
Compiler Construction
Lecture 3: Lexical Analysis II

(First-Longest-Match Analysis)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Outline

1 Repetition: The Simple Matching Problem

2 The Extended Matching Problem

3 First-Longest-Match Analysis

4 Implementation

Compiler Construction Summer semester 2008 2

Repetition: The Simple Matching Problem

Problem (Simple matching problem)

Given α ∈ REΩ and w ∈ Ω∗, decide whether w ∈ JαK or not.

Two approaches:

DFA method:

1 Kleene’s transformation REΩ → NFAΩ

2 powerset construction NFAΩ → DFAΩ

± nice runtime behavior but potential exponential
blowup

NFA method:

1 Kleene’s transformation
2 powerset construction “at runtime”
± linear space complexity but additional runtime

overhead

Compiler Construction Summer semester 2008 3

Outline

1 Repetition: The Simple Matching Problem

2 The Extended Matching Problem

3 First-Longest-Match Analysis

4 Implementation

Compiler Construction Summer semester 2008 4

The Extended Matching Problem I

Definition 3.1

Let α1, . . . , αn ∈ REΩ and w ∈ Ω∗. Moreover let Σ := {T1, . . . , Tn} be
an alphabet of tokens. If w1, . . . , wk ∈ Ω∗ such that

w = w1 . . . wk and
for every j ∈ [k] (:= {1, . . . , k}) there exists ij ∈ [n] such that
wj ∈ Jαij K,

then

(w1, . . . , wk) is called a decomposition and
(Ti1 , . . . , Tik) is called an analysis

of w w.r.t. α1, . . . , αn.

Compiler Construction Summer semester 2008 5

The Extended Matching Problem I

Definition 3.1

Let α1, . . . , αn ∈ REΩ and w ∈ Ω∗. Moreover let Σ := {T1, . . . , Tn} be
an alphabet of tokens. If w1, . . . , wk ∈ Ω∗ such that

w = w1 . . . wk and
for every j ∈ [k] (:= {1, . . . , k}) there exists ij ∈ [n] such that
wj ∈ Jαij K,

then

(w1, . . . , wk) is called a decomposition and
(Ti1 , . . . , Tik) is called an analysis

of w w.r.t. α1, . . . , αn.

Problem 3.2 (Extended matching problem)

Given α1, . . . , αn ∈ REΩ and w ∈ Ω∗, decide whether there exists a
decomposition of w w.r.t. α1, . . . , αn and determine a corresponding
analysis.

Compiler Construction Summer semester 2008 5

The Extended Matching Problem II

Observation: neither the decomposition nor the analysis are uniquely
determined

Example 3.3

1 α = a+, w = aa
=⇒ two decompositions (aa) and (a, a) with unique analysis each

Compiler Construction Summer semester 2008 6

The Extended Matching Problem II

Observation: neither the decomposition nor the analysis are uniquely
determined

Example 3.3

1 α = a+, w = aa
=⇒ two decompositions (aa) and (a, a) with unique analysis each

2 α1 = a + b, α2 = a + c, w = a
=⇒ unique decomposition (a) but two analyses (T1) and (T2)

Compiler Construction Summer semester 2008 6

Outline

1 Repetition: The Simple Matching Problem

2 The Extended Matching Problem

3 First-Longest-Match Analysis

4 Implementation

Compiler Construction Summer semester 2008 7

Ensuring Uniqueness

Two principles:
1 Principle of the longest match (“maximal munch tokenization”)

for uniqueness of decomposition
make lexemes as long as possible
motivated by applications: usually every (nonempty) prefix of an
identifier is also an identifier

Compiler Construction Summer semester 2008 8

Ensuring Uniqueness

Two principles:
1 Principle of the longest match (“maximal munch tokenization”)

for uniqueness of decomposition
make lexemes as long as possible
motivated by applications: usually every (nonempty) prefix of an
identifier is also an identifier

2 Principle of the first match

for uniqueness of analysis
choose first matching regular expression (in the order given)

Compiler Construction Summer semester 2008 8

Ensuring Uniqueness

Two principles:
1 Principle of the longest match (“maximal munch tokenization”)

for uniqueness of decomposition
make lexemes as long as possible
motivated by applications: usually every (nonempty) prefix of an
identifier is also an identifier

2 Principle of the first match

for uniqueness of analysis
choose first matching regular expression (in the order given)

From now on we assume:

ε /∈ JαiK 6= ∅ for every i ∈ [n]

Compiler Construction Summer semester 2008 8

Principle of the Longest Match

Definition 3.4 (Longest-match decomposition)

A decomposition (w1, . . . , wk) of w ∈ Ω∗ w.r.t. α1, . . . , αn ∈ REΩ is
called a longest-match decomposition (LM decomposition) if, for every
i ∈ [k], x ∈ Ω+, and y ∈ Ω∗,

w = w1 . . . wixy =⇒ there is no j ∈ [n] such that wix ∈ JαjK

Compiler Construction Summer semester 2008 9

Principle of the Longest Match

Definition 3.4 (Longest-match decomposition)

A decomposition (w1, . . . , wk) of w ∈ Ω∗ w.r.t. α1, . . . , αn ∈ REΩ is
called a longest-match decomposition (LM decomposition) if, for every
i ∈ [k], x ∈ Ω+, and y ∈ Ω∗,

w = w1 . . . wixy =⇒ there is no j ∈ [n] such that wix ∈ JαjK

Corollary 3.5

Given w and α1, . . . , αn,

at most one LM decomposition of w exists (clear by definition) and

Compiler Construction Summer semester 2008 9

Principle of the Longest Match

Definition 3.4 (Longest-match decomposition)

A decomposition (w1, . . . , wk) of w ∈ Ω∗ w.r.t. α1, . . . , αn ∈ REΩ is
called a longest-match decomposition (LM decomposition) if, for every
i ∈ [k], x ∈ Ω+, and y ∈ Ω∗,

w = w1 . . . wixy =⇒ there is no j ∈ [n] such that wix ∈ JαjK

Corollary 3.5

Given w and α1, . . . , αn,

at most one LM decomposition of w exists (clear by definition) and

it is possible that w has a decomposition but no LM decomposition
(see example).

Example 3.6

w = aab, α1 = a+, α2 = ab
=⇒ (a, ab) is a decomposition but no LM decomposition exists

Compiler Construction Summer semester 2008 9

Principle of the First Match

Problem: a (unique) LM decomposition can have several associated
analyses (since JαiK ∩ JαjK 6= ∅ with i 6= j is possible; cf.
keyword/identifier problem)

Compiler Construction Summer semester 2008 10

Principle of the First Match

Problem: a (unique) LM decomposition can have several associated
analyses (since JαiK ∩ JαjK 6= ∅ with i 6= j is possible; cf.
keyword/identifier problem)

Definition 3.7 (First-longest-match analysis)

Let (w1, . . . , wk) be an LM decomposition with analysis (Ti1 , . . . , Tik)
of w ∈ Ω∗ w.r.t. α1, . . . , αn ∈ REΩ. Then (Ti1 , . . . , Tik) is called a
first-longest-match analysis (FLM analysis) if, for every j ∈ [k],

ij = min{l ∈ [n] | wj ∈ JαlK}.

Compiler Construction Summer semester 2008 10

Principle of the First Match

Problem: a (unique) LM decomposition can have several associated
analyses (since JαiK ∩ JαjK 6= ∅ with i 6= j is possible; cf.
keyword/identifier problem)

Definition 3.7 (First-longest-match analysis)

Let (w1, . . . , wk) be an LM decomposition with analysis (Ti1 , . . . , Tik)
of w ∈ Ω∗ w.r.t. α1, . . . , αn ∈ REΩ. Then (Ti1 , . . . , Tik) is called a
first-longest-match analysis (FLM analysis) if, for every j ∈ [k],

ij = min{l ∈ [n] | wj ∈ JαlK}.

Corollary 3.8

Given w and α1, . . . , αn, there is at most one FLM analysis of w.
It exists iff the LM decomposition of w exists.

Compiler Construction Summer semester 2008 10

Outline

1 Repetition: The Simple Matching Problem

2 The Extended Matching Problem

3 First-Longest-Match Analysis

4 Implementation

Compiler Construction Summer semester 2008 11

Implementation of FLM Analysis

Algorithm 3.9 (FLM analysis—overview)

Input: expressions α1, . . . , αn ∈ REΩ, tokens {T1, . . . , Tn},
input word w ∈ Ω∗

Compiler Construction Summer semester 2008 12

Implementation of FLM Analysis

Algorithm 3.9 (FLM analysis—overview)

Input: expressions α1, . . . , αn ∈ REΩ, tokens {T1, . . . , Tn},
input word w ∈ Ω∗

Procedure: 1 for every i ∈ [n], construct Ai ∈ DFAΩ such that
L(Ai) = JαiK (see DFA method)

Compiler Construction Summer semester 2008 12

Implementation of FLM Analysis

Algorithm 3.9 (FLM analysis—overview)

Input: expressions α1, . . . , αn ∈ REΩ, tokens {T1, . . . , Tn},
input word w ∈ Ω∗

Procedure: 1 for every i ∈ [n], construct Ai ∈ DFAΩ such that
L(Ai) = JαiK (see DFA method)

2 construct the product automaton A ∈ DFAΩ such that
L(A) =

⋃n
i=1JαiK

Compiler Construction Summer semester 2008 12

Implementation of FLM Analysis

Algorithm 3.9 (FLM analysis—overview)

Input: expressions α1, . . . , αn ∈ REΩ, tokens {T1, . . . , Tn},
input word w ∈ Ω∗

Procedure: 1 for every i ∈ [n], construct Ai ∈ DFAΩ such that
L(Ai) = JαiK (see DFA method)

2 construct the product automaton A ∈ DFAΩ such that
L(A) =

⋃n
i=1JαiK

3 partition the set of final states of A to follow the
first-match principle

Compiler Construction Summer semester 2008 12

Implementation of FLM Analysis

Algorithm 3.9 (FLM analysis—overview)

Input: expressions α1, . . . , αn ∈ REΩ, tokens {T1, . . . , Tn},
input word w ∈ Ω∗

Procedure: 1 for every i ∈ [n], construct Ai ∈ DFAΩ such that
L(Ai) = JαiK (see DFA method)

2 construct the product automaton A ∈ DFAΩ such that
L(A) =

⋃n
i=1JαiK

3 partition the set of final states of A to follow the
first-match principle

4 extend the resulting DFA to a backtracking DFA
which implements the longest-match principle, and let
it run on w

Compiler Construction Summer semester 2008 12

Implementation of FLM Analysis

Algorithm 3.9 (FLM analysis—overview)

Input: expressions α1, . . . , αn ∈ REΩ, tokens {T1, . . . , Tn},
input word w ∈ Ω∗

Procedure: 1 for every i ∈ [n], construct Ai ∈ DFAΩ such that
L(Ai) = JαiK (see DFA method)

2 construct the product automaton A ∈ DFAΩ such that
L(A) =

⋃n
i=1JαiK

3 partition the set of final states of A to follow the
first-match principle

4 extend the resulting DFA to a backtracking DFA
which implements the longest-match principle, and let
it run on w

Output: FLM analysis of w (if it exists)

Compiler Construction Summer semester 2008 12

(2) The Product Automaton

Definition 3.10 (Product automaton)

Let Ai = 〈Qi,Ω, δi, q
(i)
0 , Fi〉 ∈ DFAΩ for every i ∈ [n]. The product

automaton A = 〈Q,Ω, δ, q0, F 〉 ∈ DFAΩ is defined by

Q := Q1 × . . . × Qn

q0 := (q
(1)
0 , . . . , q

(n)
0)

δ((q(1), . . . , q(n)), a) := (δ1(q
(1), a), . . . , δn(q(n), a))

(q(1), . . . , q(n)) ∈ F iff there ex. i ∈ [n] such that q(i) ∈ Fi

Compiler Construction Summer semester 2008 13

(2) The Product Automaton

Definition 3.10 (Product automaton)

Let Ai = 〈Qi,Ω, δi, q
(i)
0 , Fi〉 ∈ DFAΩ for every i ∈ [n]. The product

automaton A = 〈Q,Ω, δ, q0, F 〉 ∈ DFAΩ is defined by

Q := Q1 × . . . × Qn

q0 := (q
(1)
0 , . . . , q

(n)
0)

δ((q(1), . . . , q(n)), a) := (δ1(q
(1), a), . . . , δn(q(n), a))

(q(1), . . . , q(n)) ∈ F iff there ex. i ∈ [n] such that q(i) ∈ Fi

Lemma 3.11

The above construction yields L(A) =
⋃n

i=1 L(Ai) (=
⋃n

i=1JαiK).

Compiler Construction Summer semester 2008 13

(2) The Product Automaton

Definition 3.10 (Product automaton)

Let Ai = 〈Qi,Ω, δi, q
(i)
0 , Fi〉 ∈ DFAΩ for every i ∈ [n]. The product

automaton A = 〈Q,Ω, δ, q0, F 〉 ∈ DFAΩ is defined by

Q := Q1 × . . . × Qn

q0 := (q
(1)
0 , . . . , q

(n)
0)

δ((q(1), . . . , q(n)), a) := (δ1(q
(1), a), . . . , δn(q(n), a))

(q(1), . . . , q(n)) ∈ F iff there ex. i ∈ [n] such that q(i) ∈ Fi

Lemma 3.11

The above construction yields L(A) =
⋃n

i=1 L(Ai) (=
⋃n

i=1JαiK).

Remark: similar construction for intersection (F := F1 × . . . × Fn)

Compiler Construction Summer semester 2008 13

(3) Partitioning the Final States

Definition 3.12 (Partition of final states)

Let A = 〈Q,Ω, δ, q0, F 〉 ∈ DFAΩ be the product automaton as
constructed before. Its set of final states is partitioned into
F =

⊎n
i=1 F (i) by the requirement

(q(1), . . . , q(n)) ∈ F (i) iff q(i) ∈ Fi and ∀j ∈ [i − 1] : q(j) /∈ Fj

(or: F (i) := (Q1 \ F1) × . . . × (Qi−1 \ Fi−1) × Fi × Qi+1 × . . . × Qn)

Compiler Construction Summer semester 2008 14

(3) Partitioning the Final States

Definition 3.12 (Partition of final states)

Let A = 〈Q,Ω, δ, q0, F 〉 ∈ DFAΩ be the product automaton as
constructed before. Its set of final states is partitioned into
F =

⊎n
i=1 F (i) by the requirement

(q(1), . . . , q(n)) ∈ F (i) iff q(i) ∈ Fi and ∀j ∈ [i − 1] : q(j) /∈ Fj

(or: F (i) := (Q1 \ F1) × . . . × (Qi−1 \ Fi−1) × Fi × Qi+1 × . . . × Qn)

Corollary 3.13

The above construction yields (w ∈ Ω∗, i ∈ [n]):
δ̂(q0, w) ∈ F (i) iff w ∈ JαiK and w /∈

⋃i−1
j=1JαjK.

Compiler Construction Summer semester 2008 14

(3) Partitioning the Final States

Definition 3.12 (Partition of final states)

Let A = 〈Q,Ω, δ, q0, F 〉 ∈ DFAΩ be the product automaton as
constructed before. Its set of final states is partitioned into
F =

⊎n
i=1 F (i) by the requirement

(q(1), . . . , q(n)) ∈ F (i) iff q(i) ∈ Fi and ∀j ∈ [i − 1] : q(j) /∈ Fj

(or: F (i) := (Q1 \ F1) × . . . × (Qi−1 \ Fi−1) × Fi × Qi+1 × . . . × Qn)

Corollary 3.13

The above construction yields (w ∈ Ω∗, i ∈ [n]):
δ̂(q0, w) ∈ F (i) iff w ∈ JαiK and w /∈

⋃i−1
j=1JαjK.

Definition 3.14 (Productive states)

Given A as above, a state q ∈ Q is called productive if there exists
w ∈ Ω∗ such that δ̂(q, w) ∈ F . The set of productive states of A is
denoted by P (and thus F ⊆ P).

Compiler Construction Summer semester 2008 14

(4) The Backtracking DFA I

Goal: extend A to the backtracking DFA B with output by equipping the
input tape with two pointers: a backtracking head for marking the last
encountered match, and a lookahead for determining the longest match.

Compiler Construction Summer semester 2008 15

(4) The Backtracking DFA I

Goal: extend A to the backtracking DFA B with output by equipping the
input tape with two pointers: a backtracking head for marking the last
encountered match, and a lookahead for determining the longest match.

A configuration of B has three components
(remember: Σ := {T1, . . . , Tn} denotes the set of tokens):

1 a mode m ∈ {N} ⊎ Σ:

m = N (“normal”): look for first match (no final state reached yet)
m = T ∈ Σ: token T has been recognized, looking for possible
longer match

Compiler Construction Summer semester 2008 15

(4) The Backtracking DFA I

Goal: extend A to the backtracking DFA B with output by equipping the
input tape with two pointers: a backtracking head for marking the last
encountered match, and a lookahead for determining the longest match.

A configuration of B has three components
(remember: Σ := {T1, . . . , Tn} denotes the set of tokens):

1 a mode m ∈ {N} ⊎ Σ:

m = N (“normal”): look for first match (no final state reached yet)
m = T ∈ Σ: token T has been recognized, looking for possible
longer match

2 an input tape vqw ∈ Ω∗ · Q · Ω∗:

v: lookahead part of input (v 6= ε =⇒ m ∈ Σ)
q: current state of A

w: remaining input

Compiler Construction Summer semester 2008 15

(4) The Backtracking DFA I

Goal: extend A to the backtracking DFA B with output by equipping the
input tape with two pointers: a backtracking head for marking the last
encountered match, and a lookahead for determining the longest match.

A configuration of B has three components
(remember: Σ := {T1, . . . , Tn} denotes the set of tokens):

1 a mode m ∈ {N} ⊎ Σ:

m = N (“normal”): look for first match (no final state reached yet)
m = T ∈ Σ: token T has been recognized, looking for possible
longer match

2 an input tape vqw ∈ Ω∗ · Q · Ω∗:

v: lookahead part of input (v 6= ε =⇒ m ∈ Σ)
q: current state of A

w: remaining input

3 an output tape W ∈ Σ∗ · {ε, lexerr}:

Σ∗: sequence of tokens recognized so far
lexerr: a lexical error has occurred (i.e., a non-productive state was
entered or the suffix of the input is not a valid lexeme)

Compiler Construction Summer semester 2008 15

(4) The Backtracking DFA II

Definition 3.15 (Backtracking DFA)

The set of configurations of B is given by
({N} ⊎ Σ) × Ω∗ · Q · Ω∗ × Σ∗ · {ε, lexerr}

The initial configuration for an input word w ∈ Ω∗ is (N, q0w, ε).

Compiler Construction Summer semester 2008 16

(4) The Backtracking DFA II

Definition 3.15 (Backtracking DFA)

The set of configurations of B is given by
({N} ⊎ Σ) × Ω∗ · Q · Ω∗ × Σ∗ · {ε, lexerr}

The initial configuration for an input word w ∈ Ω∗ is (N, q0w, ε).

The transitions of B are defined as follows (where q′ := δ(q, a)):

normal mode: look for a match

(N, qaw, W) ⊢







(N, q′w, W) if q′ ∈ P \ F
(Ti, q

′w, W) if q′ ∈ F (i)

output: W · lexerr if q′ /∈ P

Compiler Construction Summer semester 2008 16

(4) The Backtracking DFA II

Definition 3.15 (Backtracking DFA)

The set of configurations of B is given by
({N} ⊎ Σ) × Ω∗ · Q · Ω∗ × Σ∗ · {ε, lexerr}

The initial configuration for an input word w ∈ Ω∗ is (N, q0w, ε).

The transitions of B are defined as follows (where q′ := δ(q, a)):

normal mode: look for a match

(N, qaw, W) ⊢







(N, q′w, W) if q′ ∈ P \ F
(Ti, q

′w, W) if q′ ∈ F (i)

output: W · lexerr if q′ /∈ P
backtrack mode: look for longest match

(T, vqaw, W) ⊢







(T, vaq′w, W) if q′ ∈ P \ F
(Ti, q

′w, W) if q′ ∈ F (i)

(N, q0vaw, WT) if q′ /∈ P

Compiler Construction Summer semester 2008 16

(4) The Backtracking DFA II

Definition 3.15 (Backtracking DFA)

The set of configurations of B is given by
({N} ⊎ Σ) × Ω∗ · Q · Ω∗ × Σ∗ · {ε, lexerr}

The initial configuration for an input word w ∈ Ω∗ is (N, q0w, ε).

The transitions of B are defined as follows (where q′ := δ(q, a)):

normal mode: look for a match

(N, qaw, W) ⊢







(N, q′w, W) if q′ ∈ P \ F
(Ti, q

′w, W) if q′ ∈ F (i)

output: W · lexerr if q′ /∈ P
backtrack mode: look for longest match

(T, vqaw, W) ⊢







(T, vaq′w, W) if q′ ∈ P \ F
(Ti, q

′w, W) if q′ ∈ F (i)

(N, q0vaw, WT) if q′ /∈ P
end of input

(N, q, W) ⊢ output: W · lexerr if q ∈ P \ F
(T, q, W) ⊢ output: WT if q ∈ F

(T, vaq, W) ⊢ (N, q0va, WT) if q ∈ P \ F

Compiler Construction Summer semester 2008 16

(4) The Backtracking DFA III

Lemma 3.16

Given the backtracking DFA B as before and w ∈ Ω∗,

(N, q0w, ε) ⊢∗

{

W ∈ Σ∗ iff W is the FLM analysis of w
W · lexerr iff no FLM analysis of w exists

Compiler Construction Summer semester 2008 17

(4) The Backtracking DFA III

Lemma 3.16

Given the backtracking DFA B as before and w ∈ Ω∗,

(N, q0w, ε) ⊢∗

{

W ∈ Σ∗ iff W is the FLM analysis of w
W · lexerr iff no FLM analysis of w exists

Example 3.17

1 α = (ab)+, w = abaa (on the board)

Compiler Construction Summer semester 2008 17

(4) The Backtracking DFA III

Lemma 3.16

Given the backtracking DFA B as before and w ∈ Ω∗,

(N, q0w, ε) ⊢∗

{

W ∈ Σ∗ iff W is the FLM analysis of w
W · lexerr iff no FLM analysis of w exists

Example 3.17

1 α = (ab)+, w = abaa (on the board)

2 see 2nd exercise sheet

Compiler Construction Summer semester 2008 17

(4) The Backtracking DFA IV

Remarks:

Time complexity: O(|w|2) in worst case

Example: α1 = a, α2 = a∗b, w = am requires O(m2)

Compiler Construction Summer semester 2008 18

(4) The Backtracking DFA IV

Remarks:

Time complexity: O(|w|2) in worst case

Example: α1 = a, α2 = a∗b, w = am requires O(m2)

Improvement by tabular method (similar to Knuth-Morris-Pratt
Algorithm for pattern matching in strings)

Literature: Th. Reps: “Maximal-Munch” Tokenization in Linear

Time, ACM TOPLAS 20(2), 1998, 259–273

Compiler Construction Summer semester 2008 18

	Repetition: The Simple Matching Problem
	The Extended Matching Problem
	First-Longest-Match Analysis
	Implementation

