Compiler Construction

Lecture 23: Code Generation VIII
(Generation of Machine Code)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

@ Ceneration of Machine Code

Rm Compiler Construction Summer semester 2



Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

Y
Syntactic analysis (Parser))

y
Semantic analysis)

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Summer semester 2008



The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)
Goal: runtime and storage efficiency
@ fast backend (optimization problems!)
@ fast and compact code
@ low memory requirements for data
Memory hierarchy: decreasing speed & costs
@ registers (program counter, data [universal/floating point/
address], frame pointer, index register, condition code, ...)
® cache (“fast” RAM)
@ main memory (“slow” RAM)
® background storage (disks, sticks, ...)
Principle: use fast memory whenever possible
@ evaluation of expressions in registers
(instead of data/runtime stack)
® code/procedure stack/heap in main memory
Instruction set: depending on
@ number of operands
@ type of operands
@ addressing modes

Rm Compiler Construction Summer semester 2008



Code Generation Phases

@ Register allocation: registers used for
o values of (frequently used) variables and intermediate results
¢ computing memory addresses
o passing parameters to procedures/functions

© Instruction selection:

o translation of abstract instructions into (sequences of) real
instructions

e employ special instructions for efficiency
(e.g., INC(x) rather than ADD(x,1))

@ Instruction placement: increase level of parallelism and/or
pipelining by ordering instructions smartly

Rm Compiler Construction Summer semester 2008



Register Allocation

Example 23.1

Assignment: Instruction Shorter sequence:
z = (utv)-(w-(x+y)) sequence for r = 2:

) . . Rg := M[u] Rg := M[w]
Targét machine with Ry := Ro+M[v] Ry := M[x]
r registers Rg, Ry, ..., Rp—1 Ry := M[x] Ry := Ry+M[y]
and main memory M Ry := Ri+M[y] Rg := Ry-R;

) M[t] :=Rg Ry :=M[ul

Instruction types: Ry :=M[w] Ry := Ry+M[v]

R; :=M[al R; :=R;-M[t] Ri1 :=R1-Rog

M[lal :=R; Ro := Ro—Rq M[z] :=Rq
R; :=R; op M[al] M[z] :=Ryg

Ri = Ri op Rj
(with address a)
o Reason: first variant requires intermediate storage for x+y
@ How to compute systematically?
o Idea: start with register-intensive subexpressions

m Compiler Construction Summer semester 2008



Register Optimization

o Let e =€ op es.
o Assumption: e; requires r; registers for evaluation
o Evaluation of e:

e if r1 <79 <r, then e can be evaluated using ro registers:
@ evaluate ex (using ro registers)
© keep result in 1 register
@ evaluate e; (using r1 + 1 < 72 registers in total)
@ combine results
e if 1o <71 <, then e can be evaluated using r; registers
e if 11 =79 < r, then e can be evaluated using r; + 1 registers
o if more than r registers required: use main memory as intermediate
storage

® The corresponding optimization algorithm works in two phases:
© Marking phase (computes r; values)
© Generation phase (produces actual code)
(for details see Wilhelm/Maurer: Ubersetzerbau, 2. Auflage,
Springer, 1997, Sct. 11.4)

Rm Compiler Construction Summer semester 2008



The Marking Phase

Algorithm 23.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute
1 ifxis a “left leaf”
r(x) ;=<0 ifxisa “right leaf”
1 if x is at the root
. dmax{r(er),r(e2)} uf r(e1) # r(e2)
r(e1 op e2) := {7,(61) 1 ifr(er) =r

Output: number of required registers r(e)

Example 23.3 (cf. Example 23.1)

e = (utv) - (w-(x+y)): /2\

m Compiler Construction Summer semester 2008 8



The Generation Phase 1

o Goal: generate optimal (= shortest) code for evaluating
expression e with register requirement r(e)
@ Data structures used in Algorithm 23.4:
RS: stack of available registers (initially: all registers;
never empty)
CS: stack of available main memory cells
o Auxiliary procedures used in Algorithm 23.4:
output: outputs the argument as code
top: returns the topmost entry of a stack S (leaving S
unchanged)
pop: removes and returns the topmost entry of a stack
push: puts an element onto a stack
exchange: exchanges the two topmost elements of a stack

Rm Compiler Construction Summer semester 2008 ©



The Generation Phase 11

Algorithm 23.4 (Generation phase)

Input: ezpression e, annotated with register requirement r(e)

Variables: RS': stack of registers;
CS: stack of memory cells;
R: register; C: memory cell;

Procedure: recursive execution of procedure code(e), defined by code(e) :=
ife=x,r(x)=1: % left leaf if e=e1 op ez, r(e1) > r(ez), r(e2) < r:
output(top(RS):= M[z]) code(er);
ife=e1 opy, r(y) =0: % right leaf f= pop(RS);
eedaen)s Coie(ef&é R op top(RS))
o output(R:=R op top ;
' output(top(RS):=top(RS) op MIyl) push(RS. R)
T erctamr gy ) SR TSI e = 61 op ea, r(er) 27 ren) 27
code(e2); code(e2);
R := pop(RS); C := pop(CS);
code(er); Ouép?t(;’l [C1:=top(RS));
- : code(e1);
;Ziﬁ%ggﬁ%fﬁ ioml(E5) o L output(top(RS):=top(RS) op M[C]);
exchange(RS) push(CS, C)

Output: optimal (= shortest) code for evaluating e

m Compiler Construction Summer semester 2008 10



The Generation Phase I11

o Invariants of Algorithm 23.4:
o after executing code(e), both RS and CS have their original values
o after executing the machine code produced by code(e), the value of
e is stored in the top register of RS
@ Shortcoming of Algorithm 23.4: multiple evaluation of common
subexpressions
(= dynamic programming, graph coloring, ...)

Example 23.5 (cf. Example 23.3)

(on the board)

m Compiler Construction Summer semester 2008 11



© Wrap-Up

Rm ompiler Construction Summer semester



©

Code optimization

©

Translation of higher-level constructs (modules, classes)

Translation of non-procedural languages
@ object-oriented (polymorphism, dynamic dispatch)
o functional (higher-order functions, typechecking)
¢ logic (unification, backtracking)

@ Bootstrapping

Rm Compiler Construction Summer semester 2008 13



Outlook

Winter semester 2008/09:
o Introduction to Model Checking [Katoen; V4U2]
o Semantics and Verification of Software [Noll; V4U2]

@ [Seminar Timed Automatal

Rm Compiler Construction Summer semester 2008 14



Course Evaluation

Discussion:
— More examples
— Lecture sometimes too fast
Slides sometimes to full
Some handouts inappropriate for printing
Curtain in AH 2

+ Repetition in beginning of lecture

Rm Compiler Construction Summer semester 2008 15



	Generation of Machine Code
	Wrap-Up

