

Compiler Construction

Lecture 6: Syntactic Analysis II ($LL(k)$ Grammars)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/cc08/>

Summer semester 2008

- 1 Repetition: Top-Down Parsing of Context-Free Languages
- 2 Adding Lookahead
- 3 $LL(k)$ Grammars

Problem (Word problem for context-free languages)

Given $G \in \text{CFG}_{\Sigma}$ and $w \in \Sigma^$, decide whether $w \in L(G)$ (and determine a corresponding syntax tree).*

- Decidable for arbitrary CFGs (in Chomsky Normal Form) using the **tabular method by Cocke, Younger, and Kasami** (“CYK Algorithm”; space/time complexity $\mathcal{O}(|w|^2)/\mathcal{O}(|w|^3)$)
- **Goal:** exploit the special syntactic structures as present in programming languages (usually: no ambiguities) to devise parsing methods which are based on **deterministic pushdown automata with linear space and time complexity**

Two approaches:

Top-down parsing: construction of syntax tree from the **root** towards the **leafs**, representation as **leftmost derivation**

Bottom-up parsing: construction of syntax tree from the **leafs** towards the **root**, representation as (reversed) **rightmost derivation**

Approach:

- ① Given $G \in CFG_{\Sigma}$, construct a **nondeterministic pushdown automaton** (PDA) which accepts $L(G)$ and which additionally computes corresponding leftmost derivations (similar to the proof of " $L(CFG_{\Sigma}) \subseteq L(PDA_{\Sigma})$ ")
 - input alphabet: Σ
 - pushdown alphabet: X
 - output alphabet: $[p]$
 - state set: omitted
- ② Remove nondeterminism by allowing **lookahead** on the input:
 $G \in LL(k)$ iff $L(G)$ recognizable by deterministic PDA with lookahead of k symbols

Definition (Nondeterministic top-down parsing automaton)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$. The **nondeterministic top-down parsing automaton** of G , $NTA(G)$, is defined by the following components.

- **Input alphabet:** Σ
- **Pushdown alphabet:** X
- **Output alphabet:** $[p]$
- **Configurations:** $\Sigma^* \times X^* \times [p]^*$ (top of pushdown to the left)
- **Transitions** for $w \in \Sigma^*$, $\alpha \in X^*$, and $z \in [p]^*$:
 - expansion steps: if $\pi(i) = A \rightarrow \beta$, then $(w, A\alpha, z) \vdash (w, \beta\alpha, zi)$
 - matching steps: for every $a \in \Sigma$, $(aw, a\alpha, z) \vdash (w, \alpha, z)$
- **Initial configuration** for $w \in \Sigma^*$: (w, S, ε)
- **Final configurations**: $\{\varepsilon\} \times \{\varepsilon\} \times [p]^*$

Remark: $NTA(G)$ is nondeterministic iff G contains $A \rightarrow \beta \mid \gamma$

Theorem (Correctness of NTA(G))

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ and NTA(G) as before. Then, for every $w \in \Sigma^*$ and $z \in [p]^*$,

$$(w, S, \varepsilon) \vdash^* (\varepsilon, \varepsilon, z) \quad \text{iff} \quad z \text{ is a leftmost analysis of } w$$

Proof.

\implies (soundness): see exercises

\impliedby (completeness): on the board

- 1 Repetition: Top-Down Parsing of Context-Free Languages
- 2 Adding Lookahead
- 3 $LL(k)$ Grammars

Goal: resolve nondeterminism of $\text{NTA}(G)$ by supporting **lookahead of $k \in \mathbb{N}$ symbols** on the input
⇒ determination of expanding A -production by next k symbols

Goal: resolve nondeterminism of $NTA(G)$ by supporting **lookahead of $k \in \mathbb{N}$ symbols** on the input
⇒ determination of expanding A -production by next k symbols

Definition 6.1 (first_k set)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_\Sigma$, $\alpha \in X^*$, and $k \in \mathbb{N}$. Then the **first_k set** of α , $\text{first}_k(\alpha) \subseteq \Sigma^*$, is given by

$$\begin{aligned} \text{first}_k(\alpha) := & \{v \in \Sigma^k \mid \text{ex. } w \in \Sigma^* \text{ such that } \alpha \Rightarrow^* vw\} \cup \\ & \{v \in \Sigma^{<k} \mid \alpha \Rightarrow^* v\} \end{aligned}$$

Lemma 6.2

Let $G = \langle N, \Sigma, P, S \rangle \in \text{CFG}_\Sigma$, $\alpha, \beta \in X^*$, and $k \in \mathbb{N}$.

- ① $\text{first}_k(\alpha) \neq \emptyset$
- ② $\varepsilon \in \text{first}_k(\alpha)$ iff $k = 0$ or $\alpha \Rightarrow^* \varepsilon$
- ③ $\alpha \Rightarrow^* \beta \implies \text{first}_k(\beta) \subseteq \text{first}_k(\alpha)$
- ④ $v \in \text{first}_k(\alpha)$ iff ex. $w \in \Sigma^*$ such that $\alpha \Rightarrow^* w$ and $\text{first}_k(w) = \{v\}$

Lemma 6.2

Let $G = \langle N, \Sigma, P, S \rangle \in \text{CFG}_\Sigma$, $\alpha, \beta \in X^*$, and $k \in \mathbb{N}$.

- ① $\text{first}_k(\alpha) \neq \emptyset$
- ② $\varepsilon \in \text{first}_k(\alpha)$ iff $k = 0$ or $\alpha \Rightarrow^* \varepsilon$
- ③ $\alpha \Rightarrow^* \beta \implies \text{first}_k(\beta) \subseteq \text{first}_k(\alpha)$
- ④ $v \in \text{first}_k(\alpha)$ iff ex. $w \in \Sigma^*$ such that $\alpha \Rightarrow^* w$ and $\text{first}_k(w) = \{v\}$

Proof.

on the board

- 1 Repetition: Top-Down Parsing of Context-Free Languages
- 2 Adding Lookahead
- 3 $LL(k)$ Grammars

$LL(k)$: reading of input from left to right with k -lookahead, computing a leftmost analysis

$LL(k)$: reading of input from left to right with k -lookahead, computing a leftmost analysis

Definition 6.3 ($LL(k)$ grammar)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ and $k \in \mathbb{N}$. Then G has the $LL(k)$ property (notation: $G \in LL(k)$) if for all leftmost derivations of the form

$$S \Rightarrow_l^* wA\alpha \begin{cases} \Rightarrow_l w\beta\alpha \Rightarrow_l^* wx \\ \Rightarrow_l w\gamma\alpha \Rightarrow_l^* wy \end{cases}$$

such that $\text{first}_k(x) = \text{first}_k(y)$, it follows that $\beta = \gamma$ (i.e., the same production is applied to A).

$LL(k)$: reading of input from left to right with k -lookahead, computing a leftmost analysis

Definition 6.3 ($LL(k)$ grammar)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_\Sigma$ and $k \in \mathbb{N}$. Then G has the $LL(k)$ property (notation: $G \in LL(k)$) if for all leftmost derivations of the form

$$S \Rightarrow_l^* wA\alpha \left\{ \begin{array}{l} \Rightarrow_l w\beta\alpha \Rightarrow_l^* wx \\ \Rightarrow_l w\gamma\alpha \Rightarrow_l^* wy \end{array} \right.$$

such that $\text{first}_k(x) = \text{first}_k(y)$, it follows that $\beta = \gamma$ (i.e., the same production is applied to A).

Remarks:

- If $G \in LL(k)$, then the leftmost derivation step for $wA\alpha$ in the above diagram is determined by the next k symbols following w .
- Problem: how to determine the A -production from the lookahead (potentially infinitely many derivations to wx/wy)?

Lemma 6.4 (Characterization of $LL(k)$)

$G \in LL(k)$ iff for all leftmost derivations of the form

$$S \Rightarrow_l^* wA\alpha \left\{ \begin{array}{l} \Rightarrow_l w\beta\alpha \\ \Rightarrow_l w\gamma\alpha \end{array} \right.$$

such that $\beta \neq \gamma$, it follows that $\text{first}_k(\beta\alpha) \cap \text{first}_k(\gamma\alpha) = \emptyset$.

Lemma 6.4 (Characterization of $LL(k)$)

$G \in LL(k)$ iff for all leftmost derivations of the form

$$S \Rightarrow_l^* wA\alpha \left\{ \begin{array}{l} \Rightarrow_l w\beta\alpha \\ \Rightarrow_l w\gamma\alpha \end{array} \right.$$

such that $\beta \neq \gamma$, it follows that $\text{first}_k(\beta\alpha) \cap \text{first}_k(\gamma\alpha) = \emptyset$.

Proof.

on the board

Lemma 6.4 (Characterization of $LL(k)$)

$G \in LL(k)$ iff for all leftmost derivations of the form

$$S \Rightarrow_l^* wA\alpha \left\{ \begin{array}{l} \Rightarrow_l w\beta\alpha \\ \Rightarrow_l w\gamma\alpha \end{array} \right.$$

such that $\beta \neq \gamma$, it follows that $\text{first}_k(\beta\alpha) \cap \text{first}_k(\gamma\alpha) = \emptyset$.

Proof.

on the board □

Remarks:

- If $G \in LL(k)$, then the A -production is determined by the lookahead sets $\text{first}_k(\beta\alpha)$ (for every $A \rightarrow \beta \in P$).
- Problem: still infinitely many rightmost contexts α to be considered (if β “too short”, i.e., $\text{first}_k(\beta\alpha) \neq \text{first}_k(\beta)$).