Compiler Construction

Lecture 7: Syntactic Analysis III (LL(1) Grammars)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

© Repetition: LL(k) Grammars

Rm Compiler Construction Summer semester 2

Adding Lookahead

Goal: resolve nondeterminism of NTA(G) by supporting lookahead of
k € N symbols on the input
—> determination of expanding A-production by next k£ symbols

Definition (firsty set)

Let G =(N,X,P,S) € CFGx, a € X*, and k € N. Then the firstj, set
of a, firsty () C ¥*, is given by

firsty () := {v € BF | ex. w € ¥* such that o =* vw} U
{vex<k|a=*v}

m Compiler Construction Summer semester 2008 3

LL(k) Grammars I

LL(k): reading of input from left to right with k-lookahead, computing
a leftmost analysis

Definition (LL(k) grammar)

Let G =(N,X,P,S) € CFGy and k € N. Then G has the LL(k)
property (notation: G € LL(k)) if for all leftmost derivations of the

form
= wha =] wx

*
o= G {:>l wyo =] wy

such that firsty(x) = firstg(y), it follows that 5 =~
(i.e., the same production is applied to A).

Remarks:
o If G € LL(k), then the leftmost derivation step for wA« in the
above diagram is determined by the next k symbols following w.
@ Problem: how to determine the A-production from the lookahead
(potentially infinitely many derivations to wx/wy)?
RWTH Compiler Construction Summer semester 2008 4

LL(k) Grammars II

Lemma (Characterization of LL(k))

G € LL(k) iff for all leftmost derivations of the form

= wha

S =] fwAa{ —

such that 3 # =, it follows that firsty(Ba) N firstg (ya) = 0.

Remarks:
o If G € LL(k), then the A-production is determined by the
lookahead sets firsty(Ba) (for every A — 3 € P).

@ Problem: still infinitely many rightmost contexts « to be
considered (if 8 “too short”, i.e., firsty(Ba) # firsty(3)).

m Compiler Construction Summer semester 2008

© Follow Sets

Rm Compiler Construction Summer semester 2

The follow; Sets

Goal: determine all possible lookaheads from production alone
(by combining all possible right contexts)

Definition 7.1 (followy, set)

Let G=(N,X,P,S) € CFGy, A€ N, and k € N. Then the follow;, set
of A, followy(A) C ¥*, is given by

follow, (A) := {v € firsty(a) | ex. w € £*,a € X* such that S =] wAa}.

m' Compiler Construction Summer semester 2008 7

© LL(1) Grammars

Rm Compiler Construction Summer semester 2

The Case k=1

Motivation:
o k = 1 sufficient to resolve nondeterminism in “most” practical
applications
o Implementation of LL(k) parsers for k > 1 rather involved
(cf. ANTLR [ANother Tool for Language Recognition; formerly
PCCTS] at http://www.antlr.org/)

Abbreviations: fi := firsty, fo := followy, X, := X U {¢}

Q For every v € X,
fila)={aeX|ex.wel :a=*aw}U{e|a="ec} C X,

© For every A€ N,
fo(A) ={zr efi(a) | ex. w € ¥*,a € X*: § =] wAa} C Z..

m Compiler Construction Summer semester 2008 9

http://www.antlr.org/

Lookahead Sets

Definition 7.3 (Lookahead set)

GivenTt=A—> B € P,
la(7) := fi(5 - fo(A)) C 3.
is called the lookahead set of m (where fi(l') := U, fi(7))-

@ fForalla e,
a€la(A— pB)iffacfi(B) or (B="¢ and a € fo(4))

Qccla(A—f) iff 6="¢c and e € fo(A)

m Compiler Construction Summer semester 2008

Characterization of LL(1)

Theorem 7.5 (Characterization of LL(1))
G € LL(1) iff for all pairs of rules A — (| € P (where 3 # 7):

la(A — B)Nla(A — v) = 0.

on the board O

Remark: the above theorem generally does not hold if £ > 1
(cf. exercises)

m' Compiler Construction Summer semester 2008 11

@ Computing Lookahead Sets

Rm Compiler Construction Summer semester 2

Computing Lookahead Sets I

(see Waite/Goos: Compiler Construction, p. 164f)

Lemma 7.6 (Computation of fi/fo)

The sets fi(a) C 3¢ (for a € X*) and fo(A) C X, (for A € N) are the
least sets such that:
Q fi(Y) forY € X:

2 Ye¥ = fi(Y)={Y}

oY - A ... AyZae PkeN, Z e X,eefi(A)N...Nfi(Ag),

a€fi(Z) = acfi(Y)

oY -5 A... Ay e PkeNeefi(A)N...nfi(4y) = e €fi(Y)
Q fiy1...Y,) forneNY, € X:

o ecfiVy...Yio1),a€fiY),k€n] = acfiYr...Y,)

9 EEﬁ(Yl)ﬁ...mﬁ(Yn) — EEﬁ(Ylyn)
Q fo(A) for Ae N:

2 ¢ € fo(9)

o A—aBf e Pacfi(f) = acfo(B)

o A— aBf e Pecfi(ff),r € fo(Ad) = z € fo(B)

m Compiler Construction Summer semester 2008

Computing Lookahead Sets 11

Corollary 7.7

QO A—ane P = acfi(4l)

Q@ A— BaePacfiB) = acfi(A)
QO A—-eceP = cefi(A)

Q fi(e) = {e}

@ acfi(d) = acfi(Aa)

QO A—aBePuzxcfo(d) = zcfo(B)

Example 7.8

| A\

Grammar for o F5a€eP = acfi(F)
arithmetic o T - FePacfi(F) = acfi(T)
expressions e acfi(T)
(cf. Example 5.11): = la(T — T*F) = fi(T*F -fo(T)) 2 a
Gap: E — E+T|T e acfi(F)

T — TxF | F = la(T' — F) =1fi(F -fo(T)) > a

F—(B)|a|b o = la(T - T*F)Nla(T — F) #0
o = Gug ¢ LL(1)

m Compiler Construction Summer semester 2008 14

Fixing the Problem

(general methods later)

Example 7.8 (continued)

Restructuring (such that L(G'y) = L(GaE)):
g1 E - TF
E' — +TE' | ¢
T — FT'
T~ «FT'|c [A—= BEP[RA=B)=H(B F(A)]
F — (E)]|al|b E - TFE {(a,b}
E' — +TFE +
A€ N[(A | fo(A) B —e iz 00
E {(,a,b} {6,)} T —FT {(7avb}
B | {ne) | {e)) | [T 2T 5
T [{Gab}| {+e)} | [T —¢ {+,e)}
v | D [T ® q
F_[{Gab}j{x+e)}] | F—a {a}
F —b {b}
= Gy € LL(1)

m Compiler Construction Summer semester 2008 15

© Decterministic Top-Down Parsing

Rm Compiler Construction Summer semester 2

Deterministic Top-Down Parsing

Approach: given G € CFGy,
@ Verify that G € LL(1) by computing the lookahead sets and
checking alternatives for disjointness
@ Start with nondeterministic top-down parsing automaton NTA(G)
@ Use l-symbol lookahead to control the choice of expanding
productions:
o (aw, Aa, 2) F (aw, Ba, 2i)
ifm(i) = A — pand a € la(n(7))
o (6,Aw, 2) F (g, Ba, #i)
if m(i) = A — p and e € la(n(i))
o [as before: (aw,aq, z) F (w,a, z)]
= deterministic top-down parsing automaton DTA(G)

Remarks:
@ DTA(G) is actually not a pushdown automaton (a is read but not
consumed). But: can be simulated using the finite control.
@ Advantage of using lookahead is twofold:
o Removal of nondeterminism
o Earlier detection of syntax errors
(in configurations (aw, Aa, z) where a & U, 5o pla(4 — B))

Rm Compiler Construction Summer semester 2008 17

The Deterministic Top-Down Automaton I

Definition 7.9 (Deterministic top-down parsing automaton)

Let G = (N,X, P,S) € LL(1). The deterministic top-down parsing
automaton of G, DTA(G), is defined by the following components.

@ Input alphabet ¥, pushdown alphabet X, output alphabet [p]

o Configurations ¥* x X* X [p]*, initial configuration (w, S,€),
final configurations {e} x {e} x [p]* (as NTA(QG))

@ Action function
act : Xo X X. — {(o,1) | (i) = A — a} U {pop, accept, error }
with act(z, A) := (o, 1) if 7(i) = A — « and x € la(n (7))
act(a,a) := pop
act(e,) := accept
act(z,y) := error otherwise
@ Transitions for z € ¥, w € ¥*, Y € X, f € X*, and z € [p|*:
(zw,af,zi) ifact(z,Y) = (a,i)
) {<w,ﬁ, 2 ifact(z,Y) = pop

m Compiler Construction Summer semester 2008

The Deterministic Top-Down Automaton II

[A - peP]la(A—0) |

E —TE | {(ab}
Gup: E —TE' (1) B — +TF {+)
E —+TE'|e (2,3) 2 e {e,)}
T —>FTI (4) Tl—>FT 5 {(,a,b}
T — *FT'|e (5,6) T — *FT {x}
F — (B |a|b (7,89) T —e {re)}
F — (B) {(}
F —a {a}
F —b {v}
act : Xe X X — {(a,9) | m(2) = A — a} U {pop, accept, error} (empty = error)
act] FE E’ T T F a b () * + €
a [(TE',1) (FT',4) (a,8) pop
b |(TE',1) (FT',4) (b,9) pop
(|(TE'"1) (FT',4) ((ED,7) pop
) (¢,3) (¢,6) pop
" (xFT',5) pop
+ (+TE',2) (¢,6) pop
€ (e,3) (,6) accept

Compiler Construction Summer semester 2008 19

The Deterministic Top-Down Automaton III

Example 7.10 (continued)

act] E E’ T T’ F a b () * + €
a [(TE, 1) (FT7,4) (a,8) pop

b |(TE',1) (FT',4) (b,9) pop

(|[(TE',1) (FT',4) ((ED,7) pop

) (e,3) (€,6) pop

* (*FT’7 5) pop

+ (+TE',2) (,6) pop

€ (e,3) (e,6) accept
Leftmost analysis of (a)*b:

((2)*b, E e) - O*b, ENT'E', 1471486)

F ((a)*b, TE' 1) F O%b,)T'E' |, 14714863)

F ((a)*b, FT'E' 14) F(*b, T'E’ 14714863)

F (@%b, (BYT'E’ 147) F (*b, *xFT'E’ |, 147148635)

F(a)b, EYT'E’ ,147) F(b, FT'E' , 147148635)

F (a)*b, TENT'E' , 1471) F(b, bI'E' 1471486359)

F(a)xb, FT'E')T'E’, 14714) F(e T'E , 1471486359)

F(a)xb, aT'E)T'E’ , 147148) F(e E , 14714863596)

F()b, T'ENT'E’ , 147148) F(e e , 147148635963)

Compiler Construction

Summer semester 2008

20

	Repetition: LL(k) Grammars
	Follow Sets
	LL(1) Grammars
	Computing Lookahead Sets
	Deterministic Top-Down Parsing

