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@ Repetition: The Simple Matching Problem
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Repetition: The Simple Matching Problem

Problem (Simple matching problem)

Given o € REq and w € Q*, decide whether w € [a] or not.

Two approaches:
DFA method:

@ Kleene’s transformation REq — NFAq

© powerset construction NFAqg — DFAq

+ nice runtime behavior but potential exponential
blowup

NFA method:

@ Kleene’s transformation

© powerset construction “at runtime”

+ linear space complexity but additional runtime
overhead
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© The Extended Matching Problem
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The Extended Matching Problem I

Let aq,...,a, € REq and w € Q*. Moreover let ¥ := {T1,...,T,} be
an alphabet of tokens. If wq,...,wg € Q* such that
@ w=wi...w; and
o for every j € [k] (:={1,...,k}) there exists i; € [n] such that
wj € [[a’ij]]u
then
o (wi,...,wy) is called a decomposition and

o (T;,,...,T;,) is called an analysis

of w w.r.t. aq,...,q,.
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The Extended Matching Problem I

Let aq,...,a, € REq and w € Q*. Moreover let ¥ := {T1,...,T,} be
an alphabet of tokens. If wq,...,wg € Q* such that
@ w=wi...w; and
o for every j € [k] (:={1,...,k}) there exists i; € [n] such that
wj € [[a’ij]]u
then
o (wi,...,wy) is called a decomposition and

o (T;,,...,T;,) is called an analysis

of w w.r.t. aq,...,q,.

Problem 3.2 (Extended matching problem)

Given ay,...,a, € REq and w € QF, decide whether there exists a
decomposition of w w.r.t. aq,...,a, and determine a corresponding
analysis.
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The Extended Matching Problem I1

Observation: neither the decomposition nor the analysis are uniquely
determined

Qa=a",w=aa
= two decompositions (aa) and (a,a) with unique analysis each
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The Extended Matching Problem I1

Observation: neither the decomposition nor the analysis are uniquely
determined

Qa=a",w=aa
= two decompositions (aa) and (a,a) with unique analysis each

Qavy=a+tba=a+c,w=a
= unique decomposition (a) but two analyses (77) and (7%)
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© First-Longest-Match Analysis
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Ensuring Uniqueness

Two principles:
@ Principle of the longest match (“maximal munch tokenization”)
o for uniqueness of decomposition
¢ make lexemes as long as possible
o motivated by applications: usually every (nonempty) prefix of an
identifier is also an identifier
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Ensuring Uniqueness

Two principles:
@ Principle of the longest match (“maximal munch tokenization”)

o for uniqueness of decomposition

¢ make lexemes as long as possible

o motivated by applications: usually every (nonempty) prefix of an
identifier is also an identifier

© Principle of the first match

o for uniqueness of analysis
o choose first matching regular expression (in the order given)
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Ensuring Uniqueness

Two principles:
@ Principle of the longest match (“maximal munch tokenization”)
o for uniqueness of decomposition
¢ make lexemes as long as possible
o motivated by applications: usually every (nonempty) prefix of an
identifier is also an identifier
© Principle of the first match

o for uniqueness of analysis
o choose first matching regular expression (in the order given)

From now on we assume:

e ¢ [a;] # 0 for every i € [n]
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Principle of the Longest Match

Definition 3.4 (Longest-match decomposition)

A decomposition (wy,...,w) of w € Q* w.rt. aq,...,a, € REq is
called a longest-match decomposition (LM decomposition) if, for every
i €[k], z€Qf, and y € QF,

w=wi...w;xy = there is no j € [n] such that w;z € [a;]
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Principle of the Longest Match

Definition 3.4 (Longest-match decomposition)

A decomposition (wq,...,wg) of w € Q* w.r.t. ag,...,a € REq is
called a longest-match decomposition (LM decomposition) if, for every
i €[k], z€Qf, and y € QF,

w=wi...w;xy = there is no j € [n] such that w;z € [a;]

Corollary 3.5

Given w and oy, ..., 0y,

@ at most one LM decomposition of w exists (clear by definition) and
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Principle of the Longest Match

Definition 3.4 (Longest-match decomposition)

A decomposition (wq,...,wg) of w € Q* w.r.t. ag,...,a € REq is
called a longest-match decomposition (LM decomposition) if, for every
i €[k], z€Qf, and y € QF,

w=wi...w;xy = there is no j € [n] such that w;z € [a;]

Corollary 3.5
Given w and aq, . . ., Qy,
@ at most one LM decomposition of w exists (clear by definition) and

@ it is possible that w has a decomposition but no LM decomposition
(see example).

| A\

Example 3.6

w = aab, oy = a™, op = ab
—> (a,ab) is a decomposition but no LM decomposition exists

4
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Principle of the First Match

Problem: a (unique) LM decomposition can have several associated
analyses (since [oy] N ;] # 0 with ¢ # j is possible; cf.
keyword /identifier problem)
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Principle of the First Match

Problem: a (unique) LM decomposition can have several associated
analyses (since [oy] N ;] # 0 with ¢ # j is possible; cf.
keyword /identifier problem)

Definition 3.7 (First-longest-match analysis)

Let (w1, ..., wg) be an LM decomposition with analysis (T3, ,...,T;, )
ofwe Q" wrt. aq,...,a, € REq. Then (T;,,...,T;,) is called a
first-longest-match analysis (FLM analysis) if, for every j € [k],

i; = min{l € [n] | w; € [oy]}.
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Principle of the First Match

Problem: a (unique) LM decomposition can have several associated
analyses (since [oy] N ;] # 0 with ¢ # j is possible; cf.
keyword /identifier problem)

Definition 3.7 (First-longest-match analysis)

Let (w1, ..., wg) be an LM decomposition with analysis (T3, ,...,T;, )
ofwe Q" wrt. aq,...,a, € REq. Then (T;,,...,T;,) is called a
first-longest-match analysis (FLM analysis) if, for every j € [k],

i; = min{l € [n] | w; € [oy]}.

Given w and o, . .., oy, there is at most one FLM analysis of w.
It exists iff the LM decomposition of w exists.
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© Implementation
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Implementation of FLM Analysis

Algorithm 3.9 (FLM analysis—overview)

Input: expressions au,...,a, € REq, tokens {T1,...,T,},
mnput word w € QF
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Implementation of FLM Analysis

Algorithm 3.9 (FLM analysis—overview)

Input: expressions au,...,a, € REq, tokens {T1,...,T,},
mnput word w € QF

Procedure: @ for every i € [n], construct 2; € DFAq such that
L(;) = [as] (see DFA method)
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Implementation of FLM Analysis

Algorithm 3.9 (FLM analysis—overview)

Input: expressions au,...,a, € REq, tokens {T1,...,T,},
mnput word w € QF
Procedure: @ for every i € [n], construct 2; € DFAq such that
L(;) = [as] (see DFA method)
© construct the product automaton A € DFAq such that

L) = U?:l [es]
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Implementation of FLM Analysis

Algorithm 3.9 (FLM analysis—overview)

Input: expressions au,...,a, € REq, tokens {T1,...,T,},
input word w € QF
Procedure: @ for every i € [n], construct 2; € DFAq such that

L(;) = [as] (see DFA method)

© construct the product automaton A € DFAq such that
L&) = UL [oi]

© partition the set of final states of A to follow the
first-match principle
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Implementation of FLM Analysis

Algorithm 3.9 (FLM analysis—overview)

Input: expressions au,...,a, € REq, tokens {T1,...,T,},
input word w € QF
Procedure: @ for every i € [n], construct 2; € DFAq such that

L(;) = [as] (see DFA method)

© construct the product automaton A € DFAq such that
L&) = UL [oi]

© partition the set of final states of A to follow the
first-match principle

Q extend the resulting DFA to a backtracking DFA
which implements the longest-match principle, and let
i run on w
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Implementation of FLM Analysis

Algorithm 3.9 (FLM analysis—overview)

Input: expressions au,...,a, € REq, tokens {T1,...,T,},
input word w € QF
Procedure: @ for every i € [n], construct 2; € DFAq such that

L(;) = [as] (see DFA method)

© construct the product automaton A € DFAq such that
L&) = UL [oi]

© partition the set of final states of A to follow the
first-match principle

Q extend the resulting DFA to a backtracking DFA
which implements the longest-match principle, and let
i run on w

Output: FLM analysis of w (if it exists)
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(2) The Product Automaton

Definition 3.10 (Product automaton)

Let 2; = (Q,Q, 65, q(()i), F;) € DFAq for every i € [n]. The product
automaton A = (Q,Q, 9, qo, F) € DFAq is defined by

0 Q:=0Q1 X...xQ,
9 qo = (q(()l)’ 7q(()n))
o 5((qW,....q™),a) == (61(¢W,a),...,6,(¢™, a))

o (qW,...,¢™) € F iff there ex. i € [n] such that ¢\ € F
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(2) The Product Automaton

Definition 3.10 (Product automaton)

Let 2; = (Q,Q, 65, q(()i), F;) € DFAq for every i € [n]. The product
automaton 2 = (Q,Q, 4, qo, F') € DFAq is defined by

0 Q=01 X...xQp
9 qo = (q(()l)’ 7q(()n))
o 5((qW,....q™),a) == (61(¢W,a),...,6,(¢™, a))

o (qW,...,¢™) € F iff there ex. i € [n] such that ¢\ € F

The above construction yields L(A) = Uy L(2) (= Ui, [eu])-
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(2) The Product Automaton

Definition 3.10 (Product automaton)

Let 2; = (Q,Q, 65, q(()i), F;) € DFAq for every i € [n]. The product
automaton 2 = (Q,Q, 4, qo, F') € DFAq is defined by

0 Q=01 X...xQp
9 qo = (q(()l)’ 7q(()n))
o 5((qW,....q™),a) == (61(¢W,a),...,6,(¢™, a))

o (qW,...,¢™) € F iff there ex. i € [n] such that ¢\ € F

The above construction yields L(A) = Uy L(2) (= Ui, [eu])-

Remark: similar construction for intersection (F':= F} X ... X F},)
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(3) Partitioning the Final States

Definition 3.12 (Partition of final states)

Let 2 =(Q,Q,9,q0, F) € DFAq be the product automaton as
constructed before. Its set of final states is partitioned into
F =, F® by the requirement

(@W,...,q™) € FO iff ) € F; and Vj € [i — 1] : ¢U) ¢ F;

(OI‘: F(Z) = (Ql\Fl) X ... X (Qi—l\ﬂ—l) x F; x Qi—f—l X ... X Qn)

4
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(3) Partitioning the Final States

Definition 3.12 (Partition of final states)

Let 2 =(Q,Q,9,q0, F) € DFAq be the product automaton as
constructed before. Its set of final states is partitioned into
F =, F® by the requirement

(@W,...,q™) € FO iff ) € F; and Vj € [i — 1] : ¢U) ¢ F;

(OI‘: F(Z) = (Ql\Fl) X ... X (Qi—l\ﬂ—l) x F; x Qi—i—l X ... X Qn)

4

The above construction yields (w € Q*, i € [n]):
6(qo,w) € FO iff w € [oy] and w ¢ U;;ll [y
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(3) Partitioning the Final States

Definition 3.12 (Partition of final states)

Let A = (Q,Q,0,q0, F) € DFAq be the product automaton as
constructed before. Its set of final states is partitioned into
F =, F® by the requirement

(@M, ...,q™) e FO iff ¢) € F; and Vj € [i — 1] : ¢V) ¢ F;

(or: FO = (Q1\ F1) X ... X (Qi—1 \ Fi—1) X Fy X Qi1 X ... X Qn)

4

The above construction yields (w € Q%, i € [n]):
5(q0,w) € FO iff w € [ey] and w ¢ U;;ll [y

Definition 3.14 (Productive states)

Given 2 as above, a state g € Q is called productive if there exists
w € QF such that §(¢, w) € F. The set of productive states of A is
denoted by P (and thus F' C P).
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(4) The Backtracking DFA I

Goal: extend 2 to the backtracking DFA 9B with output by equipping the
input tape with two pointers: a backtracking head for marking the last
encountered match, and a lookahead for determining the longest match.
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(4) The Backtracking DFA I

Goal: extend 2 to the backtracking DFA 9B with output by equipping the
input tape with two pointers: a backtracking head for marking the last
encountered match, and a lookahead for determining the longest match.

A configuration of 8 has three components
(remember: ¥ := {Ty,...,T,} denotes the set of tokens):

Q amodeme {N}WX:
¢ m =N (“normal”): look for first match (no final state reached yet)

o m =T € X: token T has been recognized, looking for possible
longer match
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(4) The Backtracking DFA I

Goal: extend 2 to the backtracking DFA 9B with output by equipping the
input tape with two pointers: a backtracking head for marking the last
encountered match, and a lookahead for determining the longest match.

A configuration of 8 has three components
(remember: ¥ := {Ty,...,T,} denotes the set of tokens):
Q amodeme {N}WX:
¢ m =N (“normal”): look for first match (no final state reached yet)
o m =T € X: token T has been recognized, looking for possible
longer match

@ an input tape vqw € Q* - Q - Q*:
o v: lookahead part of input (v #e = m € )

@ ¢: current state of A
¢ w: remaining input
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(4) The Backtracking DFA I

Goal: extend 2 to the backtracking DFA 9B with output by equipping the
input tape with two pointers: a backtracking head for marking the last
encountered match, and a lookahead for determining the longest match.

A configuration of 8 has three components
(remember: ¥ := {Ty,...,T,} denotes the set of tokens):

Q amodeme {N}WX:
¢ m =N (“normal”): look for first match (no final state reached yet)

o m =T € X: token T has been recognized, looking for possible
longer match

@ an input tape vqw € Q* - Q - Q*:
o v: lookahead part of input (v #e = m € )
@ ¢: current state of A
¢ w: remaining input

@ an output tape W € * - {e, lexerr}:

@ X*: sequence of tokens recognized so far
o lexerr: a lexical error has occurred (i.e., a non-productive state was
entered or the suffix of the input is not a valid lexeme)
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(4) The Backtracking DFA II

Definition 3.15 (Backtracking DFA)

o The set of configurations of B is given by
(N} W) x Q- Q- Q" x T* - {e,lexerr}

@ The initial configuration for an input word w € Q* is (N, gow, €).
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(4) The Backtracking DFA II

Definition 3.15 (Backtracking DFA)

o The set of configurations of B is given by

{NIWX) x Q- Q- Q" x X* - {e, lexerr}
@ The initial configuration for an input word w € Q* is (N, gow, €).
@ The transitions of B are defined as follows (where ¢’ := (g, a)):

e normal mode: look for a match
(N, qw, W) if¢ e P\F
(N, qaw, W) = ¢ (T}, ¢'w, W) if ¢ € FO&
output: W -lexerr if ¢ ¢ P
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(4) The Backtracking DFA II

Definition 3.15 (Backtracking DFA)

o The set of configurations of B is given by

{NIWX) x Q- Q- Q" x X* - {e, lexerr}
@ The initial configuration for an input word w € Q* is (N, gow, €).
@ The transitions of B are defined as follows (where ¢’ := (g, a)):

¢ normal mode: look for a match
(N, qw, W) if¢ e P\F
(N, qaw, W) = ¢ (T}, ¢'w, W) if ¢ € FO&
output: W -lexerr if ¢ ¢ P
e backtrack mode: look for longest match
(T, vaq'w, W) ifg e P\F
(T, vgaw, W) & < (T;, ¢'w, W) if ¢ € FO
(N, qovaw, WT) ifq ¢ P
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(4) The Backtracking DFA II

Definition 3.15 (Backtracking DFA)

o The set of configurations of B is given by
{NIWX) x Q- Q- Q" x X* - {e, lexerr}
@ The initial configuration for an input word w € Q* is (N, gow, €).
@ The transitions of B are defined as follows (where ¢’ := (g, a)):
¢ normal mode: look for a match
(N, qw, W) if¢ e P\F
(N, qaw, W) = ¢ (T}, ¢'w, W) if ¢ € FO&
output: W -lexerr if ¢ ¢ P
e backtrack mode: look for longest match
(T, vaq'w, W) ifg e P\F
(T, vqaw, W) = < (T}, ¢'w, W) if ¢ € FO&
(N, qovaw, WT) ifq ¢ P
@ end of input
(N,q, W) I output: W -lexerr if g€ P\ F

(T,q,W) - output: WT ifge F
(T,vaq, W) F (N, gova, WT) ifge P\F
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(4) The Backtracking DFA III

Given the backtracking DFA B as before and w € QF,

W eX* iff W is the FLM analysis of w

*
(N, gow,e) {W - lexerr iff no FLM analysis of w exists
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(4) The Backtracking DFA III

Given the backtracking DFA B as before and w € QF,

W eX* iff W is the FLM analysis of w

*
(N, gow,e) {W - lexerr iff no FLM analysis of w exists

Q a = (ab)™, w = abaa (on the board)
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(4) The Backtracking DFA III

Given the backtracking DFA B as before and w € QF,

W eX* iff W is the FLM analysis of w

*
(N, gow,e) {W - lexerr iff no FLM analysis of w exists

Q a = (ab)™, w = abaa (on the board)

© see 2nd exercise sheet

m Compiler Construction Summer semester 2008



(4) The Backtracking DFA IV

Remarks:
e Time complexity: O(Jw|?) in worst case

Example: a; = a, as = a*b, w = a™ requires O(m?)
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(4) The Backtracking DFA IV

Remarks:
e Time complexity: O(Jw|?) in worst case
Example: a; = a, as = a*b, w = a™ requires O(m?)
@ Improvement by tabular method (similar to Knuth-Morris-Pratt
Algorithm for pattern matching in strings)

Literature: Th. Reps: “Maximal-Munch” Tokenization in Linear
Time, ACM TOPLAS 20(2), 1998, 259273
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