
Compiler Construction

Lecture 8: Syntactic Analysis IV
(Practical Issues in LL Parsing)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Outline

1 Repetition: LL(1) Grammars

2 Transformation to LL(1)

3 The Complexity of LL(1) Parsing

4 Recursive-Descent Parsing

5 Error Handling in LL Parsing

Compiler Construction Summer semester 2008 2

Lookahead Sets

Definition (Lookahead set)

Given π = A → β ∈ P ,
la(π) := fi(β · fo(A)) ⊆ Σε

is called the lookahead set of π (where fi(Γ) :=
⋃

γ∈Γ fi(γ)).

Corollary

1 For all a ∈ Σ,
a ∈ la(A → β) iff a ∈ fi(β) or (β ⇒∗ ε and a ∈ fo(A))

2 ε ∈ la(A → β) iff β ⇒∗ ε and ε ∈ fo(A)

Compiler Construction Summer semester 2008 3

Characterization of LL(1)

Theorem (Characterization of LL(1))

G ∈ LL(1) iff for all pairs of rules A → β | γ ∈ P (where β 6= γ):

la(A → β) ∩ la(A → γ) = ∅.

Proof.

on the board

Remark: the above theorem generally does not hold if k > 1
(cf. exercises)

Compiler Construction Summer semester 2008 4

Deterministic Top-Down Parsing

Approach: given G ∈ CFGΣ,
1 Verify that G ∈ LL(1) by computing the lookahead sets and

checking alternatives for disjointness
2 Start with nondeterministic top-down parsing automaton NTA(G)
3 Use 1-symbol lookahead to control the choice of expanding

productions:
(aw, Aα, z) ⊢ (aw, βα, zi)
if π(i) = A → β and a ∈ la(π(i))
(ε, Aα, z) ⊢ (ε, βα, zi)
if π(i) = A → β and ε ∈ la(π(i))
[as before: (aw, aα, z) ⊢ (w, α, z)]

=⇒ deterministic top-down parsing automaton DTA(G)

Remarks:
DTA(G) is actually not a pushdown automaton (a is read but not
consumed). But: can be simulated using the finite control.
Advantage of using lookahead is twofold:

Removal of nondeterminism
Earlier detection of syntax errors
(in configurations (aw, Aα, z) where a /∈

⋃
A→β∈P la(A → β))

Compiler Construction Summer semester 2008 5

Outline

1 Repetition: LL(1) Grammars

2 Transformation to LL(1)

3 The Complexity of LL(1) Parsing

4 Recursive-Descent Parsing

5 Error Handling in LL Parsing

Compiler Construction Summer semester 2008 6

Transformation to LL(1)

Assume that G = 〈N,Σ, P, S〉 ∈ CFGΣ \ LL(1)
(i.e., there exist A → β | γ ∈ P such that la(A → β) ∩ la(A → γ) 6= ∅)

Two heuristics for transforming G into G′ ∈ LL(1):

1 Removal of left recursion

2 Left factorization

(used in parser-generating systems such as ANTLR)

Remarks:

Transformations generally preserve the semantics (= generated
language) of CFGs but not the syntactic structure of words
(different syntax trees).

Transformations cannot always yield an LL(1) grammar (since not
every context-free language is generated by an LL grammar;
details later).

Compiler Construction Summer semester 2008 7

Left Recursion I

Definition 8.1 (Left recursion)

A grammar G = 〈N,Σ, P, S〉 ∈ CFGΣ is called left recursive if there
exist A ∈ N and α ∈ X∗ such that A ⇒+ Aα.

Corollary 8.2

If G ∈ CFGΣ is left recursive with A ⇒+ Aα, then there exists β ∈ X∗

such that A ⇒+
l Aβ.

Example 8.3

The grammar (cf. Example 5.11)
GAE : E → E+T | T

T → T*F | F
F → (E) | a | b

is left recursive, and in Example 7.8 it was shown that GAE /∈ LL(1)

Compiler Construction Summer semester 2008 8

Left Recursion II

Lemma 8.4

If G ∈ CFGΣ is left recursive, then G /∈
⋃

k∈N
LL(k).

Proof.

(for k = 1) Assume that G ∈ LL(1) is left recursive with A ⇒+
l Aβ.

Together with the reducedness of G this implies that
S ⇒∗

l vAα ⇒+
l vAβα ⇒+

l vw for some v,w ∈ Σ∗ and α ∈ X∗.
The corresponding computation of DTA(G) (Def. 7.9) starts with
(vw, S, ε) ⊢∗ (w,Aα, . . .) ⊢+ (w,Aβα, . . .).
But in the last state the behaviour of DTA(G) is determined by the
same input (fi(w)) and stack symbol (A). Thus it enters a loop of the
form (w,Aα, . . .) ⊢+ (w,Aβα, . . .) ⊢+ (w,Aββα, . . .) ⊢+ . . . and will
never recognize w. Contradiction

Compiler Construction Summer semester 2008 9

Removing Direct Left Recursion

Direct left recursion occurs in productions of the form

A → Aα1 | . . . | Aαm | β1 | . . . | βn where αi 6= ε and βj 6= A . . .

Transformation: replacement by right recursion

A → β1A
′ | . . . | βnA′

A′ → α1A
′ | . . . | αmA′ | ε

(with a new A′ ∈ N) which preserves L(G).

Example 8.5

GAE : E → E+T | T
T → T*F | F
F → (E) | a | b

is transformed into

G′

AE : E → TE′

E′ → +TE′ | ε
T → FT ′

T ′ → *FT ′ | ε
F → (E) | a | b

with G′

AE ∈ LL(1) (see Example 7.8).

Compiler Construction Summer semester 2008 10

Removing Indirect Left Recursion

Indirect left recursion occurs in productions of the form (n ≥ 1)

A → A1α1 | . . .
A1 → A2α2 | . . .

...
An−1 → Anαn | . . .
An → Aβ | . . .

Transformation: into Greibach Normal Form with productions of the
form

A → aB1 . . . Bn (where Bi 6= S) or
S → ε

(cf. Automata Theory and Formal Languages)

Compiler Construction Summer semester 2008 11

Left Factorization

Applies to productions of the form

A → αβ | αγ

which are problematic if α “longer than” lookahead.

Transformation: delaying the decision by left factorization

A → αA′

A′ → β | γ

(with a new A′ ∈ N) which preserves L(G).

Example 8.6

Statement → if Condition then Statement else Statement fi
| if Condition then Statement fi

is transformed into
Statement → if Condition then Statement S′

S′ → else Statement fi | fi

Compiler Construction Summer semester 2008 12

Outline

1 Repetition: LL(1) Grammars

2 Transformation to LL(1)

3 The Complexity of LL(1) Parsing

4 Recursive-Descent Parsing

5 Error Handling in LL Parsing

Compiler Construction Summer semester 2008 13

The Complexity of LL(1) Parsing I

LL(1) parsing has time (and hence space) complexity O(|w|)
(where w ∈ Σ∗ is the input word)

Here: proof for ε-free grammars (i.e., A → α ∈ P =⇒ α 6= ε)

General case: see O. Mayer: Syntaxanalyse, p. 211ff

Lemma 8.7

Let G = 〈N,Σ, P, S〉 ∈ LL(1) be ε-free. If

(w,S, ε) ⊢n (ε, ε, z)

in DTA(G), then
n ≤ |w| · |N | + 1.

Compiler Construction Summer semester 2008 14

The Complexity of LL(1) Parsing II

Proof.

Let (w,S, ε) ⊢n (ε, ε, z) in DTA(G). To show: n ≤ |w| · |N | + 1

1 Clear: the computation involves |w| matching steps and one
accept-step.

2 Since G is ε-free, every matching step is preceded by k expansion
steps of the form

(av,A1α1, . . .) ⊢ (av,A2α2α1, . . .)
...
⊢ (av,Akαk . . . α1, . . .)
⊢ (av, aαk+1 . . . α1, . . .)

where Ai → Ai+1αi+1 for each i ∈ [k − 1] and Ak → aαk+1.

3 This implies that Ai 6= Aj for i 6= j (by Lemma 8.4, G is not left
recursive), and hence k ≤ |N |.

4 Altogether: n ≤ |w| · |N | + 1.

Compiler Construction Summer semester 2008 15

Outline

1 Repetition: LL(1) Grammars

2 Transformation to LL(1)

3 The Complexity of LL(1) Parsing

4 Recursive-Descent Parsing

5 Error Handling in LL Parsing

Compiler Construction Summer semester 2008 16

Recursive-Descent Parsing I

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime
stack)

Advantage: simple implementation

Ingredients: variable token for current token
function next() for invoking the scanner
procedure print(i) for displaying the leftmost
analysis (or errors)

Method: to every A ∈ N we assign a procedure A() which

tests token with regard to the lookahead sets of the
A-productions,
prints the corresponding rule number and
evaluates the corresponding right-hand side as
follows:

for a ∈ Σ: check token; call next()
for A ∈ N : call A()

Compiler Construction Summer semester 2008 17

Recursive-Descent Parsing II

Example 8.8 (Arithmetic expressions; cf. Example 8.5)

proc main();
token := next(); E()

proc E(); (* E → T E′ *)
if token in {’(’,’a’,’b’} then print(1); T(); E’()
else print(error); stop fi

proc E’(); (* E′ → + T E′ | ε *)
if token = ’+’ then print(2); token := next(); T(); E’()
elsif token in {EOF, ’)’} then print(3)
else print(error); stop fi

proc T(); (* T → F T ′ *)
if token in {’(’,’a’,’b’} then print(4); F(); T’()
else print(error); stop fi

proc T’(); (* T ′ → * F T ′ | ε *)
if token = ’*’ then print(5); token := next(); F(); T’()
elsif token in {’+’,EOF,’)’} then print(6)
else print(error); stop fi

proc F(); (* F → (E) | a | b *)
if token = ’(’ then print(7); token := next(); E();

if token = ’)’ then token := next() else print(error); stop fi
elsif token = ’a’ then print(8); token := next()
elsif token = ’b’ then print(9); token := next()
else print(error); stop fi

Compiler Construction Summer semester 2008 18

Outline

1 Repetition: LL(1) Grammars

2 Transformation to LL(1)

3 The Complexity of LL(1) Parsing

4 Recursive-Descent Parsing

5 Error Handling in LL Parsing

Compiler Construction Summer semester 2008 19

Error Handling

Error configurations of DTA(G):

(aw,Aα, z) where a /∈
⋃

A→β∈P la(A → β) (=⇒ act(a,A) = error)

(ε,Aα, z) where ε /∈
⋃

A→β∈P la(A → β) (=⇒ act(ε,A) = error)

(aw, bα, z) where a 6= b (=⇒ act(a, b) = error)

(ε, bα, z) (=⇒ act(ε, b) = error)

(aw, ε, z) (=⇒ act(a, ε) = error)

Observation: correct prefix property of LL parsing, i.e., syntactic
errors are detected at the earliest possible position (every input prefix
which does not produce an error can be extended to a word w ∈ L(G))

Does not mean: error is recognized at the position where it is caused!

Example: assignment a := b * c - (d + e));

Possible corrections:

remove closing bracket: a := b * c - (d + e);

insert opening bracket: a := b * (c - (d + e));

Compiler Construction Summer semester 2008 20

The General Problem

Let w = xy ∈ Σ∗ be the input word such that x is the longest
prefix of a word in L(G) (i.e., the error is detected at the first
symbol of y) and w /∈ L(G).

Parser makes assumption about error type and corrects w
accordingly:

Assumes prefix x′ of x to be correct
Correct prefix property
=⇒ there exists z ∈ Σ∗ such that x′z ∈ L(G)
Parser chooses prefix z′ of z and suffix y′ of y
Parsing resumed with input w′ := x′z′y′ (at first symbol of z′)
(error recovery)

Desirable properties of correction:

At least one symbol of y′ can be processed before next error occurs
(if y′ 6= ε)
Preserve as many symbols of w as possible (i.e., x′ and y′ “long”
and z′ “short”)

x′ 6= x hard to implement, therefore usually x′ := x

Compiler Construction Summer semester 2008 21

Aspects of Error Handling

Further criteria for “good” error handling:

Continuation of parsing in any case, independent of severity of
error

Frequency of correct error diagnosis

Suppression of subsequent errors

Complexity of analyzing correct inputs not impaired

Observation: no “best method” available

correction not unique

experience of programmer

peculiarities of (programming) language

=⇒ employ heuristics

Compiler Construction Summer semester 2008 22

Panic Mode

Simplest form of error handling: panic mode
Upon occurrence of an error,

skip input symbols

until a token in a selected set of “separating” or “closing” tokens
appears (synchronizing tokens)

Example: suitable synchronizing tokens in imperative languages for

assignments: “;”

declarations: “;” or “,”

control structures: fi or od

blocks: end

Challenge: choose set of synchronizing tokens such that

parser recovers quickly from errors that are likely to occur and

not too much input is overread

(see Aho/Lam/Sethi/Ullman: Compilers: Principles, Techniques, and

Tools, 2nd ed., p. 228ff)
Compiler Construction Summer semester 2008 23

Error Handling Example I

Example 8.9 (cf. Example 7.10)

G′

AE : E → TE′ (1)
E′ → +TE′ | ε (2, 3)
T → FT ′ (4)
T ′ → *FT ′ | ε (5, 6)
F → (E) | a | b (7, 8, 9)

A ∈ N fo(A)
E {ε,)}
E′ {ε,)}
T {+, ε,)}
T ′ {+, ε,)}
F {*, +, ε,)}

With synchronizing tokens from fo sets:

act : Σε × Xε → {(α, i) | π(i) = A → α} ∪ {pop, accept, error, sync} (empty = error)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Compiler Construction Summer semester 2008 24

Error Handling Example II

Example 8.9 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
⊢ (a*+b, E , ε)
⊢ (a*+b, TE′ , 1)
⊢ (a*+b, FT ′E′, 14)
⊢ (a*+b, aT ′E′ , 148)

⊢ (*+b, T ′E′ , 148)
⊢ (*+b, *FT ′E′, 1485)
⊢ (+b, FT ′E′ , 1485)
⊢ (+b, T ′E′ , 1485)
⊢ (+b, E′ , 14856)
⊢ (+b, +TE′ , 148562)
⊢ (b, TE′ , 148562)
⊢ (b, FT ′E′ , 1485624)
⊢ (b, bT ′E′ , 14856249)
⊢ (ε, T ′E′ , 14856249)
⊢ (ε, E′ , 148562496)
⊢ (ε, ε , 1485624963)

Compiler Construction Summer semester 2008 25

	Repetition: LL(1) Grammars
	Transformation to LL(1)
	The Complexity of LL(1) Parsing
	Recursive-Descent Parsing
	Error Handling in LL Parsing

