
Compiler Construction

Lecture 6: Syntactic Analysis II (LL(k) Grammars)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Outline

1 Repetition: Top-Down Parsing of Context-Free Languages

2 Adding Lookahead

3 LL(k) Grammars

4 LL(1) Grammars

Compiler Construction Summer semester 2008 2

Parsing Context-Free Languages

Problem (Word problem for context-free languages)

Given G ∈ CFGΣ and w ∈ Σ∗, decide whether w ∈ L(G)
(and determine a corresponding syntax tree).

Decidable for arbitrary CFGs (in Chomsky Normal Form) using
the tabular method by Cocke, Younger, and Kasami
(“CYK Algorithm”; space/time complexity O(|w|2)/O(|w|3))
Goal: exploit the special syntactic structures as present in
programming languages (usually: no ambiguities) to devise
parsing methods which are based on deterministic pushdown
automata with linear space and time complexity

Two approaches:

Top-down parsing: construction of syntax tree from the root towards
the leafs, representation as leftmost derivation

Bottom-up parsing: construction of syntax tree from the leafs towards
the root, representation as (reversed) rightmost derivation

Compiler Construction Summer semester 2008 3

Top-Down Parsing

Approach:
1 Given G ∈ CFGΣ, construct a nondeterministic pushdown

automaton (PDA) which accepts L(G) and which additionally
computes corresponding leftmost derivations (similar to the proof
of “L(CFGΣ) ⊆ L(PDAΣ)”)

input alphabet: Σ
pushdown alphabet: X

output alphabet: [p]
state set: omitted

2 Remove nondeterminism by allowing lookahead on the input:
G ∈ LL(k) iff L(G) recognizable by deterministic PDA with
lookahead of k symbols

Compiler Construction Summer semester 2008 4

The Nondeterministic Top-Down Automaton I

Definition (Nondeterministic top-down parsing automaton)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ. The nondeterministic top-down parsing
automaton of G, NTA(G), is defined by the following components.

Input alphabet: Σ

Pushdown alphabet: X

Output alphabet: [p]

Configurations: Σ∗ × X∗ × [p]∗ (top of pushdown to the left)

Transitions for w ∈ Σ∗, α ∈ X∗, and z ∈ [p]∗:

expansion steps: if π(i) = A → β, then (w,Aα, z) ⊢ (w, βα, zi)
matching steps: for every a ∈ Σ, (aw, aα, z) ⊢ (w,α, z)

Initial configuration for w ∈ Σ∗: (w,S, ε)

Final configurations: {ε} × {ε} × [p]∗

Remark: NTA(G) is nondeterministic iff G contains A → β | γ

Compiler Construction Summer semester 2008 5

The Nondeterministic Top-Down Automaton II

Theorem (Correctness of NTA(G))

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ and NTA(G) as before. Then, for every
w ∈ Σ∗ and z ∈ [p]∗,

(w,S, ε) ⊢∗ (ε, ε, z) iff z is a leftmost analysis of w

Proof.

=⇒ (soundness): see exercises

⇐= (completeness): on the board

Compiler Construction Summer semester 2008 6

Outline

1 Repetition: Top-Down Parsing of Context-Free Languages

2 Adding Lookahead

3 LL(k) Grammars

4 LL(1) Grammars

Compiler Construction Summer semester 2008 7

Adding Lookahead

Goal: resolve nondeterminism of NTA(G) by supporting lookahead of
k ∈ N symbols on the input
=⇒ determination of expanding A-production by next k symbols

Definition 6.1 (firstk set)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ, α ∈ X∗, and k ∈ N. Then the firstk set
of α, firstk(α) ⊆ Σ∗, is given by

firstk(α) := {v ∈ Σk | ex. w ∈ Σ∗ such that α ⇒∗ vw} ∪
{v ∈ Σ<k | α ⇒∗ v}

Compiler Construction Summer semester 2008 8

Properties of firstk Sets

Lemma 6.2

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ, α, β ∈ X∗, and k ∈ N.

1 firstk(α) 6= ∅

2 ε ∈ firstk(α) iff k = 0 or α ⇒∗ ε

3 α ⇒∗ β =⇒ firstk(β) ⊆ firstk(α)

4 v ∈ firstk(α) iff ex. w ∈ Σ∗such that α ⇒∗ w and firstk(w) = {v}

Proof.

on the board

Compiler Construction Summer semester 2008 9

Outline

1 Repetition: Top-Down Parsing of Context-Free Languages

2 Adding Lookahead

3 LL(k) Grammars

4 LL(1) Grammars

Compiler Construction Summer semester 2008 10

LL(k) Grammars I

LL(k): reading of input from left to right with k-lookahead, computing
a leftmost analysis

Definition 6.3 (LL(k) grammar)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ and k ∈ N. Then G has the LL(k)
property (notation: G ∈ LL(k)) if for all leftmost derivations of the
form

S ⇒∗

l wAα

{

⇒l wβα ⇒∗

l
wx

⇒l wγα ⇒∗

l
wy

such that firstk(x) = firstk(y), it follows that β = γ

(i.e., the same production is applied to A).

Remarks:

If G ∈ LL(k), then the leftmost derivation step for wAα in the
above diagram is determined by the next k symbols following w.
Problem: how to determine the A-production from the lookahead
(potentially infinitely many derivations to wx/wy)?

Compiler Construction Summer semester 2008 11

LL(k) Grammars II

Lemma 6.4 (Characterization of LL(k))

G ∈ LL(k) iff for all leftmost derivations of the form

S ⇒∗

l wAα

{

⇒l wβα
⇒l wγα

such that β 6= γ, it follows that firstk(βα) ∩ firstk(γα) = ∅.

Proof.

on the board

Remarks:

If G ∈ LL(k), then the A-production is determined by the
lookahead sets firstk(βα) (for every A → β ∈ P).

Problem: still infinitely many rightmost contexts α to be
considered (if β “too short”, i.e., firstk(βα) 6= firstk(β)).

Compiler Construction Summer semester 2008 12

	Repetition: Top-Down Parsing of Context-Free Languages
	Adding Lookahead
	LL(k) Grammars
	LL(1) Grammars

