
Compiler Construction

Lecture 8: Syntactic Analysis IV
(Practical Issues in LL Parsing)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Outline

1 Repetition: LL(1) Grammars

2 Transformation to LL(1)

3 The Complexity of LL(1) Parsing

4 Recursive-Descent Parsing

5 Error Handling in LL Parsing

Compiler Construction Summer semester 2008 2

Lookahead Sets

Definition (Lookahead set)

Given π = A → β ∈ P ,
la(π) := fi(β · fo(A)) ⊆ Σε

is called the lookahead set of π (where fi(Γ) :=
⋃

γ∈Γ fi(γ)).

Corollary

1 For all a ∈ Σ,
a ∈ la(A → β) iff a ∈ fi(β) or (β ⇒∗ ε and a ∈ fo(A))

2 ε ∈ la(A → β) iff β ⇒∗ ε and ε ∈ fo(A)

Compiler Construction Summer semester 2008 3

Characterization of LL(1)

Theorem (Characterization of LL(1))

G ∈ LL(1) iff for all pairs of rules A → β | γ ∈ P (where β 6= γ):

la(A → β) ∩ la(A → γ) = ∅.

Proof.

on the board

Remark: the above theorem generally does not hold if k > 1
(cf. exercises)

Compiler Construction Summer semester 2008 4

Deterministic Top-Down Parsing

Approach: given G ∈ CFGΣ,
1 Verify that G ∈ LL(1) by computing the lookahead sets and

checking alternatives for disjointness
2 Start with nondeterministic top-down parsing automaton NTA(G)
3 Use 1-symbol lookahead to control the choice of expanding

productions:
(aw, Aα, z) ⊢ (aw, βα, zi)
if π(i) = A → β and a ∈ la(π(i))
(ε, Aα, z) ⊢ (ε, βα, zi)
if π(i) = A → β and ε ∈ la(π(i))
[as before: (aw, aα, z) ⊢ (w, α, z)]

=⇒ deterministic top-down parsing automaton DTA(G)

Remarks:
DTA(G) is actually not a pushdown automaton (a is read but not
consumed). But: can be simulated using the finite control.
Advantage of using lookahead is twofold:

Removal of nondeterminism
Earlier detection of syntax errors
(in configurations (aw, Aα, z) where a /∈

⋃
A→β∈P la(A → β))

Compiler Construction Summer semester 2008 5

Outline

1 Repetition: LL(1) Grammars

2 Transformation to LL(1)

3 The Complexity of LL(1) Parsing

4 Recursive-Descent Parsing

5 Error Handling in LL Parsing

Compiler Construction Summer semester 2008 6

Transformation to LL(1)

Assume that G = 〈N,Σ, P, S〉 ∈ CFGΣ \ LL(1)
(i.e., there exist A → β | γ ∈ P such that la(A → β) ∩ la(A → γ) 6= ∅)

Compiler Construction Summer semester 2008 7

Transformation to LL(1)

Assume that G = 〈N,Σ, P, S〉 ∈ CFGΣ \ LL(1)
(i.e., there exist A → β | γ ∈ P such that la(A → β) ∩ la(A → γ) 6= ∅)

Two heuristics for transforming G into G′ ∈ LL(1):

1 Removal of left recursion

2 Left factorization

(used in parser-generating systems such as ANTLR)

Compiler Construction Summer semester 2008 7

Transformation to LL(1)

Assume that G = 〈N,Σ, P, S〉 ∈ CFGΣ \ LL(1)
(i.e., there exist A → β | γ ∈ P such that la(A → β) ∩ la(A → γ) 6= ∅)

Two heuristics for transforming G into G′ ∈ LL(1):

1 Removal of left recursion

2 Left factorization

(used in parser-generating systems such as ANTLR)

Remarks:

Transformations generally preserve the semantics (= generated
language) of CFGs but not the syntactic structure of words
(different syntax trees).

Transformations cannot always yield an LL(1) grammar (since not
every context-free language is generated by an LL grammar;
details later).

Compiler Construction Summer semester 2008 7

Left Recursion I

Definition 8.1 (Left recursion)

A grammar G = 〈N,Σ, P, S〉 ∈ CFGΣ is called left recursive if there
exist A ∈ N and α ∈ X∗ such that A ⇒+ Aα.

Compiler Construction Summer semester 2008 8

Left Recursion I

Definition 8.1 (Left recursion)

A grammar G = 〈N,Σ, P, S〉 ∈ CFGΣ is called left recursive if there
exist A ∈ N and α ∈ X∗ such that A ⇒+ Aα.

Corollary 8.2

If G ∈ CFGΣ is left recursive with A ⇒+ Aα, then there exists β ∈ X∗

such that A ⇒+
l Aβ.

Compiler Construction Summer semester 2008 8

Left Recursion I

Definition 8.1 (Left recursion)

A grammar G = 〈N,Σ, P, S〉 ∈ CFGΣ is called left recursive if there
exist A ∈ N and α ∈ X∗ such that A ⇒+ Aα.

Corollary 8.2

If G ∈ CFGΣ is left recursive with A ⇒+ Aα, then there exists β ∈ X∗

such that A ⇒+
l Aβ.

Example 8.3

The grammar (cf. Example 5.11)
GAE : E → E+T | T

T → T*F | F
F → (E) | a | b

is left recursive, and in Example 7.8 it was shown that GAE /∈ LL(1)

Compiler Construction Summer semester 2008 8

Left Recursion II

Lemma 8.4

If G ∈ CFGΣ is left recursive, then G /∈
⋃

k∈N
LL(k).

Compiler Construction Summer semester 2008 9

Left Recursion II

Lemma 8.4

If G ∈ CFGΣ is left recursive, then G /∈
⋃

k∈N
LL(k).

Proof.

(for k = 1) Assume that G ∈ LL(1) is left recursive with A ⇒+
l Aβ.

Together with the reducedness of G this implies that
S ⇒∗

l vAα ⇒+
l vAβα ⇒+

l vw for some v,w ∈ Σ∗ and α ∈ X∗.

Compiler Construction Summer semester 2008 9

Left Recursion II

Lemma 8.4

If G ∈ CFGΣ is left recursive, then G /∈
⋃

k∈N
LL(k).

Proof.

(for k = 1) Assume that G ∈ LL(1) is left recursive with A ⇒+
l Aβ.

Together with the reducedness of G this implies that
S ⇒∗

l vAα ⇒+
l vAβα ⇒+

l vw for some v,w ∈ Σ∗ and α ∈ X∗.
The corresponding computation of DTA(G) (Def. 7.9) starts with
(vw, S, ε) ⊢∗ (w,Aα, . . .) ⊢+ (w,Aβα, . . .).

Compiler Construction Summer semester 2008 9

Left Recursion II

Lemma 8.4

If G ∈ CFGΣ is left recursive, then G /∈
⋃

k∈N
LL(k).

Proof.

(for k = 1) Assume that G ∈ LL(1) is left recursive with A ⇒+
l Aβ.

Together with the reducedness of G this implies that
S ⇒∗

l vAα ⇒+
l vAβα ⇒+

l vw for some v,w ∈ Σ∗ and α ∈ X∗.
The corresponding computation of DTA(G) (Def. 7.9) starts with
(vw, S, ε) ⊢∗ (w,Aα, . . .) ⊢+ (w,Aβα, . . .).
But in the last state the behaviour of DTA(G) is determined by the
same input (fi(w)) and stack symbol (A). Thus it enters a loop of the
form (w,Aα, . . .) ⊢+ (w,Aβα, . . .) ⊢+ (w,Aββα, . . .) ⊢+ . . . and will
never recognize w. Contradiction

Compiler Construction Summer semester 2008 9

Removing Direct Left Recursion

Direct left recursion occurs in productions of the form

A → Aα1 | . . . | Aαm | β1 | . . . | βn where αi 6= ε and βj 6= A . . .

Compiler Construction Summer semester 2008 10

Removing Direct Left Recursion

Direct left recursion occurs in productions of the form

A → Aα1 | . . . | Aαm | β1 | . . . | βn where αi 6= ε and βj 6= A . . .

Transformation: replacement by right recursion

A → β1A
′ | . . . | βnA′

A′ → α1A
′ | . . . | αmA′ | ε

(with a new A′ ∈ N) which preserves L(G).

Compiler Construction Summer semester 2008 10

Removing Direct Left Recursion

Direct left recursion occurs in productions of the form

A → Aα1 | . . . | Aαm | β1 | . . . | βn where αi 6= ε and βj 6= A . . .

Transformation: replacement by right recursion

A → β1A
′ | . . . | βnA′

A′ → α1A
′ | . . . | αmA′ | ε

(with a new A′ ∈ N) which preserves L(G).

Example 8.5

GAE : E → E+T | T
T → T*F | F
F → (E) | a | b

is transformed into

G′

AE : E → TE′

E′ → +TE′ | ε
T → FT ′

T ′ → *FT ′ | ε
F → (E) | a | b

with G′

AE ∈ LL(1) (see Example 7.8).

Compiler Construction Summer semester 2008 10

Removing Indirect Left Recursion

Indirect left recursion occurs in productions of the form (n ≥ 1)

A → A1α1 | . . .
A1 → A2α2 | . . .

...
An−1 → Anαn | . . .
An → Aβ | . . .

Compiler Construction Summer semester 2008 11

Removing Indirect Left Recursion

Indirect left recursion occurs in productions of the form (n ≥ 1)

A → A1α1 | . . .
A1 → A2α2 | . . .

...
An−1 → Anαn | . . .
An → Aβ | . . .

Transformation: into Greibach Normal Form with productions of the
form

A → aB1 . . . Bn (where Bi 6= S) or
S → ε

(cf. Automata Theory and Formal Languages)

Compiler Construction Summer semester 2008 11

Left Factorization

Applies to productions of the form

A → αβ | αγ

which are problematic if α “longer than” lookahead.

Compiler Construction Summer semester 2008 12

Left Factorization

Applies to productions of the form

A → αβ | αγ

which are problematic if α “longer than” lookahead.

Transformation: delaying the decision by left factorization

A → αA′

A′ → β | γ

(with a new A′ ∈ N) which preserves L(G).

Compiler Construction Summer semester 2008 12

Left Factorization

Applies to productions of the form

A → αβ | αγ

which are problematic if α “longer than” lookahead.

Transformation: delaying the decision by left factorization

A → αA′

A′ → β | γ

(with a new A′ ∈ N) which preserves L(G).

Example 8.6

Statement → if Condition then Statement else Statement fi
| if Condition then Statement fi

is transformed into
Statement → if Condition then Statement S′

S′ → else Statement fi | fi

Compiler Construction Summer semester 2008 12

Outline

1 Repetition: LL(1) Grammars

2 Transformation to LL(1)

3 The Complexity of LL(1) Parsing

4 Recursive-Descent Parsing

5 Error Handling in LL Parsing

Compiler Construction Summer semester 2008 13

The Complexity of LL(1) Parsing I

LL(1) parsing has time (and hence space) complexity O(|w|)
(where w ∈ Σ∗ is the input word)

Compiler Construction Summer semester 2008 14

The Complexity of LL(1) Parsing I

LL(1) parsing has time (and hence space) complexity O(|w|)
(where w ∈ Σ∗ is the input word)

Here: proof for ε-free grammars (i.e., A → α ∈ P =⇒ α 6= ε)

Compiler Construction Summer semester 2008 14

The Complexity of LL(1) Parsing I

LL(1) parsing has time (and hence space) complexity O(|w|)
(where w ∈ Σ∗ is the input word)

Here: proof for ε-free grammars (i.e., A → α ∈ P =⇒ α 6= ε)

General case: see O. Mayer: Syntaxanalyse, p. 211ff

Compiler Construction Summer semester 2008 14

The Complexity of LL(1) Parsing I

LL(1) parsing has time (and hence space) complexity O(|w|)
(where w ∈ Σ∗ is the input word)

Here: proof for ε-free grammars (i.e., A → α ∈ P =⇒ α 6= ε)

General case: see O. Mayer: Syntaxanalyse, p. 211ff

Lemma 8.7

Let G = 〈N,Σ, P, S〉 ∈ LL(1) be ε-free. If

(w,S, ε) ⊢n (ε, ε, z)

in DTA(G), then
n ≤ |w| · |N | + 1.

Compiler Construction Summer semester 2008 14

The Complexity of LL(1) Parsing II

Proof.

Let (w,S, ε) ⊢n (ε, ε, z) in DTA(G). To show: n ≤ |w| · |N | + 1

1 Clear: the computation involves |w| matching steps and one
accept-step.

Compiler Construction Summer semester 2008 15

The Complexity of LL(1) Parsing II

Proof.

Let (w,S, ε) ⊢n (ε, ε, z) in DTA(G). To show: n ≤ |w| · |N | + 1

1 Clear: the computation involves |w| matching steps and one
accept-step.

2 Since G is ε-free, every matching step is preceded by k expansion
steps of the form

(av,A1α1, . . .) ⊢ (av,A2α2α1, . . .)
...
⊢ (av,Akαk . . . α1, . . .)
⊢ (av, aαk+1 . . . α1, . . .)

where Ai → Ai+1αi+1 for each i ∈ [k − 1] and Ak → aαk+1.

Compiler Construction Summer semester 2008 15

The Complexity of LL(1) Parsing II

Proof.

Let (w,S, ε) ⊢n (ε, ε, z) in DTA(G). To show: n ≤ |w| · |N | + 1

1 Clear: the computation involves |w| matching steps and one
accept-step.

2 Since G is ε-free, every matching step is preceded by k expansion
steps of the form

(av,A1α1, . . .) ⊢ (av,A2α2α1, . . .)
...
⊢ (av,Akαk . . . α1, . . .)
⊢ (av, aαk+1 . . . α1, . . .)

where Ai → Ai+1αi+1 for each i ∈ [k − 1] and Ak → aαk+1.

3 This implies that Ai 6= Aj for i 6= j (by Lemma 8.4, G is not left
recursive), and hence k ≤ |N |.

Compiler Construction Summer semester 2008 15

The Complexity of LL(1) Parsing II

Proof.

Let (w,S, ε) ⊢n (ε, ε, z) in DTA(G). To show: n ≤ |w| · |N | + 1

1 Clear: the computation involves |w| matching steps and one
accept-step.

2 Since G is ε-free, every matching step is preceded by k expansion
steps of the form

(av,A1α1, . . .) ⊢ (av,A2α2α1, . . .)
...
⊢ (av,Akαk . . . α1, . . .)
⊢ (av, aαk+1 . . . α1, . . .)

where Ai → Ai+1αi+1 for each i ∈ [k − 1] and Ak → aαk+1.

3 This implies that Ai 6= Aj for i 6= j (by Lemma 8.4, G is not left
recursive), and hence k ≤ |N |.

4 Altogether: n ≤ |w| · |N | + 1.

Compiler Construction Summer semester 2008 15

Outline

1 Repetition: LL(1) Grammars

2 Transformation to LL(1)

3 The Complexity of LL(1) Parsing

4 Recursive-Descent Parsing

5 Error Handling in LL Parsing

Compiler Construction Summer semester 2008 16

Recursive-Descent Parsing I

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime
stack)

Compiler Construction Summer semester 2008 17

Recursive-Descent Parsing I

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime
stack)

Advantage: simple implementation

Compiler Construction Summer semester 2008 17

Recursive-Descent Parsing I

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime
stack)

Advantage: simple implementation

Ingredients: variable token for current token
function next() for invoking the scanner
procedure print(i) for displaying the leftmost
analysis (or errors)

Compiler Construction Summer semester 2008 17

Recursive-Descent Parsing I

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime
stack)

Advantage: simple implementation

Ingredients: variable token for current token
function next() for invoking the scanner
procedure print(i) for displaying the leftmost
analysis (or errors)

Method: to every A ∈ N we assign a procedure A() which

tests token with regard to the lookahead sets of the
A-productions,
prints the corresponding rule number and
evaluates the corresponding right-hand side as
follows:

for a ∈ Σ: check token; call next()
for A ∈ N : call A()

Compiler Construction Summer semester 2008 17

Recursive-Descent Parsing II

Example 8.8 (Arithmetic expressions; cf. Example 8.5)

proc main();
token := next(); E()

proc E(); (* E → T E′ *)
if token in {’(’,’a’,’b’} then print(1); T(); E’()
else print(error); stop fi

proc E’(); (* E′ → + T E′ | ε *)
if token = ’+’ then print(2); token := next(); T(); E’()
elsif token in {EOF, ’)’} then print(3)
else print(error); stop fi

proc T(); (* T → F T ′ *)
if token in {’(’,’a’,’b’} then print(4); F(); T’()
else print(error); stop fi

proc T’(); (* T ′ → * F T ′ | ε *)
if token = ’*’ then print(5); token := next(); F(); T’()
elsif token in {’+’,EOF,’)’} then print(6)
else print(error); stop fi

proc F(); (* F → (E) | a | b *)
if token = ’(’ then print(7); token := next(); E();

if token = ’)’ then token := next() else print(error); stop fi
elsif token = ’a’ then print(8); token := next()
elsif token = ’b’ then print(9); token := next()
else print(error); stop fi

Compiler Construction Summer semester 2008 18

Outline

1 Repetition: LL(1) Grammars

2 Transformation to LL(1)

3 The Complexity of LL(1) Parsing

4 Recursive-Descent Parsing

5 Error Handling in LL Parsing

Compiler Construction Summer semester 2008 19

Error Handling

Error configurations of DTA(G):

(aw,Aα, z) where a /∈
⋃

A→β∈P la(A → β) (=⇒ act(a,A) = error)

(ε,Aα, z) where ε /∈
⋃

A→β∈P la(A → β) (=⇒ act(ε,A) = error)

(aw, bα, z) where a 6= b (=⇒ act(a, b) = error)

(ε, bα, z) (=⇒ act(ε, b) = error)

(aw, ε, z) (=⇒ act(a, ε) = error)

Compiler Construction Summer semester 2008 20

Error Handling

Error configurations of DTA(G):

(aw,Aα, z) where a /∈
⋃

A→β∈P la(A → β) (=⇒ act(a,A) = error)

(ε,Aα, z) where ε /∈
⋃

A→β∈P la(A → β) (=⇒ act(ε,A) = error)

(aw, bα, z) where a 6= b (=⇒ act(a, b) = error)

(ε, bα, z) (=⇒ act(ε, b) = error)

(aw, ε, z) (=⇒ act(a, ε) = error)

Observation: correct prefix property of LL parsing, i.e., syntactic
errors are detected at the earliest possible position (every input prefix
which does not produce an error can be extended to a word w ∈ L(G))

Does not mean: error is recognized at the position where it is caused!

Compiler Construction Summer semester 2008 20

Error Handling

Error configurations of DTA(G):

(aw,Aα, z) where a /∈
⋃

A→β∈P la(A → β) (=⇒ act(a,A) = error)

(ε,Aα, z) where ε /∈
⋃

A→β∈P la(A → β) (=⇒ act(ε,A) = error)

(aw, bα, z) where a 6= b (=⇒ act(a, b) = error)

(ε, bα, z) (=⇒ act(ε, b) = error)

(aw, ε, z) (=⇒ act(a, ε) = error)

Observation: correct prefix property of LL parsing, i.e., syntactic
errors are detected at the earliest possible position (every input prefix
which does not produce an error can be extended to a word w ∈ L(G))

Does not mean: error is recognized at the position where it is caused!

Example: assignment a := b * c - (d + e));

Possible corrections:

remove closing bracket: a := b * c - (d + e);

insert opening bracket: a := b * (c - (d + e));

Compiler Construction Summer semester 2008 20

The General Problem

Let w = xy ∈ Σ∗ be the input word such that x is the longest
prefix of a word in L(G) (i.e., the error is detected at the first
symbol of y) and w /∈ L(G).

Compiler Construction Summer semester 2008 21

The General Problem

Let w = xy ∈ Σ∗ be the input word such that x is the longest
prefix of a word in L(G) (i.e., the error is detected at the first
symbol of y) and w /∈ L(G).

Parser makes assumption about error type and corrects w
accordingly:

Assumes prefix x′ of x to be correct
Correct prefix property
=⇒ there exists z ∈ Σ∗ such that x′z ∈ L(G)
Parser chooses prefix z′ of z and suffix y′ of y
Parsing resumed with input w′ := x′z′y′ (at first symbol of z′)
(error recovery)

Compiler Construction Summer semester 2008 21

The General Problem

Let w = xy ∈ Σ∗ be the input word such that x is the longest
prefix of a word in L(G) (i.e., the error is detected at the first
symbol of y) and w /∈ L(G).

Parser makes assumption about error type and corrects w
accordingly:

Assumes prefix x′ of x to be correct
Correct prefix property
=⇒ there exists z ∈ Σ∗ such that x′z ∈ L(G)
Parser chooses prefix z′ of z and suffix y′ of y
Parsing resumed with input w′ := x′z′y′ (at first symbol of z′)
(error recovery)

Desirable properties of correction:

At least one symbol of y′ can be processed before next error occurs
(if y′ 6= ε)
Preserve as many symbols of w as possible (i.e., x′ and y′ “long”
and z′ “short”)

Compiler Construction Summer semester 2008 21

The General Problem

Let w = xy ∈ Σ∗ be the input word such that x is the longest
prefix of a word in L(G) (i.e., the error is detected at the first
symbol of y) and w /∈ L(G).

Parser makes assumption about error type and corrects w
accordingly:

Assumes prefix x′ of x to be correct
Correct prefix property
=⇒ there exists z ∈ Σ∗ such that x′z ∈ L(G)
Parser chooses prefix z′ of z and suffix y′ of y
Parsing resumed with input w′ := x′z′y′ (at first symbol of z′)
(error recovery)

Desirable properties of correction:

At least one symbol of y′ can be processed before next error occurs
(if y′ 6= ε)
Preserve as many symbols of w as possible (i.e., x′ and y′ “long”
and z′ “short”)

x′ 6= x hard to implement, therefore usually x′ := x

Compiler Construction Summer semester 2008 21

Aspects of Error Handling

Further criteria for “good” error handling:

Continuation of parsing in any case, independent of severity of
error

Frequency of correct error diagnosis

Suppression of subsequent errors

Complexity of analyzing correct inputs not impaired

Compiler Construction Summer semester 2008 22

Aspects of Error Handling

Further criteria for “good” error handling:

Continuation of parsing in any case, independent of severity of
error

Frequency of correct error diagnosis

Suppression of subsequent errors

Complexity of analyzing correct inputs not impaired

Observation: no “best method” available

correction not unique

experience of programmer

peculiarities of (programming) language

=⇒ employ heuristics

Compiler Construction Summer semester 2008 22

Panic Mode

Simplest form of error handling: panic mode
Upon occurrence of an error,

skip input symbols

until a token in a selected set of “separating” or “closing” tokens
appears (synchronizing tokens)

Compiler Construction Summer semester 2008 23

Panic Mode

Simplest form of error handling: panic mode
Upon occurrence of an error,

skip input symbols

until a token in a selected set of “separating” or “closing” tokens
appears (synchronizing tokens)

Example: suitable synchronizing tokens in imperative languages for

assignments: “;”

declarations: “;” or “,”

control structures: fi or od

blocks: end

Compiler Construction Summer semester 2008 23

Panic Mode

Simplest form of error handling: panic mode
Upon occurrence of an error,

skip input symbols

until a token in a selected set of “separating” or “closing” tokens
appears (synchronizing tokens)

Example: suitable synchronizing tokens in imperative languages for

assignments: “;”

declarations: “;” or “,”

control structures: fi or od

blocks: end

Challenge: choose set of synchronizing tokens such that

parser recovers quickly from errors that are likely to occur and

not too much input is overread

(see Aho/Lam/Sethi/Ullman: Compilers: Principles, Techniques, and

Tools, 2nd ed., p. 228ff)
Compiler Construction Summer semester 2008 23

Error Handling Example I

Example 8.9 (cf. Example 7.10)

G′

AE : E → TE′ (1)
E′ → +TE′ | ε (2, 3)
T → FT ′ (4)
T ′ → *FT ′ | ε (5, 6)
F → (E) | a | b (7, 8, 9)

A ∈ N fo(A)
E {ε,)}
E′ {ε,)}
T {+, ε,)}
T ′ {+, ε,)}
F {*, +, ε,)}

Compiler Construction Summer semester 2008 24

Error Handling Example I

Example 8.9 (cf. Example 7.10)

G′

AE : E → TE′ (1)
E′ → +TE′ | ε (2, 3)
T → FT ′ (4)
T ′ → *FT ′ | ε (5, 6)
F → (E) | a | b (7, 8, 9)

A ∈ N fo(A)
E {ε,)}
E′ {ε,)}
T {+, ε,)}
T ′ {+, ε,)}
F {*, +, ε,)}

With synchronizing tokens from fo sets:

act : Σε × Xε → {(α, i) | π(i) = A → α} ∪ {pop, accept, error, sync} (empty = error)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Compiler Construction Summer semester 2008 24

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

Compiler Construction Summer semester 2008 25

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)

Compiler Construction Summer semester 2008 25

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
⊢ (a*+b, E , ε)

Compiler Construction Summer semester 2008 25

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
⊢ (a*+b, E , ε)
⊢ (a*+b, TE′ , 1)

Compiler Construction Summer semester 2008 25

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
⊢ (a*+b, E , ε)
⊢ (a*+b, TE′ , 1)
⊢ (a*+b, FT ′E′, 14)

Compiler Construction Summer semester 2008 25

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
⊢ (a*+b, E , ε)
⊢ (a*+b, TE′ , 1)
⊢ (a*+b, FT ′E′, 14)
⊢ (a*+b, aT ′E′ , 148)

Compiler Construction Summer semester 2008 25

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
⊢ (a*+b, E , ε)
⊢ (a*+b, TE′ , 1)
⊢ (a*+b, FT ′E′, 14)
⊢ (a*+b, aT ′E′ , 148)

⊢ (*+b, T ′E′ , 148)

Compiler Construction Summer semester 2008 25

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
⊢ (a*+b, E , ε)
⊢ (a*+b, TE′ , 1)
⊢ (a*+b, FT ′E′, 14)
⊢ (a*+b, aT ′E′ , 148)

⊢ (*+b, T ′E′ , 148)
⊢ (*+b, *FT ′E′, 1485)

Compiler Construction Summer semester 2008 25

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
⊢ (a*+b, E , ε)
⊢ (a*+b, TE′ , 1)
⊢ (a*+b, FT ′E′, 14)
⊢ (a*+b, aT ′E′ , 148)

⊢ (*+b, T ′E′ , 148)
⊢ (*+b, *FT ′E′, 1485)
⊢ (+b, FT ′E′ , 1485)

Compiler Construction Summer semester 2008 25

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
⊢ (a*+b, E , ε)
⊢ (a*+b, TE′ , 1)
⊢ (a*+b, FT ′E′, 14)
⊢ (a*+b, aT ′E′ , 148)

⊢ (*+b, T ′E′ , 148)
⊢ (*+b, *FT ′E′, 1485)
⊢ (+b, FT ′E′ , 1485)
⊢ (+b, T ′E′ , 1485)

Compiler Construction Summer semester 2008 25

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
⊢ (a*+b, E , ε)
⊢ (a*+b, TE′ , 1)
⊢ (a*+b, FT ′E′, 14)
⊢ (a*+b, aT ′E′ , 148)

⊢ (*+b, T ′E′ , 148)
⊢ (*+b, *FT ′E′, 1485)
⊢ (+b, FT ′E′ , 1485)
⊢ (+b, T ′E′ , 1485)
⊢ (+b, E′ , 14856)

Compiler Construction Summer semester 2008 25

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
⊢ (a*+b, E , ε)
⊢ (a*+b, TE′ , 1)
⊢ (a*+b, FT ′E′, 14)
⊢ (a*+b, aT ′E′ , 148)

⊢ (*+b, T ′E′ , 148)
⊢ (*+b, *FT ′E′, 1485)
⊢ (+b, FT ′E′ , 1485)
⊢ (+b, T ′E′ , 1485)
⊢ (+b, E′ , 14856)
⊢ (+b, +TE′ , 148562)

Compiler Construction Summer semester 2008 25

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
⊢ (a*+b, E , ε)
⊢ (a*+b, TE′ , 1)
⊢ (a*+b, FT ′E′, 14)
⊢ (a*+b, aT ′E′ , 148)

⊢ (*+b, T ′E′ , 148)
⊢ (*+b, *FT ′E′, 1485)
⊢ (+b, FT ′E′ , 1485)
⊢ (+b, T ′E′ , 1485)
⊢ (+b, E′ , 14856)
⊢ (+b, +TE′ , 148562)
⊢ (b, TE′ , 148562)

Compiler Construction Summer semester 2008 25

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
⊢ (a*+b, E , ε)
⊢ (a*+b, TE′ , 1)
⊢ (a*+b, FT ′E′, 14)
⊢ (a*+b, aT ′E′ , 148)

⊢ (*+b, T ′E′ , 148)
⊢ (*+b, *FT ′E′, 1485)
⊢ (+b, FT ′E′ , 1485)
⊢ (+b, T ′E′ , 1485)
⊢ (+b, E′ , 14856)
⊢ (+b, +TE′ , 148562)
⊢ (b, TE′ , 148562)
⊢ (b, FT ′E′ , 1485624)

Compiler Construction Summer semester 2008 25

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
⊢ (a*+b, E , ε)
⊢ (a*+b, TE′ , 1)
⊢ (a*+b, FT ′E′, 14)
⊢ (a*+b, aT ′E′ , 148)

⊢ (*+b, T ′E′ , 148)
⊢ (*+b, *FT ′E′, 1485)
⊢ (+b, FT ′E′ , 1485)
⊢ (+b, T ′E′ , 1485)
⊢ (+b, E′ , 14856)
⊢ (+b, +TE′ , 148562)
⊢ (b, TE′ , 148562)
⊢ (b, FT ′E′ , 1485624)
⊢ (b, bT ′E′ , 14856249)

Compiler Construction Summer semester 2008 25

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
⊢ (a*+b, E , ε)
⊢ (a*+b, TE′ , 1)
⊢ (a*+b, FT ′E′, 14)
⊢ (a*+b, aT ′E′ , 148)

⊢ (*+b, T ′E′ , 148)
⊢ (*+b, *FT ′E′, 1485)
⊢ (+b, FT ′E′ , 1485)
⊢ (+b, T ′E′ , 1485)
⊢ (+b, E′ , 14856)
⊢ (+b, +TE′ , 148562)
⊢ (b, TE′ , 148562)
⊢ (b, FT ′E′ , 1485624)
⊢ (b, bT ′E′ , 14856249)
⊢ (ε, T ′E′ , 14856249)

Compiler Construction Summer semester 2008 25

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
⊢ (a*+b, E , ε)
⊢ (a*+b, TE′ , 1)
⊢ (a*+b, FT ′E′, 14)
⊢ (a*+b, aT ′E′ , 148)

⊢ (*+b, T ′E′ , 148)
⊢ (*+b, *FT ′E′, 1485)
⊢ (+b, FT ′E′ , 1485)
⊢ (+b, T ′E′ , 1485)
⊢ (+b, E′ , 14856)
⊢ (+b, +TE′ , 148562)
⊢ (b, TE′ , 148562)
⊢ (b, FT ′E′ , 1485624)
⊢ (b, bT ′E′ , 14856249)
⊢ (ε, T ′E′ , 14856249)
⊢ (ε, E′ , 148562496)

Compiler Construction Summer semester 2008 25

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
⊢ (a*+b, E , ε)
⊢ (a*+b, TE′ , 1)
⊢ (a*+b, FT ′E′, 14)
⊢ (a*+b, aT ′E′ , 148)

⊢ (*+b, T ′E′ , 148)
⊢ (*+b, *FT ′E′, 1485)
⊢ (+b, FT ′E′ , 1485)
⊢ (+b, T ′E′ , 1485)
⊢ (+b, E′ , 14856)
⊢ (+b, +TE′ , 148562)
⊢ (b, TE′ , 148562)
⊢ (b, FT ′E′ , 1485624)
⊢ (b, bT ′E′ , 14856249)
⊢ (ε, T ′E′ , 14856249)
⊢ (ε, E′ , 148562496)
⊢ (ε, ε , 1485624963)

Compiler Construction Summer semester 2008 25

	Repetition: LL(1) Grammars
	Transformation to LL(1)
	The Complexity of LL(1) Parsing
	Recursive-Descent Parsing
	Error Handling in LL Parsing

