Compiler Construction

Lecture 6: Syntactic Analysis IT (LL(k) Grammars)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

@ Repetition: Top-Down Parsing of Context-Free Languages

Rm Compiler Construction Summer semester 2

Parsing Context-Free Languages

Problem (Word problem for context-free languages)

Given G € CFGyx, and w € ¥*, decide whether w € L(Q)
(and determine a corresponding syntax tree).

@ Decidable for arbitrary CFGs (in Chomsky Normal Form) using
the tabular method by Cocke, Younger, and Kasami
(“CYK Algorithm”; space/time complexity O(|w|?)/O(|w|?))

o Goal: exploit the special syntactic structures as present in
programming languages (usually: no ambiguities) to devise
parsing methods which are based on deterministic pushdown
automata with linear space and time complexity

Two approaches:

Top-down parsing: construction of syntax tree from the root towards
the leafs, representation as leftmost derivation

Bottom-up parsing: construction of syntax tree from the leafs towards
the root, representation as (reversed) rightmost derivation

m' Compiler Construction Summer semester 2008

Top-Down Parsing

Approach:

@ Given G € CFGy, construct a nondeterministic pushdown
automaton (PDA) which accepts L(G) and which additionally
computes corresponding leftmost derivations (similar to the proof
of “L(CFGyx) C L(PDAy)”)

input alphabet: X

pushdown alphabet: X

output alphabet: [p]

state set: omitted

¢ © ¢ ¢

© Remove nondeterminism by allowing lookahead on the input:
G € LL(k) iff L(G) recognizable by deterministic PDA with
lookahead of k symbols

Rm Compiler Construction Summer semester 2008 4

The Nondeterministic Top-Down Automaton 1

Definition (Nondeterministic top-down parsing automaton)

Let G = (N,X, P,S) € CFGyx. The nondeterministic top-down parsing
automaton of G, NTA(G), is defined by the following components.
o Input alphabet: X
o Pushdown alphabet: X
@ Output alphabet: [p]
o Configurations: ¥* x X* X [p]* (top of pushdown to the left)
e Transitions for w € ¥*, a € X*, and z € [p]*:
expansion steps: if (i) = A — 8, then (w, Aa, 2) F (w, Ba, 2i)
matching steps: for every a € ¥, (aw, aa, 2) - (w, a, 2)

@ Initial configuration for w € ¥*: (w, S, ¢)

e Final configurations: {e} x {e} x [p]*

Remark: NTA(G) is nondeterministic iff G contains A — 3 | v

m Compiler Construction Summer semester 2008

The Nondeterministic Top-Down Automaton 11

Theorem (Correctness of NTA(G))

Let G = (N,X, P,S) € CFGyx, and NTA(G) as before. Then, for every
w € X* and z € [p]*,

(w,S,e) F* (e,e,2) iff =z is a leftmost analysis of w

—> (soundness): see exercises

<= (completeness): on the board

m Compiler Construction Summer semester 2008 6

© Adding Lookahead

Rm Compiler Construction Summer semester 2

Adding Lookahead

Goal: resolve nondeterminism of NTA(G) by supporting lookahead of
k € N symbols on the input
—> determination of expanding A-production by next k£ symbols

Rm Compiler Construction Summer semester 2008 8

Adding Lookahead

Goal: resolve nondeterminism of NTA(G) by supporting lookahead of
k € N symbols on the input
—> determination of expanding A-production by next k£ symbols

Definition 6.1 (firsty set)

Let G =(N,X,P,S) € CFGx, a € X*, and k € N. Then the firstj, set
of a, firsty () C ¥*, is given by

firsty () := {v € BF | ex. w € ¥* such that o =* vw} U
{vex<k|a=*v}

m Compiler Construction Summer semester 2008 8

Properties of first; Sets

Let G = (N,X,P,S) € CFGyx, o, € X*, and k € N.
Q firstg(a) # 0
Q ccfirsty(a) iff k=0 ora="¢
Q a=" [= firsty(0) C firsty ()
Q v € firstg () iff ex. w € *such that a =* w and firsty(w) = {v}

Compiler Construction Summer semester 2008 9

Properties of first; Sets

Let G = (N,X,P,S) € CFGyx, o, € X*, and k € N.
Q firstg(a) # 0
Q ccfirsty(a) iff k=0 ora="¢
Q a=" [= firsty(0) C firsty ()
Q v € firstg () iff ex. w € *such that a =* w and firsty(w) = {v}

on the board O

Compiler Construction Summer semester 2008 9

© LL(k) Grammars

Rm Compiler Construction Summer semester 2

LL(k) Grammars I

LL(k): reading of input from left to right with k-lookahead, computing
a leftmost analysis

Rm Compiler Construction Summer semester 2008 11

LL(k) Grammars I

LL(k): reading of input from left to right with k-lookahead, computing
a leftmost analysis

Definition 6.3 (LL(k) grammar)

Let G =(N,X,P,S) € CFGy and k € N. Then G has the LL(k)
property (notation: G € LL(k)) if for all leftmost derivations of the

form
= wha =] wx

*
o= G {:>l wyo =] wy

such that firsty(x) = firstg(y), it follows that 5 =~
(i.e., the same production is applied to A).

m Compiler Construction Summer semester 2008

LL(k) Grammars I

LL(k): reading of input from left to right with k-lookahead, computing
a leftmost analysis

Definition 6.3 (LL(k) grammar)

Let G =(N,X,P,S) € CFGy and k € N. Then G has the LL(k)
property (notation: G € LL(k)) if for all leftmost derivations of the

form
= wha =] wx

*
o= G {:>l wyo =] wy

such that firsty(x) = firstg(y), it follows that 5 =~
(i.e., the same production is applied to A).

Remarks:
o If G € LL(k), then the leftmost derivation step for wA« in the
above diagram is determined by the next k symbols following w.
@ Problem: how to determine the A-production from the lookahead
(potentially infinitely many derivations to wx/wy)?

m Compiler Construction Summer semester 2008 11

LL(k) Grammars II

Lemma 6.4 (Characterization of LL(k))

G € LL(k) iff for all leftmost derivations of the form

= wha

S = wAa{ . e

such that 3 # =, it follows that firsty(Ba) N firsty (ya) = 0.

m' Compiler Construction Summer semester 2008 12

LL(k) Grammars II

Lemma 6.4 (Characterization of LL(k))
G € LL(k) iff for all leftmost derivations of the form

= wha

S =] wAa{ = W

such that B # =, it follows that firstg(Ba) N firstg (ya) = 0.

on the board O

m Compiler Construction Summer semester 2008 12

LL(k) Grammars II

Lemma 6.4 (Characterization of LL(k))

G € LL(k) iff for all leftmost derivations of the form

= wha

S =] wAa{ e

such that B # =, it follows that firstg(Ba) N firstg (ya) = 0.

on the board O

Remarks:
o If G € LL(k), then the A-production is determined by the
lookahead sets firsty(Ba) (for every A — 3 € P).
o Problem: still infinitely many rightmost contexts « to be
considered (if 8 “too short”, i.e., firsty(fa) # firsty(3)).

m Compiler Construction Summer semester 2008 12

	Repetition: Top-Down Parsing of Context-Free Languages
	Adding Lookahead
	LL(k) Grammars

