

Compiler Construction

Lecture 2: Lexical Analysis I (Simple Matching Problem)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

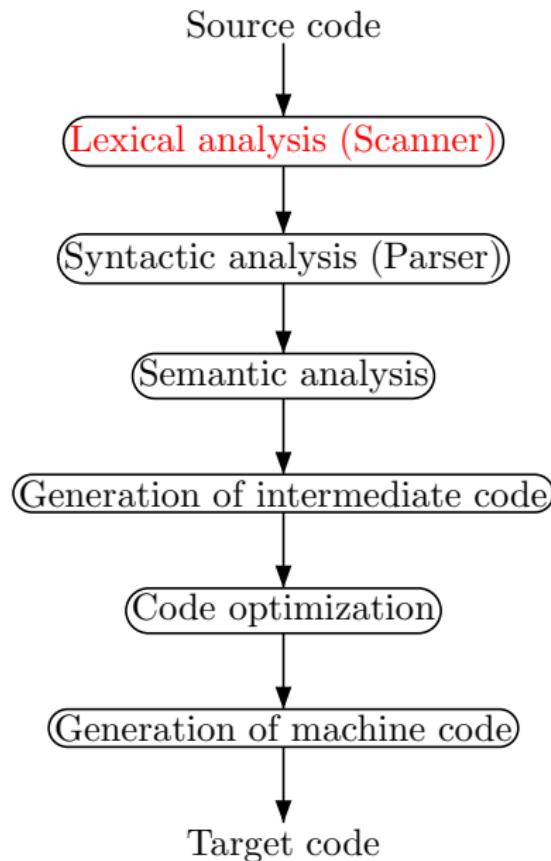
RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/cc08/>

Summer semester 2008

Conceptual Structure of a Compiler



- 1 Problem Statement
- 2 Specification of Symbol Classes
- 3 The Simple Matching Problem

- **Starting point:** source program P as a **character sequence**
 - Ω (finite) **character set** (e.g., ASCII, ISO Latin-1, Unicode, ...)
 - $a, b, c, \dots \in \Omega$ **characters** (= lexical atoms)
 - $P \in \Omega^*$ **source program**
(of course, not every $w \in \Omega^*$ is a valid program)
- P exhibits **lexical structures**:
 - natural language for keywords, identifiers, ...
 - mathematical notation for numbers, formulae, ...
(e.g., $x^2 \rightsquigarrow \mathbf{x}^{**2}$)
 - spaces, linebreaks, indentation
 - comments and compiler directives (pragmas)
- Translation of P follows its hierarchical structure (later)
- Pragmatic aspects mostly irrelevant (e.g., \mathbf{x}^{**2} or $\mathbf{x}^{\wedge}2$ for x^2)

Observations

- ① Syntactic atoms (called **symbols**) are represented as sequences of lexical atoms, called **lexemes**

First goal of lexical analysis

Decomposition of P into a **sequence of lexemes**

- ② Differences between similar lexemes are (mostly) irrelevant (e.g., identifiers do not need to be distinguished)
 - lexemes grouped into **symbol classes**
(e.g., identifiers, numbers, ...)
 - symbol classes abstractly represented by **tokens**
 - symbols identified by additional **attributes**
(e.g., identifier names, numerical values, ...; required for semantic analysis and code generation)
 \Rightarrow **symbol = (token, attribute)**

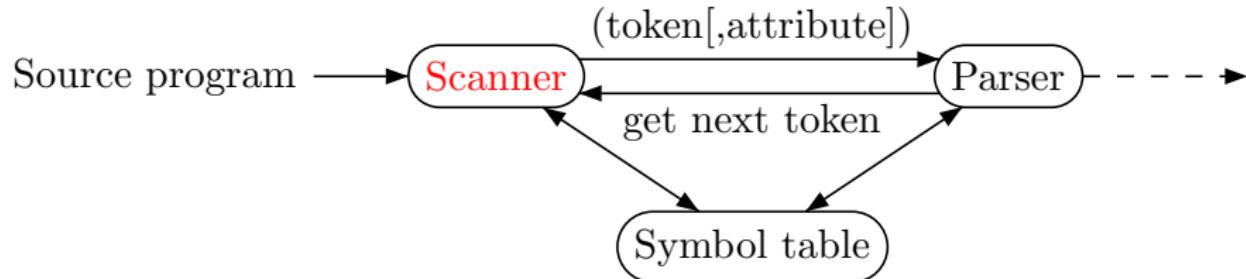
Second goal of lexical analysis

Transformation of a sequence of lexemes into a **sequence of symbols**

Definition 2.1

The goal of **lexical analysis** is to decompose a source program into a sequence of lexemes and their transformation into a sequence of symbols.

The corresponding program is called a **scanner**:



Example:

... $\lfloor x1 \rfloor := y2 + \lfloor 1 \rfloor ; \lfloor \dots$
 \Downarrow
... (id, p₁)(gets,)(id, p₂)(plus,)(int, 1)(sem,) ...

Important Classes of Symbols

Identifiers:

- for naming variables, constants, types, procedures, classes, ...
- usually a sequence of letters and digits, starting with a letter
- keywords usually forbidden; length possibly restricted

Keywords:

- identifiers with a predefined meaning
- for representing control structures (**while**), operators (**and**), ...

Numerals: certain sequences of digits, +, -, letters (for exponent and hexadecimal representation)

Simple symbols:

- one special character, e.g., +, *, <, (, ;, ...)
- each makes up a symbol class (plus, ...)

Composite symbols:

- two or more special characters, e.g., :=, **, <=, ...
- each makes up a symbol class (gets, ...)

White spaces:

- blanks, tabs, linebreaks, ...
- usually for separating symbols (exception: FORTRAN)

Representation of symbols: **symbol = (token, attribute)**

Token: (binary) denotation of symbol class (id, gets, plus, ...)

Attribute: additional information required in later compilation phases

- reference to symbol table
- value of numeral
- ...
- usually empty for singleton symbol classes

Observation: symbol classes are **regular sets**

⇒

- specification by **regular expressions**
- recognition by **finite automata**
- enables automatic generation of scanners (**[f]lex**)

- 1 Problem Statement
- 2 Specification of Symbol Classes
- 3 The Simple Matching Problem

Definition 2.2 (Syntax of regular expressions)

Given some alphabet Ω , the set of **regular expressions over Ω** , RE_Ω , is the least set with

- $\Lambda \in RE_\Omega$,
- $\Omega \subseteq RE_\Omega$, and
- whenever $\alpha, \beta \in RE_\Omega$, also $\alpha + \beta, \alpha \cdot \beta, \alpha^* \in RE_\Omega$.

Remarks:

- abbreviation: $\alpha^+ := \alpha \cdot \alpha^*$
- $\alpha \cdot \beta$ often written as $\alpha\beta$
- $*$ binds stronger than \cdot , \cdot binds stronger than $+$
(i.e., $a + b \cdot c^* := a + (b \cdot (c^*))$)

Regular Expressions II

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)

The **semantics of a regular expression** is defined by the mapping

$$[\![\cdot]\!] : RE_{\Omega} \rightarrow 2^{\Omega^*} \text{ where}$$

$$\begin{aligned} [\![\Lambda]\!] &:= \emptyset \\ [\![a]\!] &:= \{a\} \\ [\![\alpha + \beta]\!] &:= [\![\alpha]\!] \cup [\![\beta]\!] \\ [\![\alpha \cdot \beta]\!] &:= [\![\alpha]\!] \cdot [\![\beta]\!] \\ [\![\alpha^*]\!] &:= [\![\alpha]\!]^* \end{aligned}$$

Remarks: for formal languages $L, M \subseteq \Omega^*$, we have

- $L \cdot M := \{vw \mid v \in L, w \in M\}$
- $L^* := \bigcup_{n=0}^{\infty} L^n$ where $L^0 := \{\varepsilon\}$ and $L^{n+1} := L \cdot L^n$
($\implies L^* = \{w_1 w_2 \dots w_n \mid n \in \mathbb{N}, w_i \in L\}$ and $\varepsilon \in L^*$)
- $[\![\Lambda^*]\!] = [\![\Lambda]\!]^* = \emptyset^* = \{\varepsilon\}$

- 1 Problem Statement
- 2 Specification of Symbol Classes
- 3 The Simple Matching Problem

The Simple Matching Problem I

Problem 2.4 (Simple matching problem)

Given $\alpha \in RE_\Omega$ and $w \in \Omega^*$, decide whether $w \in \llbracket \alpha \rrbracket$ or not.

This problem can be solved using the following concept:

Definition 2.5 (Finite automaton)

A **nondeterministic finite automaton (NFA)** is of the form

$\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle$ where

- Q is a finite set of **states**
- Ω denotes the **input alphabet**
- $\delta : Q \times \Omega_\varepsilon \rightarrow 2^Q$ is the **transition function** where $\Omega_\varepsilon := \Omega \cup \{\varepsilon\}$
- $q_0 \in Q$ is the **initial state**
- $F \subseteq Q$ is the set of **final states**

The set of all NFA over Ω is denoted by NFA_Ω .

If $\delta(q, \varepsilon) = \emptyset$ and $|\delta(q, a)| = 1$ for every $q \in Q$ and $a \in \Omega$ (i.e., $\delta : Q \times \Omega \rightarrow Q$), then \mathfrak{A} is called **deterministic (DFA)**. Notation: DFA_Ω

The Simple Matching Problem II

Definition 2.6 (Acceptance condition)

Let $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in NFA_{\Omega}$.

- The **ε -closure** $\varepsilon(T) \subseteq Q$ of a subset $T \subseteq Q$ is defined by
 - $T \subseteq \varepsilon(T)$ and
 - if $q \in \varepsilon(T)$, then $\delta(q, \varepsilon) \subseteq \varepsilon(T)$
- The **extended transition function** of \mathfrak{A} , $\hat{\delta} : 2^Q \times \Omega^* \rightarrow 2^Q$, is given by
 - $\hat{\delta}(T, \varepsilon) := \varepsilon(T)$ and
 - $\hat{\delta}(T, wa) := \varepsilon \left(\bigcup_{q \in \hat{\delta}(T, w)} \delta(q, a) \right)$ ($w \in \Omega^*$, $a \in \Omega$)
- \mathfrak{A} **recognizes** the language

$$L(\mathfrak{A}) := \{w \in \Omega^* \mid \hat{\delta}(\{q_0\}, w) \cap F \neq \emptyset\}$$

Example 2.7

NFA for $a^*b + a^*$ (on the board)

Remarks:

- NFA as specified in Definition 2.5 are sometimes called **NFA with ε -transitions (ε -NFA)**.
- For $\mathfrak{A} \in DFA_{\Omega}$, the acceptance condition yields $\hat{\delta} : Q \times \Omega^* \rightarrow Q$ with $\hat{\delta}(q, \varepsilon) = q$ and $\hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a)$, and

$$L(\mathfrak{A}) = \{w \in \Omega^* \mid \hat{\delta}(q_0, w) \in F\}.$$

The DFA Method

Known from *Automata Theory and Formal Languages*:

Algorithm 2.8 (DFA method)

Input: regular expression $\alpha \in RE_\Omega$, input string $w \in \Omega^*$

Procedure: ① using Kleene's Theorem, construct $\mathfrak{A}_\alpha \in NFA_\Omega$ such that $L(\mathfrak{A}_\alpha) = \llbracket \alpha \rrbracket$

② apply powerset construction to obtain

$\mathfrak{A}'_\alpha = \langle Q', \Omega, \delta', q'_0, F' \rangle \in DFA_\Omega$ with
 $L(\mathfrak{A}'_\alpha) = L(\mathfrak{A}_\alpha) = \llbracket \alpha \rrbracket$

③ solve the matching problem by deciding whether
 $\hat{\delta}'(q'_0, w) \in F'$

Output: “yes” or “no”

Example 2.9

- ① Kleene's Theorem (on the board)
- ② Powerset construction (on the board)

① in construction phase:

- **Kleene method:** time and space $\mathcal{O}(|\alpha|)$ ($|\alpha| :=$ length of α)
- **Powerset construction:** time and space $\mathcal{O}(2^{|\mathfrak{A}_\alpha|}) = \mathcal{O}(2^{|\alpha|})$
($|\mathfrak{A}_\alpha| := \#$ of states)

② at runtime:

- **Word problem:** time $\mathcal{O}(|w|)$ ($|w| :=$ length of w), space $\mathcal{O}(1)$
(but $\mathcal{O}(2^{|\alpha|})$ for storing DFA)

⇒ nice runtime behavior but memory requirements too high
(and exponential time in construction phase)

The NFA Method

Idea: decrease memory requirements by **applying powerset construction at runtime**, i.e., only “to the run of w through \mathfrak{A}_α ” (direct computation of $\hat{\delta}(\{q_0\}, w)$; see Example 2.7)

Algorithm 2.10 (NFA method)

Input: automaton $\mathfrak{A}_\alpha = \langle Q, \Omega, \delta, q_0, F \rangle \in NFA_\Omega$,
input string $w \in \Omega^*$

Variables: $T \subseteq Q$, $a \in \Omega$, $w' \in \Omega^*$

Procedure: $T := \varepsilon(\{q_0\})$;
while $w \neq \varepsilon$ **do**
 $aw' := w$;
 $T := \varepsilon \left(\bigcup_{q \in T} \delta(q, a) \right)$;
 $w := w'$
od

Output: if $T \cap F \neq \emptyset$ then “yes” else “no”

For NFA Method at runtime:

- Space: $\mathcal{O}(|\alpha|)$ (for storing NFA and T)
- Time: $\mathcal{O}(|\alpha| \cdot |w|)$
(in the loop's body, $|T|$ states need to be considered)

⇒ trades exponential space for increase in time

Comparison:

Method	Space	Time (for " $w \in \llbracket \alpha \rrbracket$?"")
DFA	$\mathcal{O}(2^{ \alpha })$	$\mathcal{O}(w)$
NFA	$\mathcal{O}(\alpha)$	$\mathcal{O}(\alpha \cdot w)$

In practice:

- Exponential blowup of DFA methode usually does not occur in “real” applications (⇒ used in `f1ex`)
- Improvement of NFA method: caching of transitions $\hat{\delta}(T, a)$
⇒ combination of both methods