
Compiler Construction

Lecture 2: Lexical Analysis I (Simple Matching Problem)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
Compiler Construction Summer semester 2008 2

Outline

1 Problem Statement

2 Specification of Symbol Classes

3 The Simple Matching Problem

Compiler Construction Summer semester 2008 3

Lexical Structures

Starting point: source program P as a character sequence

Ω (finite) character set (e.g., ASCII, ISO Latin-1, Unicode, ...)
a, b, c, . . . ∈ Ω characters (= lexical atoms)
P ∈ Ω∗ source program
(of course, not every w ∈ Ω∗ is a valid program)

P exhibits lexical structures:

natural language for keywords, identifiers, ...
mathematical notation for numbers, formulae, ...
(e.g., x2

 x**2)
spaces, linebreaks, indentation
comments and compiler directives (pragmas)

Translation of P follows its hierarchical structure (later)

Pragmatic aspects mostly irrelevant (e.g., x**2 or x^2 for x2)

Compiler Construction Summer semester 2008 4

Observations

1 Syntactic atoms (called symbols) are represented as sequences of
lexical atoms, called lexemes

First goal of lexical analysis

Decomposition of P into a sequence of lexemes

2 Differences between similar lexemes are (mostly) irrelevant
(e.g., identifiers do not need to be distinguished)

lexemes grouped into symbol classes
(e.g., identifiers, numbers, ...)
symbol classes abstractly represented by tokens
symbols identified by additional attributes
(e.g., identifier names, numerical values, ...; required for semantic
analysis and code generation)
=⇒ symbol = (token, attribute)

Second goal of lexical analysis

Transformation of a sequence of lexemes into a sequence of symbols

Compiler Construction Summer semester 2008 5

Lexical Analysis

Definition 2.1

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of
symbols.

The corresponding program is called a scanner:

Source program Scanner Parser

Symbol table

(token[,attribute])

get next token

Example: . . . x1 :=y2+ 1 ; . . .
⇓

. . . (id, p1)(gets,)(id, p2)(plus,)(int, 1)(sem,) . . .

Compiler Construction Summer semester 2008 6

Important Classes of Symbols

Identifiers: for naming variables, constants, types, procedures, classes,
...
usually a sequence of letters and digits, starting with a
letter
keywords usually forbidden; length possibly restricted

Keywords: identifiers with a predefined meaning
for representing control structures (while), operators
(and), ...

Numerals: certain sequences of digits, +, -, letters (for exponent and
hexadecimal representation)

Simple symbols: one special character, e.g., +, *, <, (, ;, ...
each makes up a symbol class (plus, ...)

Composite symbols: two or more special characters, e.g., :=, **, <=, ...
each makes up a symbol class (gets, ...)

White spaces: blanks, tabs, linebreaks, ...
usually for separating symbols (exception: FORTRAN)

Compiler Construction Summer semester 2008 7

Specification and Implementation of Scanners

Representation of symbols: symbol = (token, attribute)

Token: (binary) denotation of symbol class (id, gets, plus, ...)

Attribute: additional information required in later compilation
phases

reference to symbol table
value of numeral
...
usually empty for singleton symbol classes

Observation: symbol classes are regular sets

=⇒ specification by regular expressions

recognition by finite automata

enables automatic generation of scanners ([f]lex)

Compiler Construction Summer semester 2008 8

Outline

1 Problem Statement

2 Specification of Symbol Classes

3 The Simple Matching Problem

Compiler Construction Summer semester 2008 9

Regular Expressions I

Definition 2.2 (Syntax of regular expressions)

Given some alphabet Ω, the set of regular expressions over Ω, REΩ, is
the least set with

Λ ∈ REΩ,

Ω ⊆ REΩ, and

whenever α, β ∈ REΩ, also α + β, α · β, α∗ ∈ REΩ.

Remarks:

abbreviation: α+ := α · α∗

α · β often written as αβ

∗ binds stronger than ·, · binds stronger than +
(i.e., a + b · c∗ := a + (b · (c∗)))

Compiler Construction Summer semester 2008 10

Regular Expressions II

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)

The semantics of a regular expression is defined by the mapping

J.K : REΩ → 2Ω∗

where

JΛK := ∅
JaK := {a}

Jα + βK := JαK ∪ JβK
Jα · βK := JαK · JβK

Jα∗K := JαK∗

Remarks: for formal languages L,M ⊆ Ω∗, we have

L · M := {vw | v ∈ L,w ∈ M}

L∗ :=
⋃∞

n=0 Ln where L0 := {ε} and Ln+1 := L · Ln

(=⇒ L∗ = {w1w2 . . . wn | n ∈ N, wi ∈ L} and ε ∈ L∗)

JΛ∗K = JΛK∗ = ∅∗ = {ε}

Compiler Construction Summer semester 2008 11

Outline

1 Problem Statement

2 Specification of Symbol Classes

3 The Simple Matching Problem

Compiler Construction Summer semester 2008 12

The Simple Matching Problem I

Problem 2.4 (Simple matching problem)

Given α ∈ REΩ and w ∈ Ω∗, decide whether w ∈ JαK or not.

This problem can be solved using the following concept:

Definition 2.5 (Finite automaton)

A nondeterministic finite automaton (NFA) is of the form
A = 〈Q,Ω, δ, q0, F 〉 where

Q is a finite set of states
Ω denotes the input alphabet
δ : Q × Ωε → 2Q is the transition function where Ωε := Ω ∪ {ε}
q0 ∈ Q is the initial state
F ⊆ Q is the set of final states

The set of all NFA over Ω is denoted by NFAΩ.
If δ(q, ε) = ∅ and |δ(q, a)| = 1 for every q ∈ Q and a ∈ Ω (i.e.,
δ : Q×Ω → Q), then A is called deterministic (DFA). Notation: DFAΩ

Compiler Construction Summer semester 2008 13

The Simple Matching Problem II

Definition 2.6 (Acceptance condition)

Let A = 〈Q,Ω, δ, q0, F 〉 ∈ NFAΩ.

The ε-closure ε(T) ⊆ Q of a subset T ⊆ Q is defined by

T ⊆ ε(T) and
if q ∈ ε(T), then δ(q, ε) ⊆ ε(T)

The extended transition function of A, δ̂ : 2Q × Ω∗ → 2Q, is given
by

δ̂(T, ε) := ε(T) and

δ̂(T, wa) := ε
(

⋃

q∈δ̂(T,w) δ(q, a)
)

(w ∈ Ω∗, a ∈ Ω)

A recognizes the language
L(A) := {w ∈ Ω∗ | δ̂({q0}, w) ∩ F 6= ∅}

Example 2.7

NFA for a∗b + a∗ (on the board)

Compiler Construction Summer semester 2008 14

The Simple Matching Problem III

Remarks:

NFA as specified in Definition 2.5 are sometimes called NFA with
ε-transitions (ε-NFA).

For A ∈ DFAΩ, the acceptance condition yields δ̂ : Q × Ω∗ → Q

with δ̂(q, ε) = q and δ̂(q, wa) = δ(δ̂(q, w), a), and

L(A) = {w ∈ Ω∗ | δ̂(q0, w) ∈ F}.

Compiler Construction Summer semester 2008 15

The DFA Method

Known from Automata Theory and Formal Languages:

Algorithm 2.8 (DFA method)

Input: regular expression α ∈ REΩ, input string w ∈ Ω∗

Procedure: 1 using Kleene’s Theorem, construct Aα ∈ NFAΩ such

that L(Aα) = JαK
2 apply powerset construction to obtain

A
′
α = 〈Q′,Ω, δ′, q′0, F

′〉 ∈ DFAΩ with

L(A′
α) = L(Aα) = JαK

3 solve the matching problem by deciding whether

δ̂′(q′0, w) ∈ F ′

Output: “yes” or “no”

Example 2.9

1 Kleene’s Theorem (on the board)

2 Powerset construction (on the board)

Compiler Construction Summer semester 2008 16

Time and Space Complexity of DFA Method

1 in construction phase:

Kleene method: time and space O(|α|) (|α| := length of α)
Powerset construction: time and space O(2|Aα|) = O(2|α|)
(|Aα| := # of states)

2 at runtime:

Word problem: time O(|w|) (|w| := length of w), space O(1)
(but O(2|α|) for storing DFA)

=⇒ nice runtime behavior but memory requirements too high
(and exponential time in construction phase)

Compiler Construction Summer semester 2008 17

The NFA Method

Idea: decrease memory requirements by applying powerset
construction at runtime, i.e., only “to the run of w through Aα”
(direct computation of δ̂({q0}, w); see Example 2.7)

Algorithm 2.10 (NFA method)

Input: automaton Aα = 〈Q,Ω, δ, q0, F 〉 ∈ NFAΩ,

input string w ∈ Ω∗

Variables: T ⊆ Q, a ∈ Ω, w′ ∈ Ω∗

Procedure: T := ε({q0});
while w 6= ε do

aw′ := w;

T := ε
(

⋃

q∈T δ(q, a)
)

;

w := w′

od

Output: if T ∩ F 6= ∅ then “yes” else “no”

Compiler Construction Summer semester 2008 18

Complexity Analysis

For NFA Method at runtime:

Space: O(|α|) (for storing NFA and T)

Time: O(|α| · |w|)
(in the loop’s body, |T | states need to be considered)

=⇒ trades exponential space for increase in time

Comparison:

Method Space Time (for “w ∈ JαK?”)

DFA O(2|α|) O(|w|)
NFA O(|α|) O(|α| · |w|)

In practice:

Exponential blowup of DFA methode usually does not occur in
“real” applications (=⇒ used in [f]lex)

Improvement of NFA method: caching of transitions δ̂(T, a)
=⇒ combination of both methods

Compiler Construction Summer semester 2008 19

	Problem Statement
	Specification of Symbol Classes
	The Simple Matching Problem

