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Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
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Syntactic Structures

Starting point: sequence of symbols as produced by the scanner
Here: ignore attribute information

Σ (finite) set of tokens (= syntactic atoms; terminals)
(e.g., {id, if, int, . . .})

w ∈ Σ∗ token sequence
(of course, not every w ∈ Σ∗ forms a valid program)
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Syntactic Structures

Starting point: sequence of symbols as produced by the scanner
Here: ignore attribute information

Σ (finite) set of tokens (= syntactic atoms; terminals)
(e.g., {id, if, int, . . .})

w ∈ Σ∗ token sequence
(of course, not every w ∈ Σ∗ forms a valid program)

Syntactic units:

atomic: keywords, variable/type/procedure/... identifiers,
numerals, arithmetic/boolean operators, ...

complex: declarations, arithmetic/boolean expressions, statements,
...
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Syntactic Structures

Starting point: sequence of symbols as produced by the scanner
Here: ignore attribute information

Σ (finite) set of tokens (= syntactic atoms; terminals)
(e.g., {id, if, int, . . .})

w ∈ Σ∗ token sequence
(of course, not every w ∈ Σ∗ forms a valid program)

Syntactic units:

atomic: keywords, variable/type/procedure/... identifiers,
numerals, arithmetic/boolean operators, ...

complex: declarations, arithmetic/boolean expressions, statements,
...

Observation: the hierarchical structure of syntactic units can be
described by context-free grammars
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Syntactic Analysis

Definition 5.1

The goal of syntactic analysis is to determine the syntactic structure of
a program, given by a token sequence, according to a context-free
grammar.
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Syntactic Analysis

Definition 5.1

The goal of syntactic analysis is to determine the syntactic structure of
a program, given by a token sequence, according to a context-free
grammar.

The corresponding program is called a parser:

Scanner Parser Semantic analyzer

Symbol table

(token[,attribute])

get next token

syntax tree
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Syntactic Analysis

Definition 5.1

The goal of syntactic analysis is to determine the syntactic structure of
a program, given by a token sequence, according to a context-free
grammar.

The corresponding program is called a parser:

Scanner Parser Semantic analyzer

Symbol table

(token[,attribute])

get next token

syntax tree

Example:

. . . (id, p1)(gets, )(id, p2)(plus, )(int, 1)(sem, ) . . .  

Assgn

Var Exp

Sum

Var Const
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Context-Free Grammars I

Definition 5.2 (Syntax of context-free grammars)

A context-free grammar (CFG) (over Σ) is a quadruple
G = 〈N,Σ, P, S〉

where

N is a finite set of nonterminal symbols,
Σ is a (finite) alphabet of terminal symbols (disjoint from N),
P is a finite set of production rules of the form A → α where
A ∈ N and α ∈ X∗ for X := N ∪ Σ, and
S ∈ N is a start symbol.

The set of all context-free grammars over Σ is denoted by CFGΣ.

Compiler Construction Summer semester 2008 7



Context-Free Grammars I

Definition 5.2 (Syntax of context-free grammars)

A context-free grammar (CFG) (over Σ) is a quadruple
G = 〈N,Σ, P, S〉

where

N is a finite set of nonterminal symbols,
Σ is a (finite) alphabet of terminal symbols (disjoint from N),
P is a finite set of production rules of the form A → α where
A ∈ N and α ∈ X∗ for X := N ∪ Σ, and
S ∈ N is a start symbol.

The set of all context-free grammars over Σ is denoted by CFGΣ.

Remarks: as denotations we generally use

A,B,C, . . . ∈ N for nonterminal symbols
a, b, c, . . . ∈ Σ for terminal symbols
u, v,w, . . . ∈ Σ∗ for terminal words
α, β, γ, . . . ∈ X∗ for sentences
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Context-Free Grammars II

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let G = 〈N,Σ, P, S〉 be a context-free grammar.

The derivation relation ⇒ ⊆ X∗ × X∗ of G is defined by
α ⇒ β iff there exist α1, α2 ∈ X∗, A → γ ∈ P

such that α = α1Aα2 and β = α1γα2.
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Context-Free Grammars II

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let G = 〈N,Σ, P, S〉 be a context-free grammar.

The derivation relation ⇒ ⊆ X∗ × X∗ of G is defined by
α ⇒ β iff there exist α1, α2 ∈ X∗, A → γ ∈ P

such that α = α1Aα2 and β = α1γα2.
If in addition α1 ∈ Σ∗ or α2 ∈ Σ∗, then we write α ⇒l β or
α ⇒r β, respectively (leftmost/rightmost derivation).
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Context-Free Grammars II

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let G = 〈N,Σ, P, S〉 be a context-free grammar.

The derivation relation ⇒ ⊆ X∗ × X∗ of G is defined by
α ⇒ β iff there exist α1, α2 ∈ X∗, A → γ ∈ P

such that α = α1Aα2 and β = α1γα2.
If in addition α1 ∈ Σ∗ or α2 ∈ Σ∗, then we write α ⇒l β or
α ⇒r β, respectively (leftmost/rightmost derivation).
The language generated by G is given by

L(G) := {w ∈ Σ∗ | S ⇒∗ w}.
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Context-Free Grammars II

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let G = 〈N,Σ, P, S〉 be a context-free grammar.

The derivation relation ⇒ ⊆ X∗ × X∗ of G is defined by
α ⇒ β iff there exist α1, α2 ∈ X∗, A → γ ∈ P

such that α = α1Aα2 and β = α1γα2.
If in addition α1 ∈ Σ∗ or α2 ∈ Σ∗, then we write α ⇒l β or
α ⇒r β, respectively (leftmost/rightmost derivation).
The language generated by G is given by

L(G) := {w ∈ Σ∗ | S ⇒∗ w}.
If a language L ⊆ Σ∗ is generated by some G ∈ CFGΣ, then L is
called context free. The set of all context-free languages over Σ is
denoted by CFLΣ.
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Context-Free Grammars II

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let G = 〈N,Σ, P, S〉 be a context-free grammar.

The derivation relation ⇒ ⊆ X∗ × X∗ of G is defined by
α ⇒ β iff there exist α1, α2 ∈ X∗, A → γ ∈ P

such that α = α1Aα2 and β = α1γα2.
If in addition α1 ∈ Σ∗ or α2 ∈ Σ∗, then we write α ⇒l β or
α ⇒r β, respectively (leftmost/rightmost derivation).
The language generated by G is given by

L(G) := {w ∈ Σ∗ | S ⇒∗ w}.
If a language L ⊆ Σ∗ is generated by some G ∈ CFGΣ, then L is
called context free. The set of all context-free languages over Σ is
denoted by CFLΣ.

Remark: obviously,

L(G) = {w ∈ Σ∗ | S ⇒∗

l w} = {w ∈ Σ∗ | S ⇒∗

r w}
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Context-Free Languages

Example 5.4

The grammar G = 〈N,Σ, P, S〉 ∈ CFGΣ over Σ := {a, b}, given by the
productions

S → aSb | ε,

generates the context-free (and non-regular) language
L = {anbn | n ∈ N}.
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Context-Free Languages

Example 5.4

The grammar G = 〈N,Σ, P, S〉 ∈ CFGΣ over Σ := {a, b}, given by the
productions

S → aSb | ε,

generates the context-free (and non-regular) language
L = {anbn | n ∈ N}.

The example derivation
S ⇒ aSb ⇒ aaSbb ⇒ aabb

can be represented by the following syntax tree for aabb:
S

S

S

a

a

b

b

ε
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Syntax Trees, Derivations, and Words

Remark: the connection between derivations, syntax trees, and
generated words is not unique

1 A syntax tree generally represents several derivations.
2 A derivation can generally be represented by several syntax trees.
3 A word can generally be produced by several derivations.
4 A word can have several syntax trees.
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Syntax Trees, Derivations, and Words

Remark: the connection between derivations, syntax trees, and
generated words is not unique

1 A syntax tree generally represents several derivations.
2 A derivation can generally be represented by several syntax trees.
3 A word can generally be produced by several derivations.
4 A word can have several syntax trees.

Example 5.5

on the board
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Syntax Trees, Derivations, and Words

Remark: the connection between derivations, syntax trees, and
generated words is not unique

1 A syntax tree generally represents several derivations.
2 A derivation can generally be represented by several syntax trees.
3 A word can generally be produced by several derivations.
4 A word can have several syntax trees.

Example 5.5

on the board

However:

1 Every syntax tree yields exactly one word
(= concatenation of leafs).

2 Every syntax tree corresponds to exactly one leftmost derivation,
and vice versa.

3 Every syntax tree corresponds to exactly one rightmost derivation,
and vice versa.
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(Un-)Ambiguity of CFGs and CFLs

Definition 5.6 (Ambiguity)

A context-free grammar G ∈ CFGΣ is called unambiguous if every
word w ∈ L(G) has exactly one syntax tree. Otherwise it is called
ambiguous.
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(Un-)Ambiguity of CFGs and CFLs

Definition 5.6 (Ambiguity)

A context-free grammar G ∈ CFGΣ is called unambiguous if every
word w ∈ L(G) has exactly one syntax tree. Otherwise it is called
ambiguous.

A context-free language L ∈ CFLΣ is called inherently ambiguous
if every grammar G ∈ CFGΣ with L(G) = L is ambiguous.
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(Un-)Ambiguity of CFGs and CFLs

Definition 5.6 (Ambiguity)

A context-free grammar G ∈ CFGΣ is called unambiguous if every
word w ∈ L(G) has exactly one syntax tree. Otherwise it is called
ambiguous.

A context-free language L ∈ CFLΣ is called inherently ambiguous
if every grammar G ∈ CFGΣ with L(G) = L is ambiguous.

Example 5.7

on the board
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(Un-)Ambiguity of CFGs and CFLs

Definition 5.6 (Ambiguity)

A context-free grammar G ∈ CFGΣ is called unambiguous if every
word w ∈ L(G) has exactly one syntax tree. Otherwise it is called
ambiguous.

A context-free language L ∈ CFLΣ is called inherently ambiguous
if every grammar G ∈ CFGΣ with L(G) = L is ambiguous.

Example 5.7

on the board

Corollary 5.8

A grammar G ∈ CFGΣ is unambiguous
iff every word w ∈ L(G) has exactly one leftmost derivation
iff every word w ∈ L(G) has exactly one rightmost derivation.
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3 Parsing Context-Free Languages

4 Nondeterministic Top-Down Parsing
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Parsing Context-Free Languages

Problem 5.9 (Word problem for context-free languages)

Given G ∈ CFGΣ and w ∈ Σ∗, decide whether w ∈ L(G)
(and determine a corresponding syntax tree).
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Parsing Context-Free Languages

Problem 5.9 (Word problem for context-free languages)

Given G ∈ CFGΣ and w ∈ Σ∗, decide whether w ∈ L(G)
(and determine a corresponding syntax tree).

Decidable for arbitrary CFGs (in Chomsky Normal Form) using
the tabular method by Cocke, Younger, and Kasami
(“CYK Algorithm”; space/time complexity O(|w|2)/O(|w|3))
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Parsing Context-Free Languages

Problem 5.9 (Word problem for context-free languages)

Given G ∈ CFGΣ and w ∈ Σ∗, decide whether w ∈ L(G)
(and determine a corresponding syntax tree).

Decidable for arbitrary CFGs (in Chomsky Normal Form) using
the tabular method by Cocke, Younger, and Kasami
(“CYK Algorithm”; space/time complexity O(|w|2)/O(|w|3))
Goal: exploit the special syntactic structures as present in
programming languages (usually: no ambiguities) to devise
parsing methods which are based on deterministic pushdown
automata with linear space and time complexity
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Parsing Context-Free Languages

Problem 5.9 (Word problem for context-free languages)

Given G ∈ CFGΣ and w ∈ Σ∗, decide whether w ∈ L(G)
(and determine a corresponding syntax tree).

Decidable for arbitrary CFGs (in Chomsky Normal Form) using
the tabular method by Cocke, Younger, and Kasami
(“CYK Algorithm”; space/time complexity O(|w|2)/O(|w|3))
Goal: exploit the special syntactic structures as present in
programming languages (usually: no ambiguities) to devise
parsing methods which are based on deterministic pushdown
automata with linear space and time complexity

Two approaches:

Top-down analysis: construction of syntax tree from the root towards
the leafs, representation as leftmost derivation

Bottom-up analysis: construction of syntax tree from the leafs towards
the root, representation as (reversed) rightmost derivation
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Leftmost/Rightmost Analysis I

Goal: compact representation of left-/rightmost derivations by index
sequences

Definition 5.10 (Leftmost/rightmost analysis)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ, p := |P |, and π : [p] → P a bijection.

If i ∈ [p], π(i) = A → γ, w ∈ Σ∗, and α ∈ X∗, then we write

wAα
i
⇒l wγα and αAw

i
⇒r αγw.
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Leftmost/Rightmost Analysis I

Goal: compact representation of left-/rightmost derivations by index
sequences

Definition 5.10 (Leftmost/rightmost analysis)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ, p := |P |, and π : [p] → P a bijection.

If i ∈ [p], π(i) = A → γ, w ∈ Σ∗, and α ∈ X∗, then we write

wAα
i
⇒l wγα and αAw

i
⇒r αγw.

If z = i1 . . . in ∈ [p]∗, we write α
z
⇒l β if there exist

α0, . . . , αn ∈ X∗ such that α0 = α, αn = β, and αj−1
ij
⇒l αj for

every j ∈ [n] (analogously for
z
⇒r).
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Leftmost/Rightmost Analysis I

Goal: compact representation of left-/rightmost derivations by index
sequences

Definition 5.10 (Leftmost/rightmost analysis)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ, p := |P |, and π : [p] → P a bijection.

If i ∈ [p], π(i) = A → γ, w ∈ Σ∗, and α ∈ X∗, then we write

wAα
i
⇒l wγα and αAw

i
⇒r αγw.

If z = i1 . . . in ∈ [p]∗, we write α
z
⇒l β if there exist

α0, . . . , αn ∈ X∗ such that α0 = α, αn = β, and αj−1
ij
⇒l αj for

every j ∈ [n] (analogously for
z
⇒r).

An index sequence z ∈ [p]∗ is called a leftmost analysis (rightmost
analysis) of α if S

z
⇒l α (S

z
⇒r α), respectively.
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Leftmost/Rightmost Analysis

Example 5.11

Grammar for arithmetic expressions:
GAE : E → E+T | T (1, 2)

T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)
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Leftmost/Rightmost Analysis

Example 5.11

Grammar for arithmetic expressions:
GAE : E → E+T | T (1, 2)

T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost derivation of (a)*b:

E
2
⇒l T

3
⇒l T*F

4
⇒l F*F

5
⇒l (E)*F

2
⇒l (T)*F

4
⇒l (F)*F

6
⇒l (a)*F

7
⇒l (a)*b

=⇒ leftmost analysis: 23452467
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Leftmost/Rightmost Analysis

Example 5.11

Grammar for arithmetic expressions:
GAE : E → E+T | T (1, 2)

T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost derivation of (a)*b:

E
2
⇒l T

3
⇒l T*F

4
⇒l F*F

5
⇒l (E)*F

2
⇒l (T)*F

4
⇒l (F)*F

6
⇒l (a)*F

7
⇒l (a)*b

=⇒ leftmost analysis: 23452467

Rightmost derivation of (a)*b:

E
2
⇒r T

3
⇒r T*F

7
⇒r T*b

4
⇒r F*b

5
⇒r (E)*b

2
⇒r (T)*b

4
⇒r (F)*b

6
⇒r (a)*b

=⇒ rightmost analysis: 23745246
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Reducedness of Context-Free Grammars

General assumption in the following: every grammar is reduced

Definition 5.12 (Reduced CFG)

A grammar G = 〈N,Σ, P, S〉 ∈ CFGΣ is called reduced if for every
A ∈ N there exist α, β ∈ X∗ and w ∈ Σ∗ such that

S ⇒∗αAβ (A reachable) and

A ⇒∗w (A productive).
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Top-Down Parsing

Approach:
1 Given G ∈ CFGΣ, construct a nondeterministic pushdown

automaton (PDA) which accepts L(G) and which additionally
computes corresponding leftmost derivations (similar to the proof
of “L(CFGΣ) ⊆ L(PDAΣ)”)

input alphabet: Σ
pushdown alphabet: X

output alphabet: [p]
state set: omitted
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Top-Down Parsing

Approach:
1 Given G ∈ CFGΣ, construct a nondeterministic pushdown

automaton (PDA) which accepts L(G) and which additionally
computes corresponding leftmost derivations (similar to the proof
of “L(CFGΣ) ⊆ L(PDAΣ)”)

input alphabet: Σ
pushdown alphabet: X

output alphabet: [p]
state set: omitted

2 Remove nondeterminism by allowing lookahead on the input:
G ∈ LL(k) iff L(G) recognizable by deterministic PDA with
lookahead of k symbols
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The Nondeterministic Top-Down Automaton I

Definition 5.13 (Nondeterministic top-down parsing automaton)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ. The nondeterministic top-down parsing
automaton of G, NTA(G), is defined by the following components.

Input alphabet: Σ

Pushdown alphabet: X

Output alphabet: [p]

Configurations: Σ∗ × X∗ × [p]∗ (top of pushdown to the left)

Transitions for w ∈ Σ∗, α ∈ X∗, and z ∈ [p]∗:

expansion steps: if π(i) = A → β, then (w,Aα, z) ⊢ (w, βα, zi)
matching steps: for every a ∈ Σ, (aw, aα, z) ⊢ (w,α, z)

Initial configuration for w ∈ Σ∗: (w,S, ε)

Final configurations: {ε} × {ε} × [p]∗
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The Nondeterministic Top-Down Automaton I

Definition 5.13 (Nondeterministic top-down parsing automaton)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ. The nondeterministic top-down parsing
automaton of G, NTA(G), is defined by the following components.

Input alphabet: Σ

Pushdown alphabet: X

Output alphabet: [p]

Configurations: Σ∗ × X∗ × [p]∗ (top of pushdown to the left)

Transitions for w ∈ Σ∗, α ∈ X∗, and z ∈ [p]∗:

expansion steps: if π(i) = A → β, then (w,Aα, z) ⊢ (w, βα, zi)
matching steps: for every a ∈ Σ, (aw, aα, z) ⊢ (w,α, z)

Initial configuration for w ∈ Σ∗: (w,S, ε)

Final configurations: {ε} × {ε} × [p]∗

Remark: NTA(G) is nondeterministic iff G contains A → β | γ
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The Nondeterministic Top-Down Automaton II

Example 5.14

Grammar for
arithmetic expressions
(cf. Example 5.11):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)
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The Nondeterministic Top-Down Automaton II

Example 5.14

Grammar for
arithmetic expressions
(cf. Example 5.11):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
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The Nondeterministic Top-Down Automaton II

Example 5.14

Grammar for
arithmetic expressions
(cf. Example 5.11):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )

Compiler Construction Summer semester 2008 20



The Nondeterministic Top-Down Automaton II

Example 5.14

Grammar for
arithmetic expressions
(cf. Example 5.11):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
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The Nondeterministic Top-Down Automaton II

Example 5.14

Grammar for
arithmetic expressions
(cf. Example 5.11):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
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The Nondeterministic Top-Down Automaton II

Example 5.14

Grammar for
arithmetic expressions
(cf. Example 5.11):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F, 2345 )
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The Nondeterministic Top-Down Automaton II

Example 5.14

Grammar for
arithmetic expressions
(cf. Example 5.11):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F, 2345 )
⊢ ( a)*b, E)*F , 2345 )
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The Nondeterministic Top-Down Automaton II

Example 5.14

Grammar for
arithmetic expressions
(cf. Example 5.11):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F, 2345 )
⊢ ( a)*b, E)*F , 2345 )
⊢ ( a)*b, T)*F , 23452 )
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The Nondeterministic Top-Down Automaton II

Example 5.14

Grammar for
arithmetic expressions
(cf. Example 5.11):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F, 2345 )
⊢ ( a)*b, E)*F , 2345 )
⊢ ( a)*b, T)*F , 23452 )
⊢ ( a)*b, F)*F , 234524 )
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The Nondeterministic Top-Down Automaton II

Example 5.14

Grammar for
arithmetic expressions
(cf. Example 5.11):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F, 2345 )
⊢ ( a)*b, E)*F , 2345 )
⊢ ( a)*b, T)*F , 23452 )
⊢ ( a)*b, F)*F , 234524 )
⊢ ( a)*b, a)*F , 2345246 )
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The Nondeterministic Top-Down Automaton II

Example 5.14

Grammar for
arithmetic expressions
(cf. Example 5.11):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F, 2345 )
⊢ ( a)*b, E)*F , 2345 )
⊢ ( a)*b, T)*F , 23452 )
⊢ ( a)*b, F)*F , 234524 )
⊢ ( a)*b, a)*F , 2345246 )
⊢ ( )*b, )*F , 2345246 )
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The Nondeterministic Top-Down Automaton II

Example 5.14

Grammar for
arithmetic expressions
(cf. Example 5.11):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F, 2345 )
⊢ ( a)*b, E)*F , 2345 )
⊢ ( a)*b, T)*F , 23452 )
⊢ ( a)*b, F)*F , 234524 )
⊢ ( a)*b, a)*F , 2345246 )
⊢ ( )*b, )*F , 2345246 )
⊢ ( *b, *F , 2345246 )
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The Nondeterministic Top-Down Automaton II

Example 5.14

Grammar for
arithmetic expressions
(cf. Example 5.11):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F, 2345 )
⊢ ( a)*b, E)*F , 2345 )
⊢ ( a)*b, T)*F , 23452 )
⊢ ( a)*b, F)*F , 234524 )
⊢ ( a)*b, a)*F , 2345246 )
⊢ ( )*b, )*F , 2345246 )
⊢ ( *b, *F , 2345246 )
⊢ ( b, F , 2345246 )

Compiler Construction Summer semester 2008 20



The Nondeterministic Top-Down Automaton II

Example 5.14

Grammar for
arithmetic expressions
(cf. Example 5.11):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F, 2345 )
⊢ ( a)*b, E)*F , 2345 )
⊢ ( a)*b, T)*F , 23452 )
⊢ ( a)*b, F)*F , 234524 )
⊢ ( a)*b, a)*F , 2345246 )
⊢ ( )*b, )*F , 2345246 )
⊢ ( *b, *F , 2345246 )
⊢ ( b, F , 2345246 )
⊢ ( b, b , 23452467)
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The Nondeterministic Top-Down Automaton II

Example 5.14

Grammar for
arithmetic expressions
(cf. Example 5.11):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F, 2345 )
⊢ ( a)*b, E)*F , 2345 )
⊢ ( a)*b, T)*F , 23452 )
⊢ ( a)*b, F)*F , 234524 )
⊢ ( a)*b, a)*F , 2345246 )
⊢ ( )*b, )*F , 2345246 )
⊢ ( *b, *F , 2345246 )
⊢ ( b, F , 2345246 )
⊢ ( b, b , 23452467)
⊢ ( ε, ε , 23452467)
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The Nondeterministic Top-Down Automaton III

Theorem 5.15 (Correctness of NTA(G))

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ and NTA(G) as before. Then, for every
w ∈ Σ∗ and z ∈ [p]∗,

(w,S, ε) ⊢∗ (ε, ε, z) iff z is a leftmost analysis of w
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The Nondeterministic Top-Down Automaton III

Theorem 5.15 (Correctness of NTA(G))

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ and NTA(G) as before. Then, for every
w ∈ Σ∗ and z ∈ [p]∗,

(w,S, ε) ⊢∗ (ε, ε, z) iff z is a leftmost analysis of w

Proof.

=⇒ (soundness): see exercises

⇐= (completeness): on the board
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