Compiler Construction

Lecture 9: Syntactic Analysis V (LR(k) Grammars)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Q Repetition: Top-Down Parsing

Rm Compiler Construction Summer semester 2

Top-Down Parsing

Grammar for
arithmetic expressions:
Gagp: E — E+T|T (1,2)
T — T*F | F (3,4)
F— (B]alb (567

Compiler Construction Summer semester 2008 3

Top-Down Parsing
E

Grammar for
arithmetic expressions:
Gagp: E — E+T|T (1,2)
T — T*F | F (3,4)
F— (B]alb (567

Leftmost analysis of (a) *b:

Compiler Construction Summer semester 2008 3

Top-Down Parsing
E

Grammar for T

arithmetic expressions:

Gagp: E — E+T|T (1,2)
T — T*F | F (3,4)
F— (B)|alb (56,7)

Leftmost analysis of (a) *b:

2

Compiler Construction Summer semester 2008 3

Top-Down Parsing

7
Grammar for ,$

arithmetic expressions: T i \F

Gag: E— E+T|T (1,2) §

T — T*F | F (3,4)

F— (B]alb (567 s

Leftmost analysis of (a) *b:

23
(a2) * b

Compiler Construction Summer semester 2008 3

Top-Down Parsing

7
Grammar for § $

arithmetic expressions: 7" i \F

Gag: E— E+T|T (1,2) ! §

T — T*F | F (3,4) F

F— (B]alb (567 s

Leftmost analysis of (a) *b:

234
(a2) * b

Compiler Construction Summer semester 2008 3

Top-Down Parsing

E
Grammar for ,$

arithmetic expressions: T i \F

Gag: E— E+T|T (1,2 i ;

T TP |F (3,4) r i

Fo(®alb G67 A |

B i

Leftmost analysis of (a)*b:

2345 gFY |
(a2) * b

Summer semester 2008

Compiler Construction

Top-Down Parsing

E
Grammar for ,$

arithmetic expressions: T i \F

Gag: E— E+T|T (1,2 i ;

T TP |F (3,4) r i

Fo(®alb G67 A |

A i

Leftmost analysis of (a)*b: T

23452 f g
(a2) * b

Summer semester 2008

Compiler Construction

Top-Down Parsing

E
Grammar for ,$
arithmetic expressions: T i \F
Gag: E— E+T|T (1,2 i ;
T TP |F (3,4) r i
Fo(®alb G67 A |
A i
Leftmost analysis of (a)*b: T
234524 A
"’: F \“‘ i
(a2) * b

Summer semester 2008

Compiler Construction

Top-Down Parsing

E
Grammar for ’$
arithmetic expressions: T i \F
Gagp: E— E+T|T (1,2) i §
T TxF|F (3,4) r i
F— (B)|a|b (56,7) |
A i
Leftmost analysis of (a)*b: T
2345246 fTy
"’: }:7 \“‘ i
(&) + b

Summer semester 2008

Compiler Construction

oD
=

Top-Down Pars

—

D~
e e
A <F ©

Leftmost analysis of (a) *b:

arithmetic expressions:
23452467

Example
Grammar for

Summer semester 2008

o
3
£
o
2
=
b
123
o
2
O
g
&
g
2
O

© Bottom-Up Parsing

Rm Compiler Construction Summer semester 2

Bottom-Up Parsing 1

Grammar for
arithmetic expressions:
Gagp: E — E+T|T (1,2)
T - T*F | F (3,4)
F— (B]alb (567

Compiler Construction Summer semester 2008 5

Bottom-Up Parsing 1

Grammar for
arithmetic expressions:
Gagp: E — E+T|T (1,2)
T - T*F | F (3,4)
F— (B]alb (567
Reversed rightmost analysis
of (a)x*b:

Compiler Construction Summer semester 2008 5

Bottom-Up Parsing 1

Grammar for

arithmetic expressions:

Gagp: E — E+T|T (1,2)
T - T*F | F (3,4)
F— (B]alb (567

Reversed rightmost analysis

of (a)x*b:

6

Compiler Construction Summer semester 2008

Bottom-Up Parsing 1

Grammar for

arithmetic expressions:

Gagp: E — E+T|T (1,2)
T - T*F | F (3,4)
F— (B]alb (567

Reversed rightmost analysis

of (a)x*b:

6 4

Compiler Construction Summer semester 2008 5

Bottom-Up Parsing 1

Grammar for
arithmetic expressions:
Gagp: E — E+T|T (1,2)
T - T*F | F (3,4)
F— (B]alb (567

Reversed rightmost analysis
of (a)x*b:
642

e R

Compiler Construction Summer semester 2008

Bottom-Up Parsing 1

Grammar for
arithmetic expressions:

Gup: E— EB+T|T (1,2)
T - T«F|F (3,4) -,
F o (B)|alb (5,6,7)
l"E‘\\
Reversed rightmost analysis
of (a)x*b: £
6425 gl
{F
(4) * b

Summer semester 2008

Compiler Construction

Bottom-Up Parsing 1

Grammar for

arithmetic expressions:
T - T*F | F (3,
F— (E)|alb (5

Reversed rightmost analysis

of (a)x*b:
64254

Summer semester 2008

Compiler Construction

Bottom-Up Parsing 1

Grammar for
arithmetic expressions:
Guap: E— E+T|T (1,2 T i
T —T+F|F (3,4) i |
F— (E)|a|b (56,7)
,"E“‘ i
Reversed rightmost analysis ;
of (a)x*b: fT
642547 S ;
Y
(a) * b

Summer semester 2008

Compiler Construction

Bottom-Up Parsing 1

Grammar for T

arithmetic expressions: a o
Gup: E— E+T|T (1,2) T i
T —TxF|F (3,4 Ja .

F— (B)]alb (56,7) o

,"E“‘ i i

Reversed rightmost analysis |
of (a)*b: gy P
6425473 7o o
"l FI! |“‘ i i
¢ a) * b

Summer semester 2008

Compiler Construction

Bottom-Up Parsing 1

K
Grammar for T
arithmetic expressions: P

Gup: E— E+T|T (1,2) T LA
T —->T+F|F (3,4) Ja P
F— (B)|alb (56,7) o
,"E“‘ i i
Reversed rightmost analysis |
of (a)x*b: £ i :
64254732 T E i
"I F l“ i i
SE RN

Summer semester 2008

Compiler Construction

Bottom-Up Parsing 11

Approach:

@ Given G € CFGy, construct a nondeterministic bottom-up parsing
automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: X

pushdown alphabet: X

output alphabet: [p] (where p := |P|)

state set: omitted

transitions:

¢ © ¢ ¢ ¢

shift: shifting input symbols onto the pushdown
reduce: replacing the right-hand side of a production by its
left-hand side (= inverse expansion steps)

Rm Compiler Construction Summer semester 2008

Bottom-Up Parsing 11

Approach:

@ Given G € CFGy, construct a nondeterministic bottom-up parsing
automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: X

pushdown alphabet: X

output alphabet: [p] (where p := |P|)

state set: omitted

transitions:

¢ © ¢ ¢ ¢

shift: shifting input symbols onto the pushdown
reduce: replacing the right-hand side of a production by its
left-hand side (= inverse expansion steps)
© Remove nondeterminism by allowing lookahead on the input:
G € LR(k) iff L(G) recognizable by deterministic bottom-up
parsing automaton with lookahead of k symbols

m' Compiler Construction Summer semester 2008 6

© Nondeterministic Bottom-Up Parsing

Rm Compiler Construction Summer semester 2

Nondeterministic Bottom-Up Automaton I

Definition 9.2 (Nondeterministic bottom-up parsing automaton)

Let G = (N,X, P,S) € CFGy. The nondeterministic bottom-up
parsing automaton of G, NBA(G), is defined by the following
components.

o Input alphabet: ¥

Pushdown alphabet: X

Output alphabet: [p]

Configurations: ¥* x X* x [p]* (top of pushdown to the right)
Transitions for w € ¥*, a € X*, and z € [p]*:

shifting steps: (aw,a, 2) - (w, aa,z) if a € X

reduction steps: (w,af,2) F (w,ad,zi) f (i) = A —

@ Initial configuration for w € ¥*: (w,¢,¢)

e & ¢ ¢

@ Final configurations: {e} x {S} x [p]*

m Compiler Construction Summer semester 2008

Nondeterministic Bottom-Up Automaton 11

Example 9.3

Grammar for
arithmetic expressions
(cf. Example 5.11):
Gag: E— E+T|T (1,2)
T — T*F | F (3,4)
F— (E)|a|b (56,7)

Compiler Construction Summer semester 2008 9

Nondeterministic Bottom-Up Automaton 11

Example 9.3
Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 5.11):
Gup: E— E+T|T (1,2
T — TxF | F (3,4)
F— (E)|a|b (56,7)

Compiler Construction Summer semester 2008 9

Nondeterministic Bottom-Up Automaton 11

Example 9.3

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 5.11): F(axb, (¢)

Gup:E — E+T|T (1,2
T —T*F|F (3,4)
F— (B)|a|b (5,6,7)

Compiler Construction Summer semester 2008 9

Nondeterministic Bottom-Up Automaton 11

Example 9.3

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 5.11): F(a)xb, (e)

F()b, (a ,¢)

Gap: E— E+T|T (1,2)
T —TxF|F (3,4)
F—(E)|a|b (56,7)

Summer semester 2008 9

Compiler Construction

Nondeterministic Bottom-Up Automaton 11

Example 9.3

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 5.11): F(a)*b, (e)
i F()b, (a ,¢)
Gup:E— E+T|T (1, F 0 e (7 6 |

1,2)
T > T*F|F (3,4)
F— (B)|a|b (5,6,7)

Compiler Construction Summer semester 2008 9

Nondeterministic Bottom-Up Automaton 11

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 5.11): F(axb, (¢)
Gup:E— E+T|T (1,2) F e)
F()b, (F ,6)
T — TxF | F (3,4) F(Ywb. (T . 64)

F— (E)|a|b (56,7) ’ ’

Compiler Construction Summer semester 2008 9

Nondeterministic Bottom-Up Automaton 11

Example 9.3

Grammar for Bottom-up parsing of (a)x*b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 5.11): F(axb, (¢)
Guap:E— E+T|T (1,2 e, e e)
F()*b, (F ,6)

T S TxF|F (3,4)
F—(E)|alb (56,7) 7 (bRl 64)
0 ()b, (E , 642)

Compiler Construction Summer semester 2008 9

Nondeterministic Bottom-Up Automaton 11

Grammar for Bottom-up parsing of (a)x*b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 5.11): F(ax*b, (¢)
Gap: E— E+T|T (1,2) =()b, (a e)
F(J)*b, (F ,6)

T —T*xF|F (3,4)
F— (E)|alb (56,7) 7 (bRl 64)
>0 F()b, (B, 642)
F(*b, (E), 642)

Compiler Construction Summer semester 2008 9

Nondeterministic Bottom-Up Automaton 11

Example 9.3

Grammar for Bottom-up parsing of (a)x*b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 5.11): F(axb, (¢)
Gap: E— E+T|T (1,2) =()b, (a e)
F(J)*b, (F ,6)

T —T*xF|F (3,4)
F— (E)|alb (56,7) 7 (bR 64)
>0 F()b, (B ,642)
F(*b, (E), 642)
(b, F,6425)

Compiler Construction Summer semester 2008 9

Nondeterministic Bottom-Up Automaton 11

Example 9.3

Grammar for Bottom-up parsing of (a)x*b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 5.11): F(axb, (¢)
Gap: E— E+T|T (1,2) =()b, (a e)
F(J)*b, (F ,6)

T —T*xF|F (3,4)
F—(E)|alb (56,7) 7 (bR 64)
0 F()b, (E , 642)
F(*b, (E), 642)
-(b, F ,6425)
(b, T 64254)

Compiler Construction Summer semester 2008 9

Nondeterministic Bottom-Up Automaton 11

Example 9.3

Grammar for Bottom-up parsing of (a)x*b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 5.11): F(axb, (¢)
Gap: E— E+T|T (1,2) =()b, (a e)
F(J)*b, (F ,6)

T —T*xF|F (3,4)
F—(E)|alb (56,7) 7 (bR 64)
0 F()b, (E , 642)
F(*b, (E), 642)
-(b, F ,6425)
(b, T 64254)
F(b, T* ,64254)

Compiler Construction Summer semester 2008 9

Nondeterministic Bottom-Up Automaton 11

Example 9.3

Grammar for Bottom-up parsing of (a)x*b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 5.11): F(a)xb, (e)
Gap:E — E+T|T (1,2) i()*b, (a €)

T—>T*F|F (3’4) ()*b, (F ,6)

F— (E)]|alb (56,7) F()b, (T ,64)

o E(D)*b, (E , 642)

F(*b, (E), 642)

F(*b, FF 6425)

F(*b, T 64254)

Fo(b, T* 64254)

Fo(g, Txb, 64254)

Compiler Construction Summer semester 2008 9

Nondeterministic Bottom-Up Automaton 11

Example 9.3

Grammar for Bottom-up parsing of (a)x*b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 5.11): F(a)xb, (e)
Gap:E — E+T|T (1,2) i()*b, (a €)

F— (E)]|alb (56,7) F()b, (T ,64)

o E(J)xb, (E , 642)

F(*b, (E), 642)

F(*b, FF 6425)

F(*b, T 64254)

Fo(b, T* 64254)

H(g, Txb, 64254)

Fo(g, TxF, 642547)

Compiler Construction Summer semester 2008 9

Nondeterministic Bottom-Up Automaton 11

Example 9.3

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 5.11): F(a)xb, (e)
Gap: E — E+T|T (1,2) i()*b, (a €)

T—>T*F|F (3’4) ()*b, (F ,6)

F— (E)]|alb (56,7) F()b, (T ,64)

T F(D)xb, (E , 642)

F(*b, (E), 642)

F(*b, FF 6425)

F(*b, T 64254)

Fo(b, T* , 64254)

Fo(g, Txb, 64254)

Fo(g, TxF, 642547)

F(e, T" 6425473)

Compiler Construction Summer semester 2008 9

Nondeterministic Bottom-Up Automaton 11

Example 9.3

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 5.11): F(a)xb, (e)
Gap:E — E+T|T (1,2) i()*b, (a €)
T—>T*F|F (3’4) ()*b, (F ,6)

F— (E)]|alb (56,7) F()b, (T ,64)

T E(D)*b, (E , 642)

F(*b, (E), 642)

F(*b, FF 6425)

F(*b, T 64254)

Fo(b, T* 64254)

Fo(g, Txb, 64254)

Fo(g, TxF, 642547)

F(e, T 6425473)

F(g, B, 64254732)

Compiler Construction Summer semester 2008 9

Correctness of NBA(G)

Theorem 9.4 (Correctness of NBA(G))

Let G = (N, X, P,S) € CFGyx, and NBA(G) as before. Then, for every
w € X* and z € [p*,

(w,e,¢e) F* (¢,8,2) iff Z is a rightmost analysis of w

m' Compiler Construction Summer semester 2008 10

Correctness of NBA(G)

Theorem 9.4 (Correctness of NBA(G))

Let G = (N, X, P,S) € CFGyx, and NBA(G) as before. Then, for every
w € X* and z € [p*,

(w,e,¢e) F* (¢,8,2) iff Z is a rightmost analysis of w

similar to the top-down case (Theorem 5.15)

m Compiler Construction Summer semester 2008 10

Nondeterminisn in NTA(G)

Remark: NTA(G) is generally nondeterministic
o Shift or reduce? Example:

(bw, aa, z) {E;ﬁ;?ﬁi'z) ifr(i)=A—a

Rm Compiler Construction Summer semester 2008

11

Nondeterminisn in NTA(G)

Remark: NTA(G) is generally nondeterministic
o Shift or reduce? Example:

(bw, aa, z) {E;ﬁ;?ﬁi'z) ifr(i)=A—a

o If reduce: which “handle” 37 Example:

(w, aab, z) - {Ez:gféfzz)j) if 7(i) = A —aband 7(j) = B — b

Rm Compiler Construction Summer semester 2008 11

Nondeterminisn in NTA(G)

Remark: NTA(G) is generally nondeterministic
o Shift or reduce? Example:

(bw, aa, z) {E;ﬁ;?ﬁi'z) ifr(i)=A—a

o If reduce: which “handle” 37 Example:

(w, aab, z) {Ez:gféfzz)]) if (i) = A — aband w(j) =B —b
o If reduce B: which left-hand side A7 Example:

(w,aa, z) - {Eg’gé’ Z)) ifr(i)=A—aand7(j)=B —a

Rm Compiler Construction Summer semester 2008 11

Nondeterminisn in NTA(G)

Remark: NTA(G) is generally nondeterministic
o Shift or reduce? Example:

(bw, aa, z) {E;ﬁ;?ﬁi'z) ifr(i)=A—a

o If reduce: which “handle” 37 Example:

(w, aab, z) - {Ez:gféfzz)j) if 7(i) = A —aband 7(j) = B — b

o If reduce B: which left-hand side A7 Example:
(w,aa, z) - {Eg:gg’éz}) ifr(i)=A—aand n(j) =B —a
® When to terminate parsing? Example:
(€,8,2)F (e,A,zi) if (i) = A — S
——

final

Rm Compiler Construction Summer semester 2008 11

Resolving Termination Nondeterminism I

General assumption in the following: every grammar is start
separated

Definition 9.5 (Start separation)

A grammar G = (N, X, P,S) € CFGy is called start separated if S only
occurs in productions of the form S — A where A # S.

Rm Compiler Construction Summer semester 2008 12

Resolving Termination Nondeterminism I

General assumption in the following: every grammar is start
separated

Definition 9.5 (Start separation)

A grammar G = (N, X, P,S) € CFGy is called start separated if S only
occurs in productions of the form S — A where A # S.

Remarks:
@ Start separation always possible by adding S’ — S with new start
symbol S’

@ From now on consider only reduced grammars of this form
(m(0) =5"—5)

m' Compiler Construction Summer semester 2008 12

Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to
terminate parsing):

If G € CFGy s start separated, then no successor of a final
configuration (g,5',z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

m' Compiler Construction Summer semester 2008

Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to
terminate parsing):

If G € CFGy, is start separated, then no successor of a final
configuration (g,5’,z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Corollary 9.7

e To (g,5',2), only reductions by e-productions can be applied:
(6,8 ,2)F (e,8'A,zi) ifm(i)=A—e¢

m Compiler Construction Summer semester 2008

Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to
terminate parsing):

If G € CFGy, is start separated, then no successor of a final
configuration (g,5’,z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Corollary 9.7

e To (g,5',2), only reductions by e-productions can be applied:
(6,8 ,2)F (e,8'A,zi) ifm(i)=A—e¢
o Thereafter, only reductions by productions of the form
Ay — Ay... A, (n >0) can be applied

m Compiler Construction Summer semester 2008

Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to

terminate parsing):

If G € CFGy, is start separated, then no successor of a final
configuration (g,5’,z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Corollary 9.7
e To (g,5',2), only reductions by e-productions can be applied:
(6,8 ,2)F (e,8'A,zi) ifm(i)=A—e¢
o Thereafter, only reductions by productions of the form
Ay — Ay... A, (n >0) can be applied

o FEvery resulting configuration is of the (non-final) form
(,8'By...Bg,z) wherek>1

m Compiler Construction Summer semester 2008

Q LR(k) Grammars

Rm Compiler Construction Summer semester 2

LR(k) Grammars

Goal: resolve remaining nondeterminism of NBA(G) by supporting

lookahead of k € N symbols on the input

= LR(k): reading of input from left to right with k-lookahead,
computing a rightmost analysis

Rm Compiler Construction Summer semester 2008 15

LR(k) Grammars

Goal: resolve remaining nondeterminism of NBA(G) by supporting

lookahead of k£ € N symbols on the input

= LR(k): reading of input from left to right with k-lookahead,
computing a rightmost analysis

Definition 9.8 (LR (k) grammar)

Let G = (N,X, P,S) € CFGyx be start separated and k € N. Then G has the
LR(k) property (notation: G € LR(k)) if for all rightmost derivations of the
form

g =% cdAw =, afw
=* A =, afv

such that firsty (w) = firstg (v), it follows that o/ = a, A’ = A, and v’ = v.

m Compiler Construction Summer semester 2008 15

LR(k) Grammars

Goal: resolve remaining nondeterminism of NBA(G) by supporting

lookahead of k£ € N symbols on the input

= LR(k): reading of input from left to right with k-lookahead,
computing a rightmost analysis

Definition 9.8 (LR (k) grammar)

Let G = (N,X, P,S) € CFGyx be start separated and k € N. Then G has the
LR(k) property (notation: G € LR(k)) if for all rightmost derivations of the
form

g =% cdAw =, afw
=* A =, afv

such that firsty (w) = firstg (v), it follows that o/ = a, A’ = A, and v’ = v.

Remarks:
o If G € LR(k), then the reduction of afw to aAw is already determined
by af firsty (w).

® Therefore NBA(G) in configuration (w, a8, z) can decide whether to
shift or to reduce and, in the second case, how to reduce.

m Compiler Construction Summer semester 2008 15

© LR(0) Grammars

Rm Compiler Construction Summer semester 2

LR(0) Grammars

The case k = 0 is relevant (in contrast to LL(0)): here the decision is
just based on the contents of the pushdown, without any lookahead.

Rm Compiler Construction Summer semester 2008 17

LR(0) Grammars

The case k = 0 is relevant (in contrast to LL(0)): here the decision is
just based on the contents of the pushdown, without any lookahead.

Corollary 9.9 (LR(0) grammar)

G € CFGyx, has the LR(0) property if for all rightmost derivations of
the form

g =5 adAw =, afw
=* /A =, afv

it follows that o/ = a, A’ = A, and w' = v.

m Compiler Construction Summer semester 2008 17

LR(0) Grammars

The case k = 0 is relevant (in contrast to LL(0)): here the decision is
just based on the contents of the pushdown, without any lookahead.

Corollary 9.9 (LR(0) grammar)

G € CFGyx, has the LR(0) property if for all rightmost derivations of
the form
S{:>: cdAw =, afw
= d/Aw =, abv

it follows that o/ = a, A’ = A, and w' = v.

Goal: derive a finite information from the pushdown which suffices to
resolve the nondeterminism (similar to abstraction of right context in
LL parsing by fo-sets)

m Compiler Construction Summer semester 2008 17

LR(0) Items and Sets

Definition 9.10 (LR(0) items and sets)

Let G = (N, X, P,S) € CFGy, be start separated by S — S and
S' =% aAw =, af1fow (i.e., A — (152 € P).
o [A— (-] is called an LR(0) item for af;.

m Compiler Construction Summer semester 2008 18

LR(0) Items and Sets

Definition 9.10 (LR(0) items and sets)
Let G = (N, X, P,S) € CFGy, be start separated by S — S and
S' =% aAw =, af1fow (i.e., A — (152 € P).

o [A— (-] is called an LR(0) item for af;.

o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of +.

m Compiler Construction Summer semester 2008 18

LR(0) Items and Sets

Definition 9.10 (LR(0) items and sets)

Let G = (N, X, P,S) € CFGy, be start separated by S — S and
S' =% aAw =, af1fow (i.e., A — (152 € P).
o [A— (-] is called an LR(0) item for af;.
o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of +.
o LR(0)(G) :={LR(0)() | v € X}.

m Compiler Construction Summer semester 2008 18

LR(0) Items and Sets

Definition 9.10 (LR(0) items and sets)

Let G = (N, X, P,S) € CFGsx, be start separated by S’ — S and
S' =% aAw =, af1fow (i.e., A — (152 € P).
o [A— (-] is called an LR(0) item for af;.
o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of .
o LR(0)(G) :={LR(0)(y) | v € X"}.

Corollary 9.11

Q For every v € X*, LR(0)(v) is finite.

m Compiler Construction Summer semester 2008 18

LR(0) Items and Sets

Definition 9.10 (LR(0) items and sets)

Let G = (N, X, P,S) € CFGsx, be start separated by S’ — S and
S' =% aAw =, af1fow (i.e., A — (152 € P).
o [A— (-] is called an LR(0) item for af;.
o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of .
o LR(0)(G) :={LR(0)(y) | v € X"}.

Corollary 9.11

Q For every v € X*, LR(0)(v) is finite.
@ LR(0)(G) is finite.

m Compiler Construction Summer semester 2008 18

LR(0) Items and Sets

Definition 9.10 (LR(0) items and sets)

Let G = (N, X, P,S) € CFGsx, be start separated by S’ — S and
S' =% aAw =, af1fow (i.e., A — (152 € P).
o [A— (-] is called an LR(0) item for af;.
o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of .
o LR(0)(G) :={LR(0)(y) | v € X"}.

Corollary 9.11

Q For every v € X*, LR(0)(v) is finite.

@ LR(0)(G) is finite.

Q The item [A — (] € LR(0)(~y) indicates the possible reduction
(w,afB,2) F (w,ad, zi) where (i) = A — (8 and v = af.

m Compiler Construction Summer semester 2008

18

LR(0) Items and Sets

Definition 9.10 (LR(0) items and sets)

Let G = (N, X, P,S) € CFGsx, be start separated by S’ — S and
S' =% aAw =, af1fow (i.e., A — (152 € P).
o [A— (-] is called an LR(0) item for af;.
o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of .
o LR(0)(G) :={LR(0)(y) | v € X"}.

Corollary 9.11

Q For every v € X*, LR(0)(v) is finite.

@ LR(0)(G) is finite.

Q The item [A — (] € LR(0)(~y) indicates the possible reduction
(w,afB,2) F (w,ad, zi) where (i) = A — (8 and v = af.

Q The item [A — (1 - Y [B2] € LR(0)(v) indicates a possible shift step
(with incomplete handle ;).

m Compiler Construction Summer semester 2008

18

LR(0) Conflicts

Definition 9.12 (LR(0) conflicts)

Let G = (N,%, P,5) € CFGy, and I € LR(0)(G).

@ [has a shift/reduce conflict if there exist A — ajaae, B — 3 € P
such that

[A — a1 -aas],[B— B] €.

m Compiler Construction Summer semester 2008 19

LR(0) Conflicts

Definition 9.12 (LR(0) conflicts)

Let G = (N,%, P,5) € CFGy, and I € LR(0)(G).

@ [has a shift/reduce conflict if there exist A — ajaae, B — 3 € P
such that

[A — a1 -aas],[B— B] €.

@ [has a reduce/reduce conflict if there exist A > a,B — 3 € P
with A # B or a # (3 such that

[A - a],[B— 3] €l

m Compiler Construction Summer semester 2008 19

LR(0) Conflicts

Definition 9.12 (LR(0) conflicts)
Let G = (N,X, P,S) € CFGx, and I € LR(0)(G).

@ [has a shift/reduce conflict if there exist A — ajaae, B — 3 € P
such that
[A — a1 -aas],[B— B] €.

@ [has a reduce/reduce conflict if there exist A > a,B — 3 € P
with A # B or a # (3 such that

[A - a],[B— 3] €l

G € LR(0) iff no I € LR(0)(G) contains conflicting items.

m Compiler Construction Summer semester 2008 19

Computing LR(0) Sets I

Theorem 9.14 (Computing LR(0) sets)

Let G = (N, X, P,S) € CFGy, be start separated by S" — S and
reduced.

Q LR(0)(e) is the least set such that
o [§"— -S| € LR(0)(e) and
o if [A— -By] € LR(0)(¢) and B — (3 € P,
then [B — -] € LR(0)(e).

m Compiler Construction Summer semester 2008

Computing LR(0) Sets I

Theorem 9.14 (Computing LR(0) sets)

Let G = (N, X, P,S) € CFGy, be start separated by S" — S and
reduced.

Q LR(0)(e) is the least set such that
o [§"— -S| € LR(0)(e) and
o if [A— -By] € LR(0)(¢) and B — (3 € P,
then [B — -] € LR(0)(e).
Q@ LR(0)(aY) (x € X*,Y € X) is the least set such that
o if [A = m - Y7 € LR(0)(a),
then [A — 7Y - y2] € LR(0)(aY) and
o if [A — v - By € LR(0)(aY) and B — € P,
then [B — -f] € LR(0)(aY).

m Compiler Construction Summer semester 2008

Computing LR(0) Sets II

Example 9.15

G: 8 —8
S —>B|C
B —aB|b
C —aClec

Compiler Construction Summer semester 2008 21

Computing LR(0) Sets II

Example 9.15

G: 8 —8
S —>B|C
B —aB|b
C —aClec

Iy := LR(0)(e) : [S" — -5]

[S” — -S] € LR(0)(¢)

Compiler Construction Summer semester 2008 21

Computing LR(0) Sets II

Example 9.15

G: S-S
S —-B|C [A— -By] € LR(0)(¢),B — B € P
B —aB|b = [B — 8] € LR(0)(¢)
C —aClec

Ip := LR(0)(e) : [S" — -9] [S — -B]

Compiler Construction Summer semester 2008 21

Computing LR(0) Sets II

Example 9.15

G: S-S
S —-B|C [A— -By] € LR(0)(¢),B — B € P
B —aB|b = [B — 8] € LR(0)(¢)
C —aClec

Ip := LR(0)(e) : [S" — -9] [S — -B] [S — (]

Compiler Construction Summer semester 2008 21

Computing LR(0) Sets II

Example 9.15

G: 8-S
S —-B|C [A— -By] € LR(0)(¢),B — B € P
B —aB|b = [B — 8] € LR(0)(¢)
C —aClec
Ip := LR(0)(e) : {S' — ?’] [S — -B] [S—-C] [B— -aB]

Compiler Construction Summer semester 2008 21

Computing LR(0) Sets II

Example 9.15

G: §—>58
S - B|C [A— -By] € LR(0)(e),B — B € P
B —aB|b = [B — 8] € LR(0)(¢)
C —aClec
Ip := LR(0)(e) : [S" — -9] [S — -B] [S—-C|] [B— -aB]
[B — -b] [C —-aC] [C—]

Summer semester 2008

Compiler Construction

21

Computing LR(0) Sets II

Example 9.15

G: §—>58
S —-B|C [A— 1 - Y] € LR(0)()
B —aB|b — [A— Y 2] € LR(0)(aY)
C —aClec

Ip := LR(0)(e) : [S' — 9] [S — -B] [S—-C] [B— -aB]
[B — -b] [C —-aC] [C—
I := LR(0)(S): [S'— 5]

Compiler Construction Summer semester 2008 21

Computing LR(0) Sets II

Example 9.15

G: §—>58
S —-B|C [A— 1 - Y] € LR(0)()
B —aB|b — [A— Y 2] € LR(0)(aY)
C —aClec

Ip := LR(0)(e) : [S" — -9] [S — -B] [S—-C] [B— -aB]
[B — -b] [C—-aC] [C—]

I ;== LR(0)(S): |

[

I, := LR(0)(B) :

Compiler Construction Summer semester 2008 21

Computing LR(0) Sets II

Example 9.15

G: §—>58
S —-B|C [A— 1 - Y] € LR(0)()
B —aB|b — [A— Y 2] € LR(0)(aY)
C —aClec

S’ — 9] [S — -B] [S—-C|] [B— -aB]
B — -b] [C—-aC] [C—]

I := LR(0)(S) : S — S
I := LR(0)(B): [S — B
I := LR(0)(C) : [S — O]

Compiler Construction Summer semester 2008 21

Computing LR(0) Sets II

Example 9.15

G: 8 —8

S —-B|C [A— 1 - Y] € LR(0)()
B —aB|b — [A— Y 2] € LR(0)(aY)
C —aClec
Iy := LR(0)(e) [S" — -9] [S — -B] [S—-C] [B— -aB]
(B — -b] [C—-aC] [C—
I := LR(0)(S): [9— 5]
I := LR(0)(B): [S — B
I = LR(0)(C): [§—C]
I, :=LR(0)(a): [B—a-B] [C—a-C|

Compiler Construction Summer semester 2008

Computing LR(0) Sets II

Example 9.15

G: 8 —8

S —-B|C [A— - By] € LR(0)(aY),B— 3 € P
B —aB|b — [B — -f] € LR(0)(aY")
C —aClec
Io:=LR(O)(e): [$"—=-S] [§—-B] [S—-C] [B—aB
[B — -b] [C—-aC] [C—]
I ;== LR(0O)(S): [S"— 5]
I := LR(0)(B) : [S — B
I = LR(0)(C): [§— C]
I, :=LR(0)(a): [B—a-B] [C—a-C| [B—-aB| [B— b

Compiler Construction Summer semester 2008 21

Computing LR(0) Sets II

Example 9.15

G: 8-S
S =-B|C [A— - By] € LR(0)(aY),B— 3 € P
B —aB|b — [B — -f] € LR(0)(aY")
C —aClec
Iy := LR(0)(e) : S’ — 9] [S — -B] [S—-C] [B— -aB]
B — -b] [C —-aC] [C—
I ;== LR(0O)(S): [S"— 5]
I := LR(0)(B) : [S — B
I3 := LR(0)(C): [§—C]
I, := LR(0)(a) : B—a-B] [C—a-C| [B—-aB] [B— b
C —-aC] [C—

Compiler Construction

Summer semester 2008

21

Computing LR(0) Sets II

Example 9.15

G: S-S

S —-B|C

B —aB|b

C —aClec
Io == LR(0)(e) :
I := LR(0)(S) :
I := LR(0)(B) :
I3 := LR(0)(C) :
I, := LR(0)(a) :
I5 := LR(0)(D) :

[A — 1 - Y] € LR(0)(c)
= [A— mY -y] € LR(0)(aY)

S’ — -9] [S — -B] [S—-C] [B— -aB]
B — -b] [C —-aC] [C—

S — S

S — B

S — C"]

B—a-B] [C—a-C| [B—-aB] [B— b
C—-aC] [C—]

B — b

Summer semester 2008

Compiler Construction

Computing LR(0) Sets II

Example 9.15

G: §—>58
S —-B|C [A— 1 - Y] € LR(0)()
B —aB|b — [A— Y 2] € LR(0)(aY)
C —aClec
Iy := LR(0)(¢) S’ — 9] [S — -B] [S—-C] [B— -aB]
B — -b] [C—-aC] [C—]
I ;== LR(0)(S): [S"— 5]
I := LR(0)Y(B) : [S — B
I3 := LR(O)(C): [S—C]
I, := LR(0)(a) : B—a-B] [C—a-C| [B—-aB] [B— b
C—-aC] [C—
Is == LR(O)(0) : [B — b]
Is := LR(0)(c) : C — ¢

Compiler Construction

Summer semester 2008

Computing LR(0) Sets II

Example 9.15

G: 8-S
S —-B|C [A— 1 - Y] € LR(0)()
B —aB|b — [A — 1Y -] € LR(0)(aY)
C —aC|c
Iy := LR(0)(e) S’ — 9] [S — -B] [S—-C] [B— -aB]
B — -b] [C —-aC] [C—
I := LR(0)(S): [§'— 8]
I := LR(0)(B) : [S — B
Is .= LR(0)(C): [S—C]
I, := LR(0)(a) : B—a-Bl [C—a-C| [B—-aB] [B— b
C—-aC] [C—
I := LR(O)(b) : [B —b]
Is := LR(0)(c) : C — ¢
I :== LR(0)(aB) : [B — aB']

Compiler Construction

Computing LR(0) Sets II

Example 9.15

G: 8-S
S —-B|C [A— 1 - Y] € LR(0)()
B —aB|b — [A — 1Y -] € LR(0)(aY)
C —aC|c
Iy := LR(0)(e) : S’ — 9] [S — -B] [S—-C] [B— -aB]
B — -b] [C —-aC] [C—
I := LR(0)(S): [§'— 8]
I := LR(0)(B) : [S — B
Is:= LR(0)(C): [S—C]
I, := LR(0)(a) : B—a-B] [C—a-C| [B—-aB] [B— b
C—-aC] [C—
Is == LR(O)(0) : [B — b]
Is := LR(0)(c) : C — ¢
I; .= LR(0)(aB) : [B — aB]
Is := LR(0)(aC) : [C — aC']

Compiler Construction

Computing LR(0) Sets II

Example 9.15

G: 8-S
S —-B|C
B —aB|b
C —aC|c
Iy := LR(0)(e) : S’ — 9] [S — -B] [S—-C] [B— -aB]
B — -b] [C—-aC] [C—
I := LR(0)(S): [§'— 8]
I := LR(0)(B) : [S — B
Is:=LR(0)(C): [S—C]
I, := LR(0)(a) : B—a-B] [C—a-C| [B—-aB] [B— b
C—-aC] [C—
I := LR(O)(b) : [B — b
Is := LR(0)(c) : C — ¢
I; .= LR(0)(aB) : [B — aB]
Is := LR(0)(aC) : [C — aC"]
(LR(0)(aa) = LR(0)(a) = Is, LR(0)(ab) = LR(0)(b) = I,
LR(0)(ac) = LR(0)(c) = Ig, Iy := LR(0)(y) = @ in all remaining cases)

m' Compiler Construction

Computing LR(0) Sets II

Example 9.15

G: 8-S
S —-B|C
B —aB|b
C —aC|c
Iy := LR(0)(e) : S’ — 9] [S — -B] [S—-C] [B— -aB]
B — -b] [C—-aC] [C—
I ;== LR(0)(S): [S"— 5]
I = LR(0)(B) : [S — B
Is:=LR(0)(C): [S—C]
I, := LR(0)(a) : B—a-B] [C—a-C| [B—-aB] [B— b
C—-aC] [C—
I := LR(O)(b) : [B — b
Is := LR(0)(c) : C — ¢
I; .= LR(0)(aB) : [B — aB]
Is := LR(0)(aC) : [C — aC"]
(LR(0)(aa) = LR(0)(a) = I, LR(0)(ab) = LR(0)(b) = Is,
LR(0)(ac) = LR(0)(c) = Ig, Iy := LR(0)(y) = 0 in all remaining cases)
no conflicts = G € LR(0)

m' Compiler Construction

	Repetition: Top-Down Parsing
	Bottom-Up Parsing
	Nondeterministic Bottom-Up Parsing
	LR(k) Grammars
	LR(0) Grammars

