
LIT(n); MULT; % relative address
ADD; % address of V [E]
if vtype(V, st) = I and st(I) = (type, array, z1, z2, J, m)
and st(J) = (type, . . . , n)

vt(V .I, st) := vt(V, st) % address of V
LIT(o); % offset
ADD; % address of V .I
if vtype(V, st) = I ′ and st(I ′.I) = (J, o)

Compiler Construction Summer semester 2008 12

Translation of Expressions

Definition 22.5 (Translation of expressions)

The mapping
et : Exp × Tab 99K AM

is given by

et(c, st) := LIT(c);

et(V, st) :=







LIT(c); if V ∈ Ide and st(V) = (const, c)
vt(V, st)
LOAD;

if st(I) = (var, J, n)

et(E1+E2, st) := et(E1, st)
et(E2, st)
ADD;

...

Compiler Construction Summer semester 2008 13

Translation of Commands and Programs

Definition 22.6 (Translation of commands)

For the mapping
ct : Cmd × Tab 99K AM

only the handling of assignments needs to be adapted:

ct(V :=E, st) := vt(V, st) % address of left-hand side
et(E, st) % value of right-hand side
STORE;

Compiler Construction Summer semester 2008 14

Translation of Commands and Programs

Definition 22.6 (Translation of commands)

For the mapping
ct : Cmd × Tab 99K AM

only the handling of assignments needs to be adapted:

ct(V :=E, st) := vt(V, st) % address of left-hand side
et(E, st) % value of right-hand side
STORE;

Definition 22.7 (Translation of programs)

The mapping
trans : Pgm 99K AM

is defined by
trans(D C) := ct(C,update(D, st∅))

Compiler Construction Summer semester 2008 14

Outline

1 Repetition: Static Data Structures

2 Translation of Static Data Structures into AM Programs

3 A Translation Example

4 Dynamic Data Structures

Compiler Construction Summer semester 2008 15

Translation Example I

Example 22.8

P = type Int=int; Array=array[1..10] of Int;
var a:Array; i:Int;

o

D

i:=1;
while i<=10 do
a[i]:=i; i:=i+1;

)

C

Compiler Construction Summer semester 2008 16

Translation Example I

Example 22.8

P = type Int=int; Array=array[1..10] of Int;
var a:Array; i:Int;

o

D

i:=1;
while i<=10 do
a[i]:=i; i:=i+1;

)

C

trans(P) = ct(C, update(D, st∅))

Compiler Construction Summer semester 2008 16

Translation Example I

Example 22.8

P = type Int=int; Array=array[1..10] of Int;
var a:Array; i:Int;

o

D

i:=1;
while i<=10 do
a[i]:=i; i:=i+1;

)

C

trans(P) = ct(C, update(D, st∅))
st := update(D, st∅)

= st∅[Int 7→ (type, int, 1),
Array 7→ (type, array, 1, 10, Int, 10),

a 7→ (var, Array, 0),
i 7→ (var, Int, 10)]

Compiler Construction Summer semester 2008 16

Translation Example I

Example 22.8

P = type Int=int; Array=array[1..10] of Int;
var a:Array; i:Int;

o

D

i:=1;
while i<=10 do
a[i]:=i; i:=i+1;

)

C

trans(P) = ct(C, update(D, st∅))
st := update(D, st∅)

= st∅[Int 7→ (type, int, 1),
Array 7→ (type, array, 1, 10, Int, 10),

a 7→ (var, Array, 0),
i 7→ (var, Int, 10)]

ct(C, st) = ct(i:=1, st)
ct(while i<=10 do a[i]:=i; i:=i+1, st)

Compiler Construction Summer semester 2008 16

Translation Example I

Example 22.8

P = type Int=int; Array=array[1..10] of Int;
var a:Array; i:Int;

o

D

i:=1;
while i<=10 do
a[i]:=i; i:=i+1;

)

C

trans(P) = ct(C, update(D, st∅))
st := update(D, st∅)

= st∅[Int 7→ (type, int, 1),
Array 7→ (type, array, 1, 10, Int, 10),

a 7→ (var, Array, 0),
i 7→ (var, Int, 10)]

ct(C, st) = ct(i:=1, st)
ct(while i<=10 do a[i]:=i; i:=i+1, st)

ct(i:=1, st) = vt(i, st) % adr(i)
et(1, st) % val(1)
STORE;

= LIT(10); LIT(1); STORE;

Compiler Construction Summer semester 2008 16

Translation Example II

Example 22.8 (continued)

ct(while i<=10 do a[i]:=i; i:=i+1, st)
= a : et(i<=10, st)

JFALSE(a′);
ct(a[i]:=i; i:=i+1, st)
JMP(a);

a′ :

Compiler Construction Summer semester 2008 17

Translation Example II

Example 22.8 (continued)

ct(while i<=10 do a[i]:=i; i:=i+1, st)
= a : et(i<=10, st)

JFALSE(a′);
ct(a[i]:=i; i:=i+1, st)
JMP(a);

a′ :
et(i<=10, st) = LIT(10); LOAD; LIT(10); LE;

Compiler Construction Summer semester 2008 17

Translation Example II

Example 22.8 (continued)

ct(while i<=10 do a[i]:=i; i:=i+1, st)
= a : et(i<=10, st)

JFALSE(a′);
ct(a[i]:=i; i:=i+1, st)
JMP(a);

a′ :
et(i<=10, st) = LIT(10); LOAD; LIT(10); LE;

ct(a[i]:=i; i:=i+1, st) = ct(a[i]:=i, st) ct(i:=i+1, st)

Compiler Construction Summer semester 2008 17

Translation Example II

Example 22.8 (continued)

ct(while i<=10 do a[i]:=i; i:=i+1, st)
= a : et(i<=10, st)

JFALSE(a′);
ct(a[i]:=i; i:=i+1, st)
JMP(a);

a′ :
et(i<=10, st) = LIT(10); LOAD; LIT(10); LE;

ct(a[i]:=i; i:=i+1, st) = ct(a[i]:=i, st) ct(i:=i+1, st)
ct(a[i]:=i, st) = vt(a[i], st) % adr(a[i])

et(i, st) % val(i)
STORE;

Compiler Construction Summer semester 2008 17

Translation Example II

Example 22.8 (continued)

ct(while i<=10 do a[i]:=i; i:=i+1, st)
= a : et(i<=10, st)

JFALSE(a′);
ct(a[i]:=i; i:=i+1, st)
JMP(a);

a′ :
et(i<=10, st) = LIT(10); LOAD; LIT(10); LE;

ct(a[i]:=i; i:=i+1, st) = ct(a[i]:=i, st) ct(i:=i+1, st)
ct(a[i]:=i, st) = vt(a[i], st) % adr(a[i])

et(i, st) % val(i)
STORE;

vt(a[i], st) = vt(a, st) % adr(a)
et(i, st) % val(i)
CAB(1,10); % bounds checking
LIT(1); SUB; % index diff.
LIT(1); MULT; % rel. address
ADD; % adr(a[i])

Compiler Construction Summer semester 2008 17

Translation Example II

Example 22.8 (continued)

ct(while i<=10 do a[i]:=i; i:=i+1, st)
= a : et(i<=10, st)

JFALSE(a′);
ct(a[i]:=i; i:=i+1, st)
JMP(a);

a′ :
et(i<=10, st) = LIT(10); LOAD; LIT(10); LE;

ct(a[i]:=i; i:=i+1, st) = ct(a[i]:=i, st) ct(i:=i+1, st)
ct(a[i]:=i, st) = vt(a[i], st) % adr(a[i])

et(i, st) % val(i)
STORE;

vt(a[i], st) = vt(a, st) % adr(a)
et(i, st) % val(i)
CAB(1,10); % bounds checking
LIT(1); SUB; % index diff.
LIT(1); MULT; % rel. address
ADD; % adr(a[i])

vt(a, st) = LIT(0);

Compiler Construction Summer semester 2008 17

Translation Example II

Example 22.8 (continued)

ct(while i<=10 do a[i]:=i; i:=i+1, st)
= a : et(i<=10, st)

JFALSE(a′);
ct(a[i]:=i; i:=i+1, st)
JMP(a);

a′ :
et(i<=10, st) = LIT(10); LOAD; LIT(10); LE;

ct(a[i]:=i; i:=i+1, st) = ct(a[i]:=i, st) ct(i:=i+1, st)
ct(a[i]:=i, st) = vt(a[i], st) % adr(a[i])

et(i, st) % val(i)
STORE;

vt(a[i], st) = vt(a, st) % adr(a)
et(i, st) % val(i)
CAB(1,10); % bounds checking
LIT(1); SUB; % index diff.
LIT(1); MULT; % rel. address
ADD; % adr(a[i])

vt(a, st) = LIT(0);
et(i, st) = LIT(10); LOAD;

Compiler Construction Summer semester 2008 17

Translation Example II

Example 22.8 (continued)

ct(while i<=10 do a[i]:=i; i:=i+1, st)
= a : et(i<=10, st)

JFALSE(a′);
ct(a[i]:=i; i:=i+1, st)
JMP(a);

a′ :
et(i<=10, st) = LIT(10); LOAD; LIT(10); LE;

ct(a[i]:=i; i:=i+1, st) = ct(a[i]:=i, st) ct(i:=i+1, st)
ct(a[i]:=i, st) = vt(a[i], st) % adr(a[i])

et(i, st) % val(i)
STORE;

vt(a[i], st) = vt(a, st) % adr(a)
et(i, st) % val(i)
CAB(1,10); % bounds checking
LIT(1); SUB; % index diff.
LIT(1); MULT; % rel. address
ADD; % adr(a[i])

vt(a, st) = LIT(0);
et(i, st) = LIT(10); LOAD;

ct(i:=i+1, st) = LIT(10); LIT(10); LIT(1); ADD; STORE;

Compiler Construction Summer semester 2008 17

Outline

1 Repetition: Static Data Structures

2 Translation of Static Data Structures into AM Programs

3 A Translation Example

4 Dynamic Data Structures

Compiler Construction Summer semester 2008 18

Variant Records

Example 22.9 (Variant records in Pascal)

TYPE Coordinate = RECORD

nr: INTEGER;

CASE type: (cartesian, polar) OF

cartesian: (x, y: REAL);

polar: (r : REAL; phi: INTEGER)

END

END;

VAR pt: Coordinate;

pt.type := cartesian; pt.x := 0.5; pt.y := 1.2;

Compiler Construction Summer semester 2008 19

Variant Records

Example 22.9 (Variant records in Pascal)

TYPE Coordinate = RECORD

nr: INTEGER;

CASE type: (cartesian, polar) OF

cartesian: (x, y: REAL);

polar: (r : REAL; phi: INTEGER)

END

END;

VAR pt: Coordinate;

pt.type := cartesian; pt.x := 0.5; pt.y := 1.2;

Implementation:

Allocate memory for “biggest” variant

Share memory between variant fields

Compiler Construction Summer semester 2008 19

Dynamic Arrays

Example 22.10 (Dynamic arrays in Pascal)

FUNCTION Sum(VAR a: ARRAY OF REAL): REAL;

VAR

i: INTEGER; s: REAL;

BEGIN

s := 0.0; FOR i := 0 to HIGH(A) do s := s + a[i] END; Sum := s

END

Compiler Construction Summer semester 2008 20

Dynamic Arrays

Example 22.10 (Dynamic arrays in Pascal)

FUNCTION Sum(VAR a: ARRAY OF REAL): REAL;

VAR

i: INTEGER; s: REAL;

BEGIN

s := 0.0; FOR i := 0 to HIGH(A) do s := s + a[i] END; Sum := s

END

Implementation:

Memory requirements unknown at compile time but determined by
actual function/procedure parameters
=⇒ no heap required

Use array descriptor with following fields as parameter value:

starting memory address of array
size of array
lower index of array (possibly fixed by 0)
upper index of array (actually redundant)

Use data stack or index register to access array elements

Compiler Construction Summer semester 2008 20

Dynamic Memory Allocation I

Dynamically manipulated data structures (lists, trees, graphs, ...)

So far: creation of (static) objects by declaration

Now: creation of (dynamic) objects by explicit memory allocation

Access by (implicit or explicit) pointers

Deletion by explicit deallocation or garbage collection
(= automatic deallocation of unreachable objects)

Compiler Construction Summer semester 2008 21

Dynamic Memory Allocation I

Dynamically manipulated data structures (lists, trees, graphs, ...)

So far: creation of (static) objects by declaration

Now: creation of (dynamic) objects by explicit memory allocation

Access by (implicit or explicit) pointers

Deletion by explicit deallocation or garbage collection
(= automatic deallocation of unreachable objects)

Implementation: runtime stack not sufficient
(lifetime of objects generally exceeds lifetime of procedure calls)

=⇒ new data structure: heap

Simplest form of organization:

Runtime stack→ ← Heap

0
↑
SP

↑
HP max

(stack pointer) (heap pointer)

Compiler Construction Summer semester 2008 21

Dynamic Memory Allocation II

New instruction: NEW
allocates n memory cells where n = topmost value of runtime stack
returns address of first cell
formal semantics:

if HP - <SP> > SP
then HP := HP - <SP>; <SP> := HP
else error("memory overflow")

Compiler Construction Summer semester 2008 22

Dynamic Memory Allocation II

New instruction: NEW
allocates n memory cells where n = topmost value of runtime stack
returns address of first cell
formal semantics:

if HP - <SP> > SP
then HP := HP - <SP>; <SP> := HP
else error("memory overflow")

But: collision check required for every operation which increases
SP (e.g., expression evaluations)
Efficient solution: add extreme stack pointer EP

points to topmost SP which will be used in the computation of
current procedure
set by procedure entry code
statically computable at compile time
modified semantics of NEW:

if HP - <SP> > EP
then HP := HP - <SP>; <SP> := HP
else error("memory overflow")

Compiler Construction Summer semester 2008 22

Garbage Collection

explicitly by programmer (e.g., Pascal’s dispose or C’s free) or ...

automatically by runtime system (garbage collection; e.g., Java)
1 recursively mark all reachable objects
2 deallocate all unreachable objects

(careful design required for concurrent and/or realtime systems)

management of deallocated memory areas by free list

Compiler Construction Summer semester 2008 23

	Repetition: Static Data Structures
	Translation of Static Data Structures into AM Programs
	A Translation Example
	Dynamic Data Structures

