Compiler Construction

Lecture 4: Lexical Analysis III (Practical Aspects)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

@ Repetition: First-Longest-Match Analysis

Rm Compiler Construction Summer semester 2

Repetition: Extended Matching Problem

Problem (Extended matching problem)

Given aq,...,a, € REq and w € QF, decide whether there exists a
decomposition of w w.r.t. ay,...,a, and determine a corresponding
analysis.

To ensure uniqueness:
@ Principle of the longest match (“maximal munch tokenization”)

o for uniqueness of decomposition

o make lexemes as long as possible

¢ motivated by applications: usually every (nonempty) prefix of an
identifier is also an identifier

© Principle of the first match

o for uniqueness of analysis
o choose first matching regular expression (in the order given)

m' Compiler Construction Summer semester 2008

Repetition: Implementation of FLM Analysis

Algorithm (FLM analysis)

Input: expressions au,...,a, € REq, tokens {T1,...,T,},
input word w € QF
Procedure: @ for every i € [n], construct 2; € DFAq such that

L(;) = [as] (see DFA method)

© construct the product automaton A € DFAq such that
L&) = UL [oi]

© partition the set of final states of A to follow the
first-match principle

Q extend the resulting DFA to a backtracking DFA
which implements the longest-match principle, and let
i run on w

Output: FLM analysis of w (if it exists)

m Compiler Construction Summer semester 2008 4

© First-Longest-Match Analysis with NFA

Rm Compiler Construction Summer semester 2008

A Backtracking NFA

A similar construction is possible for the NFA method:
QO A = (Qi,2,6, ¢\, F) € NFAq (i € [n]) by NFA method
@ “Product” automaton: @ := {q} W, Q;

@ Partitioning of final states:
o M C @ is called a T;-matching if
MNF,#0andforallje[i—1]: MNF; =0
o yields set of Tj-matchings F(9) C 29
o M C @ is called productive if there exists a productive ¢ € M
o yields productive state sets P C 2¢

© Backtracking automaton: similar to DFA case

Rm Compiler Construction Summer semester 2008 6

© Practical Aspects
@ Regular Definitions
o Generating Scanners Using [f]lex
@ Longest Match in Practice

Rm Compiler Construction Summer semester 2008

© Practical Aspects
@ Regular Definitions

Rm Compiler Construction Summer semester 2

Regular Definitions I

Goal: modularizing the representation of regular sets by introducing
additional identifiers

Definition 4.1 (Regular definition)

Let {Ry,...,R,} be a set of symbols disjoint from 2. A regular
definition (over €2) is a sequence of equations

R1:a1

R, = a,

such that, for every i € [n], a; € REqu(g,,...r,_}-

Remark: since no recursion is involved, every R; can (iteratively) be
substituted by a regular expression a € RFq
(otherwise = context-free languages)

m Compiler Construction Summer semester 2008 9

Regular Definitions II

Example 4.2 (Symbol classes in Pascal)

Identifiers: Letter =A+ ... +Z4+a+...+z
Digit =0+...4+9
Id = Letter (Letter + Digit)*

Numerals: Digits = Digit™
(unsigned) Empty = A*
OptFrac = . Digits + Empty
OptEzp = E (+ + - + Empty) Digits + Empty
Num = Digits OptFrac OptEzp

Rel. operators: RelOp =<+ <=4+=4+<>+>+4>=

Keywords: If = if
Then = then
Else = else

m Compiler Construction Summer semester 2008

© Practical Aspects

o Generating Scanners Using [f]lex

Rm Compiler Construction Summer semester 2

The [f]lex Tool

Usage of [f]lex (“[fast] lexical analyzer generator”):

£11
spec.1 [f1lex lex.yy.c =5 a.out

[£f]1ex specification Scanner (in C) Executable

Program 2-out Symbol sequence

A [f]lex specification is of the form
Definitions (optional)
V4
Rules
V4

Augziliary procedures (optional)

Rm Compiler Construction Summer semester 2008

[f]1lex Specifications

Definitions: @ C code for declarations etc.: %{ Code %}
o Regular definitions: Name RegEzxp ...
(non-recursive!)

Rules: of the form Pattern { Action }

@ Pattern: regular expression, possibly using Names
o Action: C code for computing symbol = (token,
attribute)
o token: integer return value, 0 = EOF
o attribute: passed in global variable yylval
o lexeme accessible by yytext

@ matching rule found by FLM strategy
@ lexical errors catched by . or .|\n (any character)

m' Compiler Construction Summer semester 2008

Example [f]lex Specification

w{
#include <stdio.h>
typedef enum {EOF, IF, ID, RELOP, LT, ...} token_t;
unsigned int yylval; /* attribute values */

)

LETTER [A-Za-z]

DIGIT [0-9]

ALPHANUM {LETTER}|{DIGIT}

SPACE [\t\n]+

hh

"ifn { return IF; }

g { yylval = LT; return RELOP; }
{LETTER}{ALPHANUM}* { yylval = install_id(); return ID; }
{SPACE}+ /* eat up whitespace */

. { fprintf (stderr, "Invalid character ’%c’\n", yytext[0]); }

W

int main(void) {
token_t token;
while ((token = yylex()) != EOF)

printf ("(Token %d, Attribute %d)\n", token, yylval);

exit (0);

}

unsigned int install_id () {...} /#* identifier name in yytext */

m' Compiler Construction Summer semester 2008 14

Regular Expressions in [f]lex
Syntax Meaning

printable character | this character

\n, \t, \123, etc. newline, tab, octal representation, etc.

. any character except \n

[Chars] one of Chars; ranges possible (“0-9”)

[~ Chars] none of Chars

A\, \., \ [, etc. \, ., [, etc.

" Text" Text without interpretation of ., [, \, etc.
e « at beginning of line

o$ a at end of line

{Name} RegExp for Name

a? ZEero or one «

ok ZEro Or Mmore o

a+ one or more o

a{n,m} between n and m times « (“,m” optional)
(o) o

a0 concatenation

o lag alternative

ay/as oy but only if followed by s (lookahead)

m Compiler Construction Summer semester 2008 15

© Practical Aspects

@ Longest Match in Practice

Rm Compiler Construction Summer semester 2

Longest Match in Practice

o In general: lookahead of arbitrary length (backtracking phase)
required
@ see example on Slide 3.18: a1 = a, as = a*b
o “Modern” programming languages (Pascal, ...): lookahead of one
or two characters sufficient

e separation of keywords, identifiers, etc. by spaces
¢ Pascal: two-character lookahead required to distinguish 1.5 (real
number) from 1..5 (integer range)

Rm Compiler Construction Summer semester 2008 17

Inadequacy of Longest Match

Example 4.3 (Longest Match in FORTRAN)

@ Relational expressions

o valid lexemes: .EQ. (relational operator), EQ (identifier),
12 (integer), 12., .12 (reals)
o input string: 12,,.EQ. 12 ~ 12 12 (ignoring blanks!)
o intended analysis: (int, 12) (int, 12)
o LM yields: (real,12.0) (real,0.12)
© DO loops
¢ (erroneous) input string: D0,5,I,=_1..,20 ~» DO5I=1.20
o LM analysis (correct): (id,D05I) (real, 1.2)
o (correct) input string: DO,5,I =.,1,.,20 ~» DO5I=1,20
9 intended analysis:
(do,) (id, I)(gets,) (comma,)(int, 20)
e LM yields: (id,) (int, 1)(comma,)
9 observation: decision for do only possible after reading “,”
@ specification of DO keyword in [f]lex, using lookahead:
DO/ ({LETTER} | {DIGIT}) *=({LETTER} | {DIGIT})*,

m Compiler Construction Summer semester 2008 18

Longest Match and Lookahead in [f]lex

w{
#include <stdio.h>
typedef enum {EoF, AB, A} token_t;
3
hh
ab { return AB; }
a/bc { return 4; }
. { fprintf (stderr, "Invalid character ’%c’\n", yytext[01); }
hh
int main(void) {
token_t token;
while ((token = yylex()) != EoF) printf ("Token 7%d\n", token);
exit (0);

}
returns on input
@ a: Invalid character ’a’
@ ab: Token 1
@ abc: Token 2 Invalid character ’b’ Invalid character ’c’

—> lookahead counts for length of match

Rm Compiler Construction Summer semester 2008 19

	Repetition: First-Longest-Match Analysis
	First-Longest-Match Analysis with NFA
	Practical Aspects
	Regular Definitions
	Generating Scanners Using [f]lex
	Longest Match in Practice

