Compiler Construction

Lecture 8: Syntactic Analysis IV
(Practical Issues in LL Parsing)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

© Repetition: LL(1) Grammars

Rm Compiler Construction Summer semester 2

Lookahead Sets

Definition (Lookahead set)

GivenTt=A—> B € P,
la(7) := fi(5 - fo(A)) C 3.
is called the lookahead set of m (where fi(l') := U, fi(7))-

@ fForalla e,
a€la(A— pB)iffacfi(B) or (B="¢ and a € fo(4))

Qccla(A—f) iff 6="¢c and e € fo(A)

m Compiler Construction Summer semester 2008

Characterization of LL(1)

Theorem (Characterization of LL(1))
G € LL(1) iff for all pairs of rules A — (| € P (where 3 # 7):

la(A — B)Nla(A — v) = 0.

on the board O

Remark: the above theorem generally does not hold if £ > 1
(cf. exercises)

m Compiler Construction Summer semester 2008 4

Deterministic Top-Down Parsing

Approach: given G € CFGy,
@ Verify that G € LL(1) by computing the lookahead sets and
checking alternatives for disjointness
@ Start with nondeterministic top-down parsing automaton NTA(G)
@ Use l-symbol lookahead to control the choice of expanding
productions:
o (aw, Aa, 2) F (aw, Ba, 2i)
ifm(i) = A — pand a € la(n(7))
o (6,Aw, 2) F (g, Ba, #i)
if m(i) = A — p and e € la(n(i))
o [as before: (aw,aq, z) F (w,a, z)]
= deterministic top-down parsing automaton DTA(G)

Remarks:
@ DTA(G) is actually not a pushdown automaton (a is read but not
consumed). But: can be simulated using the finite control.
@ Advantage of using lookahead is twofold:
o Removal of nondeterminism
o Earlier detection of syntax errors
(in configurations (aw, Aa, z) where a & U, 5o pla(4 — B))

Rm Compiler Construction Summer semester 2008

© Transformation to LL(1)

Rm Compiler Construction Summer semester 2

Transformation to LL(1)

Assume that G = (N, X, P, S) € CFGyx \ LL(1)
(i.e., there exist A — [| v € P such that la(A —) Nla(4 — v) # 0)

Two heuristics for transforming G into G’ € LL(1):
© Removal of left recursion
© Left factorization

(used in parser-generating systems such as ANTLR)

Remarks:

o Transformations generally preserve the semantics (= generated
language) of CFGs but not the syntactic structure of words
(different syntax trees).

o Transformations cannot always yield an LL(1) grammar (since not
every context-free language is generated by an LL grammar;
details later).

Rm Compiler Construction Summer semester 2008 7

Left Recursion I

Definition 8.1 (Left recursion)

A grammar G = (N, X, P, S) € CFGy is called left recursive if there
exist A € N and o € X* such that A =% Aa.

Corollary 8.2

If G € CFGy; is left recursive with A =71 Aa, then there exists 3 € X*
such that A :>l+ AQ.

The grammar (cf. Example 5.11)
Gup: E— B+T|T
T T*F | F
F— (E)|alb
is left recursive, and in Example 7.8 it was shown that Gag ¢ LL(1)

m Compiler Construction Summer semester 2008 8

Left Recursion I1

If G € CFGy is left recursive, then G & ey LL(K).

Proof.

(for k = 1) Assume that G € LL(1) is left recursive with 4 =;" Af.
Together with the reducedness of G this implies that

S =7 vAa :>l+ vALa :>l+ vw for some v, w € ¥* and a € X*.

The corresponding computation of DTA(G) (Def. 7.9) starts with
(vw, S, e) F* (w, Aa,...) FT (w, ABq, . ..).

But in the last state the behaviour of DTA(G) is determined by the
same input (fi(w)) and stack symbol (A). Thus it enters a loop of the
form (w, Aa,...) Ft (w, ABa,...) T (w, ABBa,...) Ft ... and will
never recognize w. Contradiction O

v

m Compiler Construction Summer semester 2008

Removing Direct Left Recursion

Direct left recursion occurs in productions of the form

A— Ao | ... | Aap [B | ... | Bn where o; e and 3; # A. ..
Transformation: replacement by right recursion
A — BA .. | BRA
A — oA anAl e

(with a new A’ € N) which preserves L(G).

Example 8.5

Gagp: E— E+T|T
T — T*F | F is transformed into
F o (B)|a|b

“g: E —TFE
E' — +TE | ¢
T — FT' with G’y € LL(1) (see Example 7.8).
T' — «FT' | ¢
F — (E)|alb

Compiler Construction Summer semester 2008 10

Removing Indirect Left Recursion

Indirect left recursion occurs in productions of the form (n > 1)

A —>A10(1|...
Al —>A20&2|...

An—l — Anan |

A, —AB|...

Transformation: into Greibach Normal Form with productions of the

form
A —aBy...B, (where B; # S) or
S — ¢

(cf. Automata Theory and Formal Languages)

Rm Compiler Construction Summer semester 2008 11

Left Factorization

Applies to productions of the form
A—af|ay
which are problematic if o “longer than” lookahead.

Transformation: delaying the decision by left factorization

A — aA
A — By

(with a new A’ € N) which preserves L(G).

Example 8.6

Statement — if Condition then Statement else Statement fi
| if Condition then Statement fi

is transformed into)
Statement — if Condition then Statement S’

S" — else Statement fi | fi

m' Compiler Construction Summer semester 2008

© The Complexity of LL(1) Parsing

Rm Compiler Construction Summer semester 2

The Complexity of LL(1) Parsing I

e LL(1) parsing has time (and hence space) complexity O(|w|)
(where w € ¥* is the input word)

@ Here: proof for e-free grammars (i.e., A > a € P — a #¢)

@ General case: see O. Mayer: Syntaxanalyse, p. 211ff

Lemma 8.7
Let G = (N,X,P,S) € LL(1) be e-free. If

(w, S,e) F" (e,¢€,2)

in DTA(G), then

n < |w|-|N|+1.

Compiler Construction Summer semester 2008 14

The Complexity of LL(1) Parsing II

Let (w, S,e) F" (g,¢, z) in DTA(G). To show: n < |w|- |[N|+1

@ Clear: the computation involves |w| matching steps and one
accept-step.

@ Since G is e-free, every matching step is preceded by k expansion

steps of the form
(av, A1aq,...) F (av, Asasay, . . .)

F (av, Agag ... aq,...)
F (av,a0p4q ... a1,...)
where A; — A; 11,41 for each i € [k — 1] and Ay — acg41.
@ This implies that A; # A; for ¢ # j (by Lemma 8.4, G is not left
recursive), and hence k < |N|.

Q Altogether: n < |w|-|N|+ 1.

Compiler Construction Summer semester 2008

© Recursive-Descent Parsing

Rm Compiler Construction Summer semester 2

Recursive-Descent Parsing I

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime
stack)

Advantage: simple implementation

Ingredients: @ variable token for current token
o function next () for invoking the scanner
o procedure print (i) for displaying the leftmost
analysis (or errors)

Method: to every A € N we assign a procedure A() which
o tests token with regard to the lookahead sets of the
A-productions,
@ prints the corresponding rule number and
@ evaluates the corresponding right-hand side as
follows:
e for a € X: check token; call next ()
o for A€ N: call AQ)

m' Compiler Construction Summer semester 2008 17

Recursive-Descent Parsing II

Example 8.8 (Arithmetic expressions; cf. Example 8.5)

proc main();
token := next(); EQ
proc EQ); (x E — T E %
if token in {’(’,’a’,’b’} then print(1); T(O); E’Q
else print(error); stop fi
proc E2°Q0; (+ B — + T E' | € %)
if token = ’+’ then print(2); token := next(); T(O; E’Q
elsif token in {EOF, ’)’} then print(3)
else print(error); stop fi
proc TQ); xT — F T %
if token in {’(’,’a’,’b’} then print(4); FO; T’Q
else print(error); stop fi
proc T’Q; T/ — * F T | %)
if token = ’*’ then print(5); token := mext(); F(O; T’(Q)
elsif token in {’+’,EOF,’)’} then print(6)
else print(error); stop fi
proc FO; G F — (E) | a | b=*)
if token = ’(’ then print(7); token := next(); EQ;
if token = ’)’ then token := next() else print(error); stop fi
elsif token = ’a’ then print(8); token := next()
elsif token = ’b’ then print(9); token := next()
else print(error); stop fi

m Compiler Construction Summer semester 2008

@ Error Handling in LL Parsing

Rm Compiler Construction Summer semester 2

Error Handling

Error configurations of DTA(G):
(aw, Aa, 2) where a € U _gepla(A — B) (= act(a,

©

))
o (¢,Aa,z) where e ¢ (J,_gepla(A — B) (= act(e, A) = error)
o (aw,ba, z) where a # b (= act(a,b) = error)
o (g,ba, 2) (= act(e,b) = error)
o (aw,e,2) (= act(a,&) = error)

Observation: correct prefix property of LL parsing, i.e., syntactic
errors are detected at the earliest possible position (every input prefix
which does not produce an error can be extended to a word w € L(G))

Does not mean: error is recognized at the position where it is caused!

Example: assignment a :=b *x ¢ - (d + e));
Possible corrections:
@ remove closing bracket: a := b *x ¢ - (d + e);
@ insert opening bracket: a := b * (c - (d + e));

m' Compiler Construction Summer semester 2008 20

The General Problem

o Let w = xy € X* be the input word such that z is the longest
prefix of a word in L(G) (i.e., the error is detected at the first
symbol of y) and w ¢ L(G).

@ Parser makes assumption about error type and corrects w
accordingly:

o Assumes prefix 2’ of x to be correct

o Correct prefix property
= there exists z € 3* such that 2’z € L(G)

o Parser chooses prefix 2z’ of z and suffix 3 of y

o Parsing resumed with input w’ := 2’2’y (at first symbol of z’)
(error recovery)

@ Desirable properties of correction:

o At least one symbol of ¢ can be processed before next error occurs
(if y' # €)

o Preserve as many symbols of w as possible (i.e., 2’ and y' “long”
and 2z’ “short”)

o 7/ # x hard to implement, therefore usually 2’ := x

m' Compiler Construction Summer semester 2008 21

Aspects of Error Handling

Further criteria for “good” error handling:

o Continuation of parsing in any case, independent of severity of
error

@ Frequency of correct error diagnosis
@ Suppression of subsequent errors

o Complexity of analyzing correct inputs not impaired

Observation: no “best method” available
@ correction not unique
@ experience of programmer
@ peculiarities of (programming) language

—> employ heuristics

m' Compiler Construction Summer semester 2008 22

Simplest form of error handling: panic mode
Upon occurrence of an error,
o skip input symbols
o until a token in a selected set of “separating” or “closing” tokens
appears (synchronizing tokens)

Example: suitable synchronizing tokens in imperative languages for

@ assignments: “;”

“won

@ declarations: “;” or “,
@ control structures: fi or od
@ blocks: end

Challenge: choose set of synchronizing tokens such that

@ parser recovers quickly from errors that are likely to occur and

@ not too much input is overread
(see Aho/Lam/Sethi/Ullman: Compilers: Principles, Techniques, and
Tools, 2nd ed., p. 228ff)

m' Compiler Construction Summer semester 2008 23

Error Handling Example I

Example 8.9 (cf. Example 7.10)

Gup: E — TE' (1) A]EEN ?2(1;1})’
E' — +TE' | ¢ (2,3) 5] {E’)}
T — FT (4) T ey
T/—>*FT,|E (5,6) T {+7€7)}
F — (B)|alb (7.8,9) F | e

With synchronizing tokens from fo sets:
act : Xe X X — {(a,7) | m(2) = A — a} U {pop, accept, error, sync} (empty = error)

act|] FE E’ T T’ F a b () *x + €
a [(TE',1) (FT,4) (2,8) pop sync sync sync sync sync
b |(TE',1) (FT',4) (b,9) sync pop sync sync sync sync
((TE',1) (FT',4) ((E),7) sync sync pop Sync sync sync
) | sync (e,3) sync (e,6) SyNnc Sync sync sync pop Sync sync
* (*FT’,5) sync syncsyncsync sync pop sync
+ (+TE',2) sync (,6) Sync Sync sync sync sync sync pop
€ | sync (e,3) sync (,6) SyNnc Sync sync sync sync sync sync accept

m Compiler Construction Summer semester 2008 24

Error Handling Example II

mple 8.9 (continued)

act|] F £ T T’ F a b () *x +
a |(TE',1) (FT’,4) (a,8) pop sync sync sync sync sync
b ((TE’,1) (FT',4) (b,9) sync pop sync sync sync sync
(|(TE',1) (FT',4) ((E),7) sync sync pop Sync sync sync
) | sync (e,3) sync (e,6) Sync Sync sync sync pop Sync sync
* (*FT',5) sync syncsyncsync sync pop sync
+ (+TE',2) sync (,6) SyNnC Sync sync sync sync sync pop
€ | sync (e,3) sync (e,6) Sync sync sync sync sync sync sync accept

Meaning of table entries: E (x+b, T'E" 148)

- (x+b, *xFT'E', 1485)

2 i, V) = e - (+b, FT'E' , 1485)
—> pop Y and resume parsing F(+b, T'E’ 1485)

9 act(xz, A) = error F (+b, B , 14856)
— skip and resume parsing F(+b, +TE 148562)

F(b, TE 148562)

(+ax+b, £ e) F(b, FT'E' , 1485624)
F(axb, B e) F(b, bI"E' , 14856249)
F(ax+b, TE" |1) F(e T'E' 14856249)
F (ax+b, FT'E', 14) F(e E , 148562496)
F (ax+b, aT'E’, 148) F(e e , 1485624963)

Compiler Construction

Summer semester 2008

25

	Repetition: LL(1) Grammars
	Transformation to LL(1)
	The Complexity of LL(1) Parsing
	Recursive-Descent Parsing
	Error Handling in LL Parsing

