Compiler Construction

Lecture 22: Code Generation VII
(Static & Dynamic Data Structures)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

@ Repetition: Static Data Structures

Rm Compiler Construction Summer semester 2



Modified Syntax of EPL

Definition (Modified syntax of EPL)

The modified syntax of EPL is defined as follows (where n>1):
Z: z (* z is an integer *)
B: b ::= true | false
R: r (* r is a real number *)
Con : cu=z|b|r
Ide : I (* I is an identifier *)
Type : T ::=bool | int | real | I | array[z;..22] of T |

record I1:Ty;...;1,:T, end
Var : Vo=I|VIE]1|V.I
Exp : E:=c|V|Ei+Ey|Ey<Ey|E)and Es | ...
Cmd: Cu=V:=E|C;;C|
if F then C] else (5 | while F do C
Dcl : D::DcDTDV
D¢ :=¢|const [1:=c1;...;1,:=cp;
Dy =¢e|type I1:=T1;...;1,:=T),;
Dy :=¢|var I1:Ty;...;1,: Ty
Pgm : P:=DC

m Compiler Construction Summer semester 2008



The Modified Abstract Machine AM

Since (recursive) procedures are no longer supported, a procedure stack
is not required anymore.

Definition (Modified abstract machine for EPL)

The modified abstract machine for EPL (AM) is defined by the state
space

S := PC x DS x MS

with

@ the program counter PC := N,
o the data stack DS := R*, and
@ the main storage MS := {o | o0 : N — R}.

m Compiler Construction Summer semester 2008



New AM Instructions

Definition (New AM instructions)

@ Procedure instructions are no longer needed.

@ Transfer instructions (LOAD (dif , off ), STORE(dif , off ) ) are replaced by
the following instructions with the respective semantics [O] : S --» S:

[LoAD](a,d : n,o0) := (a+1,d: o(n),o)
ifneN

[STORE](a,d : n:1,0) := (a+ 1,d,0[n > r])
ifneN

® Moreover the following instruction for checking array bounds is
introduced:

(a+1,d: z,0) if z€{z1,...,22}
[CAB(z1,22)](a,d : z,0) := {(O,d: RTE ,0) otherwise

runtime error

m Compiler Construction Summer semester 2008



© Translation of Static Data Structures into AM Programs

Rm Compiler Construction Summer semester 2



Modifying the Symbol Table

({const} x (BUZUR))

({var} x Ide x N)

({type} x {bool,int,real} x {1})
({type} x {array} x Z? x Ide x N)
({type} x {record} x (Ide? x N)* x N)}

Remarks:

@ Variable descriptor (var, I,n): type I, memory address n

o Last component of type entry: memory requirement
(base types: 1 “cell”)

o Array descriptor (type, array, 21, 22, [, n):
bounds 21, 23, component type [

@ Record descriptor (type,record, Iy, Ji,01,...,1;,J;,01,n): selector
I, component type Ji, memory offset o

o “Indexed” table lookup: st(I.Iy) := (Jk, o)
if st(/) = (type,record,..., Iy, Ji, 0, ..., n)

m' Compiler Construction Summer semester 2008 7



Maintaining the Symbol Table I

The symbol table is again maintained by the function update(D, st)
which specifies the update of symbol table st according to declaration
D.

For the sake of simplificity we assume that D = Do Dy Dy € Dcl is
flattened, i.e., that every subtype is named by an identifier:
o If Dp =type I1:=Ty;...;1,:=T,;, then for every k € [n]
o T}, € {bool, int,real} or
o T} € {Il,...,fkfl} or
o T}, = arraylz;..22] of I; where j € [k — 1] or
o Ty, =record Ji:1j ;...;J;:1; end where ji,...,71 € [k —1]
o For Dr as above, Dy must be of the form
Dy =var Jy:1j;...;Jx: 1, ; where ji,...,jk € [n]

m' Compiler Construction Summer semester 2008



Maintaining the Symbol Table 11

Definition 22.1 (Modified update function)

update : Dcl x Tab --» Tab is defined by
update(D¢c Dr Dy, st) := update(Dy, update(Dr, update(Dc, st)))
update(e, st) := st
update(const I:=ci;...;In:=Cn;,st)
:= st[[1 — (comst,ci1),...,In — (const,cy)]
update(type I:=bool; D/, st) := update(type D7,st[l — (type,bool,1)])
update(type I:=int;D7,st) := update(type D7,st[l — (type,int,1)])
update(type [:=real;D’,st) := update(type D7,st[l — (type,real,1)])
update(type I:=J;Drp,st) := update(type Dr,st[I — st(J)])
update(type [:=arraylzi..22] of J;D7,st)
:= update(type D,
st[I — (type, array, z1, 22, J, k - n)])
if st(J) = (type,...,n) and k = 20 — 21 + 1
update(type I:=record Ir:Ji;...;I;:J; end; D7, st)
:= update(type D7, st[I —
(type,record, I1, J1,0, Iz, J2,n1, . . .,
Ila Jl7 Zi;} i, Zi’:l n'b)])
if st(J;) = (type,...,n;) for i € [{]
update(var Ii:Ji;...;In:Jn;,st) := st[l1 — (var, J1,0), 2 — (var, Jo,n1),. ..,
I, — (var, Jy, Z@_ll ng)]

i=

if st(J;) = (type, ..., n;) for i € [I]

m' Compiler Construction Summer semester 2008



Maintaining the Symbol Table II1

Example 22.2 (Modified update function)

Let D := type Bool=bool; Int=int;
Array=array[1..20] of Bool;
Record=record S:Array; T:Int end;

var x:Int; y:Array; z:Record;

Then
update(D,st) = st[ Bool — (type,bool, 1),
Int — (type, int, 1)
Array — (type, array,l 20, Bool, 20),
Recordr—a(type record, S Array,O T, Int, 20, 21),
— (var, Int,0),
yr—»(var Array,l%
— (var,Record, 21)]

m Compiler Construction Summer semester 2008 10



Translation of Variables I

The translation employs the following auxiliary function to determine
the type identifier of a given variable:

Definition 22.3 (vtype function)

The mapping
vtype : Var x Tab --+ Ide

is given by
vtype(I,st) = J
if st(I) = (var, J,n)
vtype(V[E],st) = J

if vtype(V,st) =1

and st(I) = (type, array, 21, 22, J,n)
vtype(V.I,st) = J

if vtype(V,st) = I’ and st(I'.I) = (J,0)

m Compiler Construction Summer semester 2008



Translation of Variables I1

The function vt generates code for computing the memory address of a
variable (and storing it on the data stack):

Definition 22.4 (Translation of variables)

The mapping
vt : Var x Tab --» AM
is given by
vt(Z,st) := LIT(n);
if st(I) = (var, J,n)

vt(V [E],st) := vt(V, st) % address of V
et(E, st) % array index
CAB(z1,29); % bounds checking

LIT(z1); SUB; % index difference
LIT(n); MULT; % relative address

ADD; % address of V [E]
if Vtype(V t) = I and st(I) = (type, array, 21, 22, J, m)
and st(J) = (type,...,n)

vt(V.I,st) := vt(V,st) % address of V
LIT(0); % offset
ADD; % address of V.1
if vtype(V,st) = I’ and st(I'.I) = (J, 0)

m Compiler Construction Summer semester 2008 12




Translation of Expressions

Definition 22.5 (Translation of expressions)

The mapping
et : Bxp x Tab --+» AM
is given by
et(c,st) = LIT(c);
LIT(e); if V € Ide and st(V') = (const,¢)
et(V,st) := <vt(V,st) if st(I) = (var,J,n)
LOAD;
et(F1+E9,st) = et(Eq,st)
et(Fo,st)
ADD;

m Compiler Construction Summer semester 2008



Translation of Commands and Programs

Definition 22.6 (Translation of commands)

For the mapping
ct: Cmd x Tab --» AM

only the handling of assignments needs to be adapted:

ct(V:=E,st) := vt(V,st) % address of left-hand side
et(E,st) % value of right-hand side
STORE;

Definition 22.7 (Translation of programs)

The mapping
trans : Pgm --» AM

is defined by
trans(D C) := ct(C, update(D, stp))

m Compiler Construction Summer semester 2008



© A Translation Example

Rm Compiler Construction Summer semester 2



Translation Example I
Example 22.8

P = type Int=int; Array=array[1..10] of Int;}D
var a:Array; i:Int;
i:=1;
while i<=10 do C
alil:=i; i:=i+1;

ct(C, update(D, stg))
update(D, stg)
stg[ Int — (type,int,1),
Array — (type, array, 1, 10, Int, 10),
adl
= (

trans(P)
st

var, Array, 0),
var, Int, 10)]

ct(C,st) = ct(i:=1, st)
t(while i<=10 do al[il:=i; i:=i+1,st)
ct(i:=1,st) = vt(i,st) % adr(i)
et(1,st) % val(1)
STORE;
= LIT(10); LIT(1); STORE;

Compiler Construction Summer semester 2008 16



Translation Example 11

Example 22.8 (continued)

ct(while i<=10 do al[il:=i; i:=i+1,st)
= a: et(i<=10,st)

JFALSE(a’) ;
ct(alil :=i; i:=i+1,st)
JMP(a) ;

a:
et(i<=10,st) = LIT(10); LOAD; LIT(10); LE;
ct(alil:=i; i:=i+1,st) = ct(alil:=i,st) ct(i:=i+1,st)
ct(alil :=i,st) = vt(alil,st) % adr(alil)

et(d, st) % val(i)
STORE;
vt(alil, st) = vt(a,st) % adr(a)
et(i, st) % val(i)
CAB(1,10); % bounds checking

LIT(1); SUB; % index diff.
LIT(1); MULT; % rel. address
ADD; % adr(alil)
vt(a,st) = LIT(0);
et(i,st) = LIT(10); LOAD;
ct(i:=i+1,st) = LIT(10); LIT(10); LIT(1); ADD; STORE;

m Compiler Construction Summer semester 2008 17



@ Dynamic Data Structures

Rm Compiler Construction Summer semester 2



Variant Records

Example 22.9 (Variant records in Pascal)

TYPE Coordinate = RECORD
nr: INTEGER;
CASE type: (cartesian, polar) OF
cartesian: (x, y: REAL);
polar: (r : REAL; phi: INTEGER )
END
END;
VAR pt: Coordinate;
pt.type := cartesian; pt.x := 0.5; pt.y := 1.2;

Implementation:
o Allocate memory for “biggest” variant

® Share memory between variant fields

m Compiler Construction Summer semester 2008



Dynamic Arrays

Example 22.10 (Dynamic arrays in Pascal)

FUNCTION Sum(VAR a: ARRAY OF REAL): REAL;
VAR
i: INTEGER; s: REAL;
BEGIN
s := 0.0; FOR i := 0 to HIGH(A) do s := s + al[i] END; Sum := s
END
Implementation:

@ Memory requirements unknown at compile time but determined by
actual function/procedure parameters
= no heap required
@ Use array descriptor with following fields as parameter value:
e starting memory address of array
e size of array
o lower index of array (possibly fixed by 0)
o upper index of array (actually redundant)
@ Use data stack or index register to access array elements

m' Compiler Construction Summer semester 2008 20



Dynamic Memory Allocation 1

Dynamically manipulated data structures (lists, trees, graphs, ...)
So far: creation of (static) objects by declaration
Now: creation of (dynamic) objects by explicit memory allocation

Access by (implicit or explicit) pointers

¢ © e ¢ ¢

Deletion by explicit deallocation or garbage collection
(= automatic deallocation of unreachable objects)

©

Implementation: runtime stack not sufficient
(lifetime of objects generally exceeds lifetime of procedure calls)

—> new data structure: heap

@ Simplest form of organization:

| Runtime stack — | | — Heap |
1 1
0 SP HP max
(stack pointer) (heap pointer)

Rm Compiler Construction Summer semester 2008 21



Dynamic Memory Allocation II

o New instruction: NEW
o allocates n memory cells where n = topmost value of runtime stack
@ returns address of first cell
¢ formal semantics:

if HP - <SP> > SP
then HP := HP - <SP>; <SP> :

= HP
else error("memory overflow")

@ But: collision check required for every operation which increases
SP (e.g., expression evaluations)
o Efficient solution: add extreme stack pointer EP
@ points to topmost SP which will be used in the computation of
current procedure
@ set by procedure entry code
e statically computable at compile time
o modified semantics of NEW:

if HP - <SP> > EP
then HP := HP - <SP>; <SP> :=
else error("memory overflow")

HP

m' Compiler Construction Summer semester 2008 22



Garbage Collection

@ explicitly by programmer (e.g., Pascal’s dispose or C’s free) or ...
@ automatically by runtime system (garbage collection; e.g., Java)

@ recursively mark all reachable objects
© deallocate all unreachable objects

(careful design required for concurrent and/or realtime systems)

o management of deallocated memory areas by free list

Rm Compiler Construction Summer semester 2008 23



	Repetition: Static Data Structures
	Translation of Static Data Structures into AM Programs
	A Translation Example
	Dynamic Data Structures

