Compiler Construction

Lecture 5: Syntactic Analysis I (Introduction)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

Y
CSyntactic analysis (Parsor)

y
Semantic analysis)

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Summer semester 2008

@ Problem Statement

Rm Compiler Construction Summer semester 2

Syntactic Structures

Starting point: sequence of symbols as produced by the scanner
Here: ignore attribute information

@ X (finite) set of tokens (= syntactic atoms; terminals)
(e.g., {id,if,int,...})

o w € X* token sequence
(of course, not every w € ¥* forms a valid program)

Syntactic units:

atomic: keywords, variable/type/procedure/... identifiers,
numerals, arithmetic/boolean operators, ...

complex: declarations, arithmetic/boolean expressions, statements,

Observation: the hierarchical structure of syntactic units can be
described by context-free grammars

m' Compiler Construction Summer semester 2008

Syntactic Analysis

Definition 5.1

The goal of syntactic analysis is to determine the syntactic structure of
a program, given by a token sequence, according to a context-free
grammar.

The corresponding program is called a parser:

(token[,attribute])

> syntax tree :
Scanner) (Pars_erD—PCSemantlc analyzea

et next token &

y
Symbol table

Alssg\n
Example: Va;: ’chp
Slzm
... (id, p1)(gets,)(id, p2) (plus,) (int, 1) (sem,) ...~ Var Const

m' Compiler Construction Summer semester 2008

© Context-Free Grammars and Languages

Rm Compiler Construction Summer semester 2

Context-Free Grammars I

Definition 5.2 (Syntax of context-free grammars)

A context-free grammar (CFG) (over X) is a quadruple
G = (N,%,P,S)
where
@ N is a finite set of nonterminal symbols,
@ Y is a (finite) alphabet of terminal symbols (disjoint from N),
o P is a finite set of production rules of the form A — « where
AeN and a € X* for X := NUX, and
@ S € N is a start symbol.

The set of all context-free grammars over Y. is denoted by CFGyx.

Remarks: as denotations we generally use
o A, B,C,... € N for nonterminal symbols

® a,b,c,... € ¥ for terminal symbols
® u,v,w,... € X* for terminal words
o «a,0,7,... € X* for sentences

m Compiler Construction Summer semester 2008

Context-Free Grammars I1

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let G = (N, X, P, S) be a context-free grammar.

@ The derivation relation = C X* x X* of GG is defined by
o = [iff there exist ay,a0 € X*, A — vy € P
such that a = a1 Aas and 8 = agyas.
o If in addition a; € X* or ag € X, then we write o = § or
a =, (3, respectively (leftmost/rightmost derivation).
o The language generated by G is given by
L(G) ={weX*|S="w}
o If a language L C X* is generated by some G € CFGy, then L is
called context free. The set of all context-free languages over X is
denoted by CFLy.

Remark: obviously,

LG) = {we D | S =7 wh={we x| S =Fw)

m Compiler Construction Summer semester 2008 8

Context-Free Languages

Example 5.4

The grammar G = (N, X, P, S) € CFGyx, over X := {a, b}, given by the
productions

S — aSh | ¢,
generates the context-free (and non-regular) language
L ={a"b" |n € N}.
The example derivation
S = aSb = aaSbb = aabb
can be represented by the following syntax tree for aabb:

m Compiler Construction Summer semester 2008

Syntax Trees, Derivations, and Words

Remark: the connection between derivations, syntax trees, and
generated words is not unique

@ A syntax tree generally represents several derivations.

© A derivation can generally be represented by several syntax trees.
© A word can generally be produced by several derivations.

© A word can have several syntax trees.

on the board l

However:

@ Every syntax tree yields exactly one word
(= concatenation of leafs).

© Every syntax tree corresponds to exactly one leftmost derivation,
and vice versa.

@ Every syntax tree corresponds to exactly one rightmost derivation,
and vice versa.

Rm Compiler Construction Summer semester 2008 10

(Un-) Ambiguity of CFGs and CFLs

Definition 5.6 (Ambiguity)

o A context-free grammar G € CFGy is called unambiguous if every
word w € L(G) has exactly one syntax tree. Otherwise it is called
ambiguous.

o A context-free language L € CFLy is called inherently ambiguous
if every grammar G € CFGy with L(G) = L is ambiguous.

on the board ‘

Corollary 5.8

A grammar G € CFGy is unambiguous
iff every word w € L(G) has exactly one leftmost derivation
iff every word w € L(G) has exactly one rightmost derivation.

m Compiler Construction Summer semester 2008 11

© Parsing Context-Free Languages

Rm Compiler Construction Summer semester 2

Parsing Context-Free Languages

Problem 5.9 (Word problem for context-free languages)

Given G € CFGyx, and w € ¥*, decide whether w € L(Q)
(and determine a corresponding syntax tree).

@ Decidable for arbitrary CFGs (in Chomsky Normal Form) using
the tabular method by Cocke, Younger, and Kasami
(“CYK Algorithm”; space/time complexity O(|w|?)/O(|w|?))

o Goal: exploit the special syntactic structures as present in
programming languages (usually: no ambiguities) to devise
parsing methods which are based on deterministic pushdown
automata with linear space and time complexity

Two approaches:

Top-down analysis: construction of syntax tree from the root towards
the leafs, representation as leftmost derivation

Bottom-up analysis: construction of syntax tree from the leafs towards
the root, representation as (reversed) rightmost derivation

m' Compiler Construction Summer semester 2008 13

Leftmost /Rightmost Analysis I

Goal: compact representation of left-/rightmost derivations by index
sequences

Definition 5.10 (Leftmost/rightmost analysis)
Let G = (N,%,P,S) € CFGx, p:= |P|, and 7 : [p] — P a bijection.
o Ifiep], n(i)=A— v, we X and o € X*, then we write

wAa =, wya and cAw =, ayw.
o If z =14y ...i, € [p|*, we write a = 3 if there exist
ag, ..., € X* such that ag = o, a, = 3, and a1 gl a; for
every j € [n] (analogously for =).
@ An index sequence z € [p]* is called a leftmost analysis (rightmost
analysis) of a if S 2 a (S 2, a), respectively.

m Compiler Construction Summer semester 2008 14

Leftmost /Rightmost Analysis

Example 5.11

Grammar for arithmetic expressions:
Gagp: E— E+T|T (1,2)
T —TxF | F (3,4)
F — (E)|a|b (5,6,
Leftmost derivation of (a)*b:
E 2 T & TxF 2, FxF
2, (D*F 2, (MH*F 2
—> leftmost analysis: 23452467

Rightmost derivation of (a)*b:
E 2, T £ T«F

2, (B 2, ()b
—> rightmost analysis: 23745246

r T*b §>,, F*b
r (F)*b :6>

Compiler Construction Summer semester 2008

Reducedness of Context-Free Grammars

General assumption in the following: every grammar is reduced

Definition 5.12 (Reduced CFG)

A grammar G = (N, X, P, S) € CFGy is called reduced if for every
A € N there exist o, 8 € X* and w € ¥* such that

S =*aAp (A reachable) and
A =>*w (A productive).

m' Compiler Construction Summer semester 2008

@ Nondeterministic Top-Down Parsing

Rm Compiler Construction Summer semester 2

Top-Down Parsing

Approach:

@ Given G € CFGy, construct a nondeterministic pushdown
automaton (PDA) which accepts L(G) and which additionally
computes corresponding leftmost derivations (similar to the proof
of “L(CFGyx) C L(PDAy)”)

input alphabet: X

pushdown alphabet: X

output alphabet: [p]

state set: omitted

¢ © ¢ ¢

© Remove nondeterminism by allowing lookahead on the input:
G € LL(k) iff L(G) recognizable by deterministic PDA with
lookahead of k symbols

Rm Compiler Construction Summer semester 2008 18

The Nondeterministic Top-Down Automaton 1

Definition 5.13 (Nondeterministic top-down parsing automaton)

Let G = (N,X, P,S) € CFGyx. The nondeterministic top-down parsing
automaton of G, NTA(G), is defined by the following components.
o Input alphabet: X
o Pushdown alphabet: X
@ Output alphabet: [p]
o Configurations: ¥* x X* X [p]* (top of pushdown to the left)
e Transitions for w € ¥*, a € X*, and z € [p]*:
expansion steps: if (i) = A — 8, then (w, Aa, 2) F (w, Ba, 2i)
matching steps: for every a € ¥, (aw, aa, 2) - (w, a, 2)

@ Initial configuration for w € ¥*: (w, S, ¢)

e Final configurations: {e} x {e} x [p]*

Remark: NTA(G) is nondeterministic iff G contains A — 3 | v

m Compiler Construction Summer semester 2008

The Nondeterministic Top-Down Automaton 11

Example 5.14

Grammar for Leftmost analysis of (a)*b:
arithmetic expressions ((a)*b, F , €
(cf. Example 5.11): (a)*b, T y 2

Gag: E— E+T|T (1, (a)*b, TxF | 23

1,2)
(a)*b, F'xF 234

T—>T«F|F (3,4)
F— (E)|a|b (56,7) (a)*Db, (E)*F 2345

)
()
()
()
()
(a)xb, E)*F | 2345)
(a)*xb, TH*F | 23452)
(a)*b, F)*F | 234524)
(a)*b, a)*F | 2345246)
()b,)*F ,2345246)
(*b, xF , 2345246)
(b, F , 2345246)
(b, b , 23452467)
(g, € , 23452467)

T T T T T T T T T TTTT

m Compiler Construction Summer semester 2008 20

The Nondeterministic Top-Down Automaton III

Theorem 5.15 (Correctness of NTA(G))

Let G = (N,X, P,S) € CFGyx, and NTA(G) as before. Then, for every
w € X* and z € [p]*,

(w,S,e) F* (e,e,2) iff =z is a leftmost analysis of w

—> (soundness): see exercises

<= (completeness): on the board

m Compiler Construction Summer semester 2008 21

	Problem Statement
	Context-Free Grammars and Languages
	Parsing Context-Free Languages
	Nondeterministic Top-Down Parsing

