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Top-Down Parsing

Grammar for
arithmetic expressions:
Gagp: E — E+T|T (1,2)
T — T*F | F (3,4)
F— (B ]alb (567
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Top-Down Parsing
E

Grammar for
arithmetic expressions:
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Leftmost analysis of (a) *b:
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Top-Down Parsing
E

Grammar for T

arithmetic expressions:
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Top-Down Parsing

E
Grammar for ’$
arithmetic expressions: T i \F
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© Bottom-Up Parsing
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Bottom-Up Parsing 1

Grammar for
arithmetic expressions:
Gagp: E — E+T|T (1,2)
T - T*F | F (3,4)
F— (B ]alb (567
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Bottom-Up Parsing 1

Grammar for
arithmetic expressions:
Gagp: E — E+T|T (1,2)
T - T*F | F (3,4)
F— (B ]alb (567
Reversed rightmost analysis
of (a)x*b:
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Bottom-Up Parsing 1

Grammar for
arithmetic expressions:
Gagp: E — E+T|T (1,2)
T - T*F | F (3,4)
F— (B ]alb (567

Reversed rightmost analysis
of (a)x*b:
642

e R

Compiler Construction Summer semester 2008



Bottom-Up Parsing 1

Grammar for
arithmetic expressions:

Gup: E— EB+T|T (1,2)
T - T«F|F  (3,4) -,
F o (B)|alb (5,6,7)
l"E‘\\
Reversed rightmost analysis
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Bottom-Up Parsing 1

Grammar for

arithmetic expressions:
T - T*F | F (3,
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Reversed rightmost analysis
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Bottom-Up Parsing 1
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Bottom-Up Parsing 1
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Bottom-Up Parsing 11

Approach:

@ Given G € CFGy, construct a nondeterministic bottom-up parsing
automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: X

pushdown alphabet: X

output alphabet: [p] (where p := |P|)

state set: omitted

transitions:

¢ © ¢ ¢ ¢

shift: shifting input symbols onto the pushdown
reduce: replacing the right-hand side of a production by its
left-hand side (= inverse expansion steps)
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Bottom-Up Parsing 11

Approach:

@ Given G € CFGy, construct a nondeterministic bottom-up parsing
automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: X

pushdown alphabet: X

output alphabet: [p] (where p := |P|)

state set: omitted

transitions:

¢ © ¢ ¢ ¢

shift: shifting input symbols onto the pushdown
reduce: replacing the right-hand side of a production by its
left-hand side (= inverse expansion steps)
© Remove nondeterminism by allowing lookahead on the input:
G € LR(k) iff L(G) recognizable by deterministic bottom-up
parsing automaton with lookahead of k symbols
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© Nondeterministic Bottom-Up Parsing
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Nondeterministic Bottom-Up Automaton I

Definition 9.2 (Nondeterministic bottom-up parsing automaton)

Let G = (N,X, P,S) € CFGy. The nondeterministic bottom-up
parsing automaton of G, NBA(G), is defined by the following
components.

o Input alphabet: ¥

Pushdown alphabet: X

Output alphabet: [p]

Configurations: ¥* x X* x [p]* (top of pushdown to the right)
Transitions for w € ¥*, a € X*, and z € [p]*:

shifting steps: (aw,a, 2) - (w, aa,z) if a € X

reduction steps: (w,af,2) F (w,ad,zi) f (i) = A —

@ Initial configuration for w € ¥*: (w,¢,¢)

e & ¢ ¢

@ Final configurations: {e} x {S} x [p]*
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Nondeterministic Bottom-Up Automaton 11

Example 9.3

Grammar for
arithmetic expressions
(cf. Example 5.11):
Gag: E— E+T|T (1,2)
T — T*F | F (3,4)
F— (E)|a|b (56,7)
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Nondeterministic Bottom-Up Automaton 11

Example 9.3
Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢ )
(cf. Example 5.11):
Gup: E— E+T|T (1,2
T — TxF | F (3,4)
F— (E)|a|b (56,7)
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Nondeterministic Bottom-Up Automaton 11

Example 9.3

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢ )
(cf. Example 5.11): F(a)xb, (e )

F( )b, (a ,¢ )

Gap: E— E+T|T  (1,2)
T —TxF|F (3,4)
F—(E)|a|b (56,7)
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Example 9.3
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Nondeterministic Bottom-Up Automaton 11

Grammar for Bottom-up parsing of (a) *b:
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Example 9.3
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Example 9.3

Grammar for Bottom-up parsing of (a) *b:
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Nondeterministic Bottom-Up Automaton 11

Example 9.3

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢ )
(cf. Example 5.11): F(a)xb, (e )
Gap:E — E+T|T (1,2) i( )*b, (a € )
T—>T*F|F (3’4) ( )*b, (F ,6 )

F— (E)]|alb (56,7) F( )b, (T ,64 )

T E( D)*b, (E , 642 )

F(  *b, (E), 642 )

F( *b, FF 6425 )
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Fo( b, T* 64254 )

Fo( g, Txb, 64254 )

Fo( g, TxF, 642547 )

F( e, T 6425473 )

F( g, B, 64254732)
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Correctness of NBA(G)

Theorem 9.4 (Correctness of NBA(G))

Let G = (N, X, P,S) € CFGyx, and NBA(G) as before. Then, for every
w € X* and z € [p*,

(w,e,¢e) F* (¢,8,2) iff Z is a rightmost analysis of w
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Correctness of NBA(G)

Theorem 9.4 (Correctness of NBA(G))

Let G = (N, X, P,S) € CFGyx, and NBA(G) as before. Then, for every
w € X* and z € [p*,

(w,e,¢e) F* (¢,8,2) iff Z is a rightmost analysis of w

similar to the top-down case (Theorem 5.15)
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Nondeterminisn in NTA(G)

Remark: NTA(G) is generally nondeterministic
o Shift or reduce? Example:

(bw, aa, z) {E;ﬁ;?ﬁi'z) ifr(i)=A—a
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Nondeterminisn in NTA(G)

Remark: NTA(G) is generally nondeterministic
o Shift or reduce? Example:

(bw, aa, z) {E;ﬁ;?ﬁi'z) ifr(i)=A—a

o If reduce: which “handle” 37 Example:

(w, aab, z) - {Ez:gféfzz)j) if 7(i) = A —aband 7(j) = B — b
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Nondeterminisn in NTA(G)

Remark: NTA(G) is generally nondeterministic
o Shift or reduce? Example:

(bw, aa, z) {E;ﬁ;?ﬁi'z) ifr(i)=A—a

o If reduce: which “handle” 37 Example:

(w, aab, z) {Ez:gféfzz)]) if (i) = A — aband w(j) =B —b
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Nondeterminisn in NTA(G)

Remark: NTA(G) is generally nondeterministic
o Shift or reduce? Example:

(bw, aa, z) {E;ﬁ;?ﬁi'z) ifr(i)=A—a

o If reduce: which “handle” 37 Example:

(w, aab, z) - {Ez:gféfzz)j) if 7(i) = A —aband 7(j) = B — b

o If reduce B: which left-hand side A7 Example:
(w,aa, z) - {Eg:gg’éz}) ifr(i)=A—aand n(j) =B —a
® When to terminate parsing? Example:
(€,8,2)F (e,A,zi) if (i) = A — S
——

final
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Resolving Termination Nondeterminism I

General assumption in the following: every grammar is start
separated

Definition 9.5 (Start separation)

A grammar G = (N, X, P,S) € CFGy is called start separated if S only
occurs in productions of the form S — A where A # S.
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Resolving Termination Nondeterminism I

General assumption in the following: every grammar is start
separated

Definition 9.5 (Start separation)

A grammar G = (N, X, P,S) € CFGy is called start separated if S only
occurs in productions of the form S — A where A # S.

Remarks:
@ Start separation always possible by adding S’ — S with new start
symbol S’

@ From now on consider only reduced grammars of this form
(m(0) =5"—5)
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Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to
terminate parsing):

If G € CFGy s start separated, then no successor of a final
configuration (g,5',z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)
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Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to
terminate parsing):

If G € CFGy, is start separated, then no successor of a final
configuration (g,5’,z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Corollary 9.7

e To (g,5',2), only reductions by e-productions can be applied:
(6,8 ,2)F (e,8'A,zi) ifm(i)=A—e¢
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Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to
terminate parsing):

If G € CFGy, is start separated, then no successor of a final
configuration (g,5’,z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Corollary 9.7

e To (g,5',2), only reductions by e-productions can be applied:
(6,8 ,2)F (e,8'A,zi) ifm(i)=A—e¢
o Thereafter, only reductions by productions of the form
Ay — Ay... A, (n >0) can be applied
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Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to

terminate parsing):

If G € CFGy, is start separated, then no successor of a final
configuration (g,5’,z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Corollary 9.7
e To (g,5',2), only reductions by e-productions can be applied:
(6,8 ,2)F (e,8'A,zi) ifm(i)=A—e¢
o Thereafter, only reductions by productions of the form
Ay — Ay... A, (n >0) can be applied

o FEvery resulting configuration is of the (non-final) form
(,8'By...Bg,z) wherek>1
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Q LR(k) Grammars
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LR(k) Grammars

Goal: resolve remaining nondeterminism of NBA(G) by supporting

lookahead of k € N symbols on the input

= LR(k): reading of input from left to right with k-lookahead,
computing a rightmost analysis
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LR(k) Grammars

Goal: resolve remaining nondeterminism of NBA(G) by supporting

lookahead of k£ € N symbols on the input

= LR(k): reading of input from left to right with k-lookahead,
computing a rightmost analysis

Definition 9.8 (LR (k) grammar)

Let G = (N,X, P,S) € CFGyx be start separated and k € N. Then G has the
LR(k) property (notation: G € LR(k)) if for all rightmost derivations of the
form

g =% cdAw =, afw
=* A =, afv

such that firsty (w) = firstg (v), it follows that o/ = a, A’ = A, and v’ = v.
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LR(k) Grammars

Goal: resolve remaining nondeterminism of NBA(G) by supporting

lookahead of k£ € N symbols on the input

= LR(k): reading of input from left to right with k-lookahead,
computing a rightmost analysis

Definition 9.8 (LR (k) grammar)

Let G = (N,X, P,S) € CFGyx be start separated and k € N. Then G has the
LR(k) property (notation: G € LR(k)) if for all rightmost derivations of the
form

g =% cdAw =, afw
=* A =, afv

such that firsty (w) = firstg (v), it follows that o/ = a, A’ = A, and v’ = v.

Remarks:
o If G € LR(k), then the reduction of afw to aAw is already determined
by af firsty (w).

® Therefore NBA(G) in configuration (w, a8, z) can decide whether to
shift or to reduce and, in the second case, how to reduce.
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© LR(0) Grammars
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LR(0) Grammars

The case k = 0 is relevant (in contrast to LL(0)): here the decision is
just based on the contents of the pushdown, without any lookahead.
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LR(0) Grammars

The case k = 0 is relevant (in contrast to LL(0)): here the decision is
just based on the contents of the pushdown, without any lookahead.

Corollary 9.9 (LR(0) grammar)

G € CFGyx, has the LR(0) property if for all rightmost derivations of
the form

g =5 adAw =, afw
=* /A =, afv

it follows that o/ = a, A’ = A, and w' = v.
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LR(0) Grammars

The case k = 0 is relevant (in contrast to LL(0)): here the decision is
just based on the contents of the pushdown, without any lookahead.

Corollary 9.9 (LR(0) grammar)

G € CFGyx, has the LR(0) property if for all rightmost derivations of
the form
S{:>: cdAw =, afw
= d/Aw =, abv

it follows that o/ = a, A’ = A, and w' = v.

Goal: derive a finite information from the pushdown which suffices to
resolve the nondeterminism (similar to abstraction of right context in
LL parsing by fo-sets)
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LR(0) Items and Sets

Definition 9.10 (LR(0) items and sets)

Let G = (N, X, P,S) € CFGy, be start separated by S — S and
S' =% aAw =, af1fow (i.e., A — (152 € P).
o [A— (-] is called an LR(0) item for af;.
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Let G = (N, X, P,S) € CFGy, be start separated by S — S and
S' =% aAw =, af1fow (i.e., A — (152 € P).

o [A— (-] is called an LR(0) item for af;.

o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of +.
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LR(0) Items and Sets

Definition 9.10 (LR(0) items and sets)

Let G = (N, X, P,S) € CFGy, be start separated by S — S and
S' =% aAw =, af1fow (i.e., A — (152 € P).
o [A— (-] is called an LR(0) item for af;.
o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of +.
o LR(0)(G) :={LR(0)() | v € X}.
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LR(0) Items and Sets

Definition 9.10 (LR(0) items and sets)

Let G = (N, X, P,S) € CFGsx, be start separated by S’ — S and
S' =% aAw =, af1fow (i.e., A — (152 € P).
o [A— (-] is called an LR(0) item for af;.
o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of .
o LR(0)(G) :={LR(0)(y) | v € X"}.

Corollary 9.11

Q For every v € X*, LR(0)(v) is finite.
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LR(0) Items and Sets

Definition 9.10 (LR(0) items and sets)

Let G = (N, X, P,S) € CFGsx, be start separated by S’ — S and
S' =% aAw =, af1fow (i.e., A — (152 € P).
o [A— (-] is called an LR(0) item for af;.
o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of .
o LR(0)(G) :={LR(0)(y) | v € X"}.

Corollary 9.11

Q For every v € X*, LR(0)(v) is finite.
@ LR(0)(G) is finite.
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LR(0) Items and Sets

Definition 9.10 (LR(0) items and sets)

Let G = (N, X, P,S) € CFGsx, be start separated by S’ — S and
S' =% aAw =, af1fow (i.e., A — (152 € P).
o [A— (-] is called an LR(0) item for af;.
o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of .
o LR(0)(G) :={LR(0)(y) | v € X"}.

Corollary 9.11

Q For every v € X*, LR(0)(v) is finite.

@ LR(0)(G) is finite.

Q The item [A — (] € LR(0)(~y) indicates the possible reduction
(w,afB,2) F (w,ad, zi) where (i) = A — (8 and v = af.
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LR(0) Items and Sets

Definition 9.10 (LR(0) items and sets)

Let G = (N, X, P,S) € CFGsx, be start separated by S’ — S and
S' =% aAw =, af1fow (i.e., A — (152 € P).
o [A— (-] is called an LR(0) item for af;.
o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of .
o LR(0)(G) :={LR(0)(y) | v € X"}.

Corollary 9.11

Q For every v € X*, LR(0)(v) is finite.

@ LR(0)(G) is finite.

Q The item [A — (] € LR(0)(~y) indicates the possible reduction
(w,afB,2) F (w,ad, zi) where (i) = A — (8 and v = af.

Q The item [A — (1 - Y [B2] € LR(0)(v) indicates a possible shift step
(with incomplete handle ;).
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LR(0) Conflicts

Definition 9.12 (LR(0) conflicts)

Let G = (N,%, P,5) € CFGy, and I € LR(0)(G).

@ [ has a shift/reduce conflict if there exist A — ajaae, B — 3 € P
such that

[A — a1 -aas],[B— B] €.
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Definition 9.12 (LR(0) conflicts)

Let G = (N,%, P,5) € CFGy, and I € LR(0)(G).

@ [ has a shift/reduce conflict if there exist A — ajaae, B — 3 € P
such that

[A — a1 -aas],[B— B] €.

@ [ has a reduce/reduce conflict if there exist A > a,B — 3 € P
with A # B or a # (3 such that

[A - a],[B— 3] €l
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LR(0) Conflicts

Definition 9.12 (LR(0) conflicts)
Let G = (N,X, P,S) € CFGx, and I € LR(0)(G).

@ [ has a shift/reduce conflict if there exist A — ajaae, B — 3 € P
such that
[A — a1 -aas],[B— B] €.

@ [ has a reduce/reduce conflict if there exist A > a,B — 3 € P
with A # B or a # (3 such that

[A - a],[B— 3] €l

G € LR(0) iff no I € LR(0)(G) contains conflicting items.
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Computing LR(0) Sets I

Theorem 9.14 (Computing LR(0) sets)

Let G = (N, X, P,S) € CFGy, be start separated by S" — S and
reduced.

Q LR(0)(e) is the least set such that
o [§"— -S| € LR(0)(e) and
o if [A— -By] € LR(0)(¢) and B — (3 € P,
then [B — -] € LR(0)(e).
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Computing LR(0) Sets I

Theorem 9.14 (Computing LR(0) sets)

Let G = (N, X, P,S) € CFGy, be start separated by S" — S and
reduced.

Q LR(0)(e) is the least set such that
o [§"— -S| € LR(0)(e) and
o if [A— -By] € LR(0)(¢) and B — (3 € P,
then [B — -] € LR(0)(e).
Q@ LR(0)(aY) (x € X*,Y € X) is the least set such that
o if [A = m - Y7 € LR(0)(a),
then [A — 7Y - y2] € LR(0)(aY) and
o if [A — v - By € LR(0)(aY) and B — € P,
then [B — -f] € LR(0)(aY).
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Computing LR(0) Sets II

Example 9.15

G: 8 —8
S —>B|C
B —aB|b
C —aClec
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Computing LR(0) Sets II

Example 9.15

G: 8 —8
S —>B|C
B —aB|b
C —aClec

Iy := LR(0)(e) : [S" — -5]

[S” — -S] € LR(0)(¢)
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Computing LR(0) Sets II

Example 9.15

G: S-S
S —-B|C [A— -By] € LR(0)(¢),B — B € P
B —aB|b = [B — 8] € LR(0)(¢)
C —aClec

Ip := LR(0)(e) : [S" — -9] [S — -B]
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Computing LR(0) Sets II

Example 9.15

G: S-S
S —-B|C [A— -By] € LR(0)(¢),B — B € P
B —aB|b = [B — 8] € LR(0)(¢)
C —aClec

Ip := LR(0)(e) : [S" — -9] [S — -B] [S — (]
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Computing LR(0) Sets II

Example 9.15

G: 8-S
S —-B|C [A— -By] € LR(0)(¢),B — B € P
B —aB|b = [B — 8] € LR(0)(¢)
C —aClec
Ip := LR(0)(e) : {S' — ?’] [S — -B] [S—-C] [B— -aB]
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Computing LR(0) Sets II

Example 9.15

G: §—>58
S - B|C [A— -By] € LR(0)(e),B — B € P
B —aB|b = [B — 8] € LR(0)(¢)
C —aClec
Ip := LR(0)(e) : [S" — -9] [S — -B] [S—-C|] [B— -aB]
[B — -b] [C —-aC] [C— ]

Summer semester 2008
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Computing LR(0) Sets II

Example 9.15

G: §—>58
S —-B|C [A— 1 - Y] € LR(0)()
B —aB|b — [A— Y 2] € LR(0)(aY)
C —aClec

Ip := LR(0)(e) : [S' — 9] [S — -B] [S—-C] [B— -aB]
[B — -b] [C —-aC] [C—
I := LR(0)(S): [S'— 5]
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Computing LR(0) Sets II

Example 9.15

G: §—>58
S —-B|C [A— 1 - Y] € LR(0)()
B —aB|b — [A— Y 2] € LR(0)(aY)
C —aClec

Ip := LR(0)(e) : [S" — -9] [S — -B] [S—-C] [B— -aB]
[B — -b] [C—-aC] [C— ]

I ;== LR(0)(S): |

[

I, := LR(0)(B) :
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Computing LR(0) Sets II

Example 9.15

G: §—>58
S —-B|C [A— 1 - Y] € LR(0)()
B —aB|b — [A— Y 2] € LR(0)(aY)
C —aClec

S’ — 9] [S — -B] [S—-C|] [B— -aB]
B — -b] [C—-aC] [C— ]

I := LR(0)(S) : S — S
I := LR(0)(B): [S — B
I := LR(0)(C) :  [S — O]
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Computing LR(0) Sets II

Example 9.15

G: 8 —8

S —-B|C [A— 1 - Y] € LR(0)()
B —aB|b — [A— Y 2] € LR(0)(aY)
C —aClec
Iy := LR(0)(e) [S" — -9] [S — -B] [S—-C] [B— -aB]
(B — -b] [C—-aC] [C—
I := LR(0)(S): [9— 5]
I := LR(0)(B): [S — B
I = LR(0)(C): [§—C]
I, :=LR(0)(a): [B—a-B] [C—a-C|
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Computing LR(0) Sets II

Example 9.15

G: 8 —8

S —-B|C [A— - By] € LR(0)(aY),B— 3 € P
B —aB|b — [B — -f] € LR(0)(aY")
C —aClec
Io:=LR(O)(e):  [$"—=-S] [§—-B] [S—-C] [B—aB
[B — -b] [C—-aC] [C— ]
I ;== LR(0O)(S): [S"— 5]
I := LR(0)(B) : [S — B
I = LR(0)(C): [§— C]
I, :=LR(0)(a): [B—a-B] [C—a-C| [B—-aB| [B— b
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Computing LR(0) Sets II

Example 9.15

G: 8-S
S =-B|C [A— - By] € LR(0)(aY),B— 3 € P
B —aB|b — [B — -f] € LR(0)(aY")
C —aClec
Iy := LR(0)(e) : S’ — 9] [S — -B] [S—-C] [B— -aB]
B — -b] [C —-aC] [C—
I ;== LR(0O)(S): [S"— 5]
I := LR(0)(B) : [S — B
I3 := LR(0)(C): [§—C]
I, := LR(0)(a) : B—a-B] [C—a-C| [B—-aB] [B— b
C —-aC] [C—
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Computing LR(0) Sets II

Example 9.15

G: S-S

S —-B|C

B —aB|b

C —aClec
Io == LR(0)(e) :
I := LR(0)(S) :
I := LR(0)(B) :
I3 := LR(0)(C) :
I, := LR(0)(a) :
I5 := LR(0)(D) :

[A — 1 - Y] € LR(0)(c)
= [A— mY -y] € LR(0)(aY)

S’ — -9] [S — -B] [S—-C] [B— -aB]
B — -b] [C —-aC] [C—

S — S

S — B

S — C"]

B—a-B] [C—a-C| [B—-aB] [B— b
C—-aC] [C— ]

B — b
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Computing LR(0) Sets II

Example 9.15

G: §—>58
S —-B|C [A— 1 - Y] € LR(0)()
B —aB|b — [A— Y 2] € LR(0)(aY)
C —aClec
Iy := LR(0)(¢) S’ — 9] [S — -B] [S—-C] [B— -aB]
B — -b] [C—-aC] [C— ]
I ;== LR(0)(S): [S"— 5]
I := LR(0)Y(B) :  [S — B
I3 := LR(O)(C):  [S—C]
I, := LR(0)(a) : B—a-B] [C—a-C| [B—-aB] [B— b
C—-aC] [C—
Is == LR(O)(0) :  [B — b]
Is := LR(0)(c) : C — ¢
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Computing LR(0) Sets II

Example 9.15

G: 8-S
S —-B|C [A— 1 - Y] € LR(0)()
B —aB|b — [A — 1Y -] € LR(0)(aY)
C —aC|c
Iy := LR(0)(e) S’ — 9] [S — -B] [S—-C] [B— -aB]
B — -b] [C —-aC] [C—
I := LR(0)(S): [§'— 8]
I := LR(0)(B) : [S — B
Is .= LR(0)(C): [S—C]
I, := LR(0)(a) : B—a-Bl [C—a-C| [B—-aB] [B— b
C—-aC] [C—
I := LR(O)(b) :  [B —b]
Is := LR(0)(c) : C — ¢
I :== LR(0)(aB) : [B — aB']
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Computing LR(0) Sets II

Example 9.15

G: 8-S
S —-B|C [A— 1 - Y] € LR(0)()
B —aB|b — [A — 1Y -] € LR(0)(aY)
C —aC|c
Iy := LR(0)(e) : S’ — 9] [S — -B] [S—-C] [B— -aB]
B — -b] [C —-aC] [C—
I := LR(0)(S): [§'— 8]
I := LR(0)(B) : [S — B
Is:= LR(0)(C): [S—C]
I, := LR(0)(a) : B—a-B] [C—a-C| [B—-aB] [B— b
C—-aC] [C—
Is == LR(O)(0) :  [B — b]
Is := LR(0)(c) : C — ¢
I; .= LR(0)(aB) : [B — aB]
Is := LR(0)(aC) : [C — aC']
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Computing LR(0) Sets II

Example 9.15

G: 8-S
S —-B|C
B —aB|b
C —aC|c
Iy := LR(0)(e) : S’ — 9] [S — -B] [S—-C] [B— -aB]
B — -b] [C—-aC] [C—
I := LR(0)(S): [§'— 8]
I := LR(0)(B) :  [S — B
Is:=LR(0)(C): [S—C]
I, := LR(0)(a) : B—a-B] [C—a-C| [B—-aB] [B— b
C—-aC] [C—
I := LR(O)(b) :  [B — b
Is := LR(0)(c) : C — ¢
I; .= LR(0)(aB) : [B — aB]
Is := LR(0)(aC) : [C — aC"]
(LR(0)(aa) = LR(0)(a) = Is, LR(0)(ab) = LR(0)(b) = I,
LR(0)(ac) = LR(0)(c) = Ig, Iy := LR(0)(y) = @ in all remaining cases)
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Computing LR(0) Sets II

Example 9.15

G: 8-S
S —-B|C
B —aB|b
C —aC|c
Iy := LR(0)(e) : S’ — 9] [S — -B] [S—-C] [B— -aB]
B — -b] [C—-aC] [C—
I ;== LR(0)(S): [S"— 5]
I = LR(0)(B) : [S — B
Is:=LR(0)(C): [S—C]
I, := LR(0)(a) : B—a-B] [C—a-C| [B—-aB] [B— b
C—-aC] [C—
I := LR(O)(b) :  [B — b
Is := LR(0)(c) : C — ¢
I; .= LR(0)(aB) : [B — aB]
Is := LR(0)(aC) : [C — aC"]
(LR(0)(aa) = LR(0)(a) = I, LR(0)(ab) = LR(0)(b) = Is,
LR(0)(ac) = LR(0)(c) = Ig, Iy := LR(0)(y) = 0 in all remaining cases)
no conflicts = G € LR(0)
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