Compiler Construction

Lecture 9: Syntactic Analysis V (LR(k) Grammars)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Q Repetition: Top-Down Parsing

Rm Compiler Construction Summer semester 2

oD
=

Top-Down Pars

—

D~
e e
A <F ©

Leftmost analysis of (a) *b:

arithmetic expressions:
23452467

Example
Grammar for

Summer semester 2008

o
3
£
o
2
=
b
123
o
2
O
g
&
g
2
O

© Bottom-Up Parsing

Rm Compiler Construction Summer semester 2

Bottom-Up Parsing 1

K
Grammar for T
arithmetic expressions: P

Gup: E— E+T|T (1,2) T LA
T —->T+F|F (3,4) Ja P
F— (B)|alb (56,7) o
,"E“‘ i i
Reversed rightmost analysis |
of (a)x*b: £ i :
64254732 T E i
"I F l“ i i
SE RN

Summer semester 2008

Compiler Construction

Bottom-Up Parsing 11

Approach:

@ Given G € CFGy, construct a nondeterministic bottom-up parsing
automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: X

pushdown alphabet: X

output alphabet: [p] (where p := |P|)

state set: omitted

transitions:

¢ © ¢ ¢ ¢

shift: shifting input symbols onto the pushdown
reduce: replacing the right-hand side of a production by its
left-hand side (= inverse expansion steps)
© Remove nondeterminism by allowing lookahead on the input:
G € LR(k) iff L(G) recognizable by deterministic bottom-up
parsing automaton with lookahead of k symbols

m' Compiler Construction Summer semester 2008 6

© Nondeterministic Bottom-Up Parsing

Rm Compiler Construction Summer semester 2

Nondeterministic Bottom-Up Automaton I

Definition 9.2 (Nondeterministic bottom-up parsing automaton)

Let G = (N,X, P,S) € CFGy. The nondeterministic bottom-up
parsing automaton of G, NBA(G), is defined by the following
components.

o Input alphabet: ¥

Pushdown alphabet: X

Output alphabet: [p]

Configurations: ¥* x X* x [p]* (top of pushdown to the right)
Transitions for w € ¥*, a € X*, and z € [p]*:

shifting steps: (aw,a, 2) - (w, aa,z) if a € X

reduction steps: (w,af,2) F (w,ad,zi) f (i) = A —

@ Initial configuration for w € ¥*: (w,¢,¢)

e & ¢ ¢

@ Final configurations: {e} x {S} x [p]*

m Compiler Construction Summer semester 2008

Nondeterministic Bottom-Up Automaton 11

Example 9.3

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 5.11): F(a)xb, (e)
Gap: E — E+T|T (1,2) i()*b, (a €)
F— (E)]|alb (56,7) F()b, (T , 64)

T E(D)*b, (E , 642)

F(*b, (£), 642)

F(*b, ' 6425)

F(*b, T 64254)

Fo(b, T* 64254)

Fo(g, Txb, 64254)

Fo(g, TxF, 642547)

F(e, T" 6425473)

F(e, B, 64254732)

Compiler Construction Summer semester 2008 9

Correctness of NBA(G)

Theorem 9.4 (Correctness of NBA(G))

Let G = (N, X, P,S) € CFGyx, and NBA(G) as before. Then, for every
w € X* and z € [p*,

(w,e,¢e) F* (¢,8,2) iff Z is a rightmost analysis of w

similar to the top-down case (Theorem 5.15)

m Compiler Construction Summer semester 2008 10

Nondeterminisn in NTA(G)

Remark: NTA(G) is generally nondeterministic
o Shift or reduce? Example:

(bw, aa, z) {E;ﬁ;?ﬁi'z) ifr(i)=A—a

o If reduce: which “handle” 37 Example:

(w, aab, z) - {Ez:gféfzz)j) if 7(i) = A —aband 7(j) = B — b

o If reduce B: which left-hand side A7 Example:
(w,aa, z) - {Eg:gg’éz}) ifr(i)=A—aand n(j) =B —a
® When to terminate parsing? Example:
(€,8,2)F (e,A,zi) if (i) = A — S
——

final

Rm Compiler Construction Summer semester 2008 11

Resolving Termination Nondeterminism I

General assumption in the following: every grammar is start
separated

Definition 9.5 (Start separation)

A grammar G = (N, X, P,S) € CFGy is called start separated if S only
occurs in productions of the form S — A where A # S.

Remarks:
@ Start separation always possible by adding S’ — S with new start
symbol S’

@ From now on consider only reduced grammars of this form
(m(0) =5"—5)

m' Compiler Construction Summer semester 2008 12

Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to

terminate parsing):

If G € CFGy, is start separated, then no successor of a final
configuration (g,5’,z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Corollary 9.7
e To (g,5',2), only reductions by e-productions can be applied:
(6,8 ,2)F (e,8'A,zi) ifm(i)=A—e¢
o Thereafter, only reductions by productions of the form
Ay — Ay... A, (n >0) can be applied

o FEvery resulting configuration is of the (non-final) form
(,8'By...Bg,z) wherek>1

m Compiler Construction Summer semester 2008

Q LR(k) Grammars

Rm Compiler Construction Summer semester 2

LR(k) Grammars

Goal: resolve remaining nondeterminism of NBA(G) by supporting

lookahead of k£ € N symbols on the input

= LR(k): reading of input from left to right with k-lookahead,
computing a rightmost analysis

Definition 9.8 (LR (k) grammar)

Let G = (N,X, P,S) € CFGyx be start separated and k € N. Then G has the
LR(k) property (notation: G € LR(k)) if for all rightmost derivations of the
form

g =% cdAw =, afw
=* A =, afv

such that firsty (w) = firstg (v), it follows that o/ = a, A’ = A, and v’ = v.

Remarks:
o If G € LR(k), then the reduction of afw to aAw is already determined
by af firsty (w).

® Therefore NBA(G) in configuration (w, a8, z) can decide whether to
shift or to reduce and, in the second case, how to reduce.

m Compiler Construction Summer semester 2008 15

© LR(0) Grammars

Rm Compiler Construction Summer semester 2

LR(0) Grammars

The case k = 0 is relevant (in contrast to LL(0)): here the decision is
just based on the contents of the pushdown, without any lookahead.

Corollary 9.9 (LR(0) grammar)

G € CFGyx, has the LR(0) property if for all rightmost derivations of
the form
S{:>: cdAw =, afw
= d/Aw =, abv

it follows that o/ = a, A’ = A, and w' = v.

Goal: derive a finite information from the pushdown which suffices to
resolve the nondeterminism (similar to abstraction of right context in
LL parsing by fo-sets)

m Compiler Construction Summer semester 2008 17

LR(0) Items and Sets

Definition 9.10 (LR(0) items and sets)

Let G = (N, X, P,S) € CFGsx, be start separated by S’ — S and
S' =% aAw =, af1fow (i.e., A — (152 € P).
o [A— (-] is called an LR(0) item for af;.
o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of .
o LR(0)(G) :={LR(0)(y) | v € X"}.

Corollary 9.11

Q For every v € X*, LR(0)(v) is finite.

@ LR(0)(G) is finite.

Q The item [A — (] € LR(0)(~y) indicates the possible reduction
(w,afB,2) F (w,ad, zi) where (i) = A — (8 and v = af.

Q The item [A — (1 - Y [B2] € LR(0)(v) indicates a possible shift step
(with incomplete handle ;).

m Compiler Construction Summer semester 2008

18

LR(0) Conflicts

Definition 9.12 (LR(0) conflicts)
Let G = (N,X, P,S) € CFGx, and I € LR(0)(G).

@ [has a shift/reduce conflict if there exist A — ajaae, B — 3 € P
such that
[A — a1 -aas],[B— B] €.

@ [has a reduce/reduce conflict if there exist A > a,B — 3 € P
with A # B or a # (3 such that

[A - a],[B— 3] €l

G € LR(0) iff no I € LR(0)(G) contains conflicting items.

m Compiler Construction Summer semester 2008 19

Computing LR(0) Sets I

Theorem 9.14 (Computing LR(0) sets)

Let G = (N, X, P,S) € CFGy, be start separated by S" — S and
reduced.

Q LR(0)(e) is the least set such that
o [§"— -S| € LR(0)(e) and
o if [A— -By] € LR(0)(¢) and B — (3 € P,
then [B — -] € LR(0)(e).
Q@ LR(0)(aY) (x € X*,Y € X) is the least set such that
o if [A = m - Y7 € LR(0)(a),
then [A — 7Y - y2] € LR(0)(aY) and
o if [A — v - By € LR(0)(aY) and B — € P,
then [B — -f] € LR(0)(aY).

m Compiler Construction Summer semester 2008

Computing LR(0) Sets II

Example 9.15

G: §—>58
5205w
C —aClec
A—-B LR B—-peP
LRO)(E) L3 [Bv—]Fd] e(L)}g’())() e
Iy := LR(0)(e) S' — -S| [S — -B]j
B — -b) [C — -aC]
I ;== LR(0)(S): [S'— 5]
I, := LR(0)(B): [S — B/
I3 := LR(0)(C): [S— C
I, := LR(0)(a) : B—a-B] [C—a-C]
C—-aC] [C—]
Is := LR(0)(D) : B —b]
I := LR(0)(c) : C — ¢
I; .= LR(0)(aB) : [B — aB]
I := LR(0)(aC) : [C — aC"]
(LR(0)(aa) = LR(0)(a) = I, LR(Net) =
LR(0)ac) = LR(0)(c) = [, Ja

[A = 71 - Y] € LR(0)(x)

= [A > nY - 7y2] € LR(0)(aY

[S—-C] [B— -aB]

o=

[B— -aB] [B — ‘b
L0 I

R

	Repetition: Top-Down Parsing
	Bottom-Up Parsing
	Nondeterministic Bottom-Up Parsing
	LR(k) Grammars
	LR(0) Grammars

