
Compiler Construction

Lecture 9: Syntactic Analysis V (LR(k) Grammars)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Outline

1 Repetition: Top-Down Parsing

2 Bottom-Up Parsing

3 Nondeterministic Bottom-Up Parsing

4 LR(k) Grammars

5 LR(0) Grammars

Compiler Construction Summer semester 2008 2

Top-Down Parsing

Example

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:
2 3 4 5 2 4 6 7

E

(a) * b

T

T F

F

E

T

F

Compiler Construction Summer semester 2008 3

Outline

1 Repetition: Top-Down Parsing

2 Bottom-Up Parsing

3 Nondeterministic Bottom-Up Parsing

4 LR(k) Grammars

5 LR(0) Grammars

Compiler Construction Summer semester 2008 4

Bottom-Up Parsing I

Example 9.1

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:
6 4 2 5 4 7 3 2

(a) * b

F

T

E

F

T F

T

E

Compiler Construction Summer semester 2008 5

Bottom-Up Parsing II

Approach:
1 Given G ∈ CFGΣ, construct a nondeterministic bottom-up parsing

automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: Σ
pushdown alphabet: X

output alphabet: [p] (where p := |P |)
state set: omitted
transitions:

shift: shifting input symbols onto the pushdown
reduce: replacing the right-hand side of a production by its

left-hand side (= inverse expansion steps)

2 Remove nondeterminism by allowing lookahead on the input:
G ∈ LR(k) iff L(G) recognizable by deterministic bottom-up
parsing automaton with lookahead of k symbols

Compiler Construction Summer semester 2008 6

Outline

1 Repetition: Top-Down Parsing

2 Bottom-Up Parsing

3 Nondeterministic Bottom-Up Parsing

4 LR(k) Grammars

5 LR(0) Grammars

Compiler Construction Summer semester 2008 7

Nondeterministic Bottom-Up Automaton I

Definition 9.2 (Nondeterministic bottom-up parsing automaton)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ. The nondeterministic bottom-up
parsing automaton of G, NBA(G), is defined by the following
components.

Input alphabet: Σ

Pushdown alphabet: X

Output alphabet: [p]

Configurations: Σ∗ ×X∗ × [p]∗ (top of pushdown to the right)

Transitions for w ∈ Σ∗, α ∈ X∗, and z ∈ [p]∗:

shifting steps: (aw,α, z) ⊢ (w,αa, z) if a ∈ Σ
reduction steps: (w,αβ, z) ⊢ (w,αA, zi) if π(i) = A→ β

Initial configuration for w ∈ Σ∗: (w, ε, ε)

Final configurations: {ε} × {S} × [p]∗

Compiler Construction Summer semester 2008 8

Nondeterministic Bottom-Up Automaton II

Example 9.3

Grammar for
arithmetic expressions
(cf. Example 5.11):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε)
⊢ (a)*b, (, ε)
⊢ ()*b, (a , ε)
⊢ ()*b, (F , 6)
⊢ ()*b, (T , 64)
⊢ ()*b, (E , 642)
⊢ (*b, (E) , 642)
⊢ (*b, F , 6425)
⊢ (*b, T , 64254)
⊢ (b, T* , 64254)
⊢ (ε, T*b , 64254)
⊢ (ε, T*F, 642547)
⊢ (ε, T , 6425473)
⊢ (ε, E , 64254732)

Compiler Construction Summer semester 2008 9

Correctness of NBA(G)

Theorem 9.4 (Correctness of NBA(G))

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ and NBA(G) as before. Then, for every
w ∈ Σ∗ and z ∈ [p]∗,

(w, ε, ε) ⊢∗ (ε, S, z) iff ←−z is a rightmost analysis of w

Proof.

similar to the top-down case (Theorem 5.15)

Compiler Construction Summer semester 2008 10

Nondeterminisn in NTA(G)

Remark: NTA(G) is generally nondeterministic

Shift or reduce? Example:

(bw, αa, z) ⊢

{
(w,αab, z)
(bw, αA, zi)

if π(i) = A→ a

If reduce: which “handle” β? Example:

(w,αab, z) ⊢

{
(w,αA, zi)
(w,αaB, zj)

if π(i) = A→ ab and π(j) = B → b

If reduce β: which left-hand side A? Example:

(w,αa, z) ⊢

{
(w,αA, zi)
(w,αB, zj)

if π(i) = A→ a and π(j) = B → a

When to terminate parsing? Example:

(ε, S, z)
︸ ︷︷ ︸

final

⊢ (ε,A, zi) if π(i) = A→ S

Compiler Construction Summer semester 2008 11

Resolving Termination Nondeterminism I

General assumption in the following: every grammar is start
separated

Definition 9.5 (Start separation)

A grammar G = 〈N,Σ, P, S〉 ∈ CFGΣ is called start separated if S only
occurs in productions of the form S → A where A 6= S.

Remarks:

Start separation always possible by adding S′ → S with new start
symbol S′

From now on consider only reduced grammars of this form
(π(0) = S′ → S)

Compiler Construction Summer semester 2008 12

Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to
terminate parsing):

Corollary 9.6

If G ∈ CFGΣ is start separated, then no successor of a final
configuration (ε, S′, z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Corollary 9.7

To (ε, S′, z), only reductions by ε-productions can be applied:
(ε, S′, z) ⊢ (ε, S′A, zi) if π(i) = A→ ε

Thereafter, only reductions by productions of the form
A0 → A1 . . . An (n ≥ 0) can be applied

Every resulting configuration is of the (non-final) form
(ε, S′B1 . . . Bk, z) where k ≥ 1

Compiler Construction Summer semester 2008 13

Outline

1 Repetition: Top-Down Parsing

2 Bottom-Up Parsing

3 Nondeterministic Bottom-Up Parsing

4 LR(k) Grammars

5 LR(0) Grammars

Compiler Construction Summer semester 2008 14

LR(k) Grammars

Goal: resolve remaining nondeterminism of NBA(G) by supporting
lookahead of k ∈ N symbols on the input
=⇒ LR(k): reading of input from left to right with k-lookahead,

computing a rightmost analysis

Definition 9.8 (LR(k) grammar)

Let G = 〈N, Σ, P, S〉 ∈ CFGΣ be start separated and k ∈ N. Then G has the
LR(k) property (notation: G ∈ LR(k)) if for all rightmost derivations of the
form

S

{

⇒∗

r αAw ⇒r αβw
⇒∗

r
α′A′w′ ⇒r αβv

such that firstk(w) = firstk(v), it follows that α′ = α, A′ = A, and w′ = v.

Remarks:

If G ∈ LR(k), then the reduction of αβw to αAw is already determined
by αβ firstk(w).

Therefore NBA(G) in configuration (w, αβ, z) can decide whether to
shift or to reduce and, in the second case, how to reduce.

Compiler Construction Summer semester 2008 15

Outline

1 Repetition: Top-Down Parsing

2 Bottom-Up Parsing

3 Nondeterministic Bottom-Up Parsing

4 LR(k) Grammars

5 LR(0) Grammars

Compiler Construction Summer semester 2008 16

LR(0) Grammars

The case k = 0 is relevant (in contrast to LL(0)): here the decision is
just based on the contents of the pushdown, without any lookahead.

Corollary 9.9 (LR(0) grammar)

G ∈ CFGΣ has the LR(0) property if for all rightmost derivations of
the form

S

{
⇒∗

r αAw ⇒r αβw
⇒∗

r α′A′w′ ⇒r αβv

it follows that α′ = α, A′ = A, and w′ = v.

Goal: derive a finite information from the pushdown which suffices to
resolve the nondeterminism (similar to abstraction of right context in
LL parsing by fo-sets)

Compiler Construction Summer semester 2008 17

LR(0) Items and Sets

Definition 9.10 (LR(0) items and sets)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ be start separated by S′ → S and
S′ ⇒∗

r αAw ⇒r αβ1β2w (i.e., A→ β1β2 ∈ P).

[A→ β1 · β2] is called an LR(0) item for αβ1.
Given γ ∈ X∗, LR(0)(γ) denotes the set of all LR(0) items for γ,
called the LR(0) set (or: LR(0) information) of γ.
LR(0)(G) := {LR(0)(γ) | γ ∈ X∗}.

Corollary 9.11

1 For every γ ∈ X∗, LR(0)(γ) is finite.
2 LR(0)(G) is finite.
3 The item [A→ β·] ∈ LR(0)(γ) indicates the possible reduction

(w,αβ, z) ⊢ (w,αA, zi) where π(i) = A→ β and γ = αβ.
4 The item [A→ β1 · Y β2] ∈ LR(0)(γ) indicates a possible shift step

(with incomplete handle β1).

Compiler Construction Summer semester 2008 18

LR(0) Conflicts

Definition 9.12 (LR(0) conflicts)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ and I ∈ LR(0)(G).

I has a shift/reduce conflict if there exist A→ α1aα2, B → β ∈ P

such that
[A→ α1 · aα2], [B → β·] ∈ I.

I has a reduce/reduce conflict if there exist A→ α,B → β ∈ P

with A 6= B or α 6= β such that

[A→ α·], [B → β·] ∈ I.

Lemma 9.13

G ∈ LR(0) iff no I ∈ LR(0)(G) contains conflicting items.

Compiler Construction Summer semester 2008 19

Computing LR(0) Sets I

Theorem 9.14 (Computing LR(0) sets)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ be start separated by S′ → S and
reduced.

1 LR(0)(ε) is the least set such that

[S′ → ·S] ∈ LR(0)(ε) and
if [A→ ·Bγ] ∈ LR(0)(ε) and B → β ∈ P ,
then [B → ·β] ∈ LR(0)(ε).

2 LR(0)(αY) (α ∈ X∗, Y ∈ X) is the least set such that

if [A→ γ1 · Y γ2] ∈ LR(0)(α),
then [A→ γ1Y · γ2] ∈ LR(0)(αY) and
if [A→ γ1 · Bγ2] ∈ LR(0)(αY) and B → β ∈ P ,
then [B → ·β] ∈ LR(0)(αY).

Compiler Construction Summer semester 2008 20

Computing LR(0) Sets II

Example 9.15

G : S′ → S
S → B | C
B → aB | b
C → aC | c

[S′ → ·S] ∈

LR(0)(ε)
[A→ ·Bγ] ∈ LR(0)(ε), B → β ∈ P
=⇒ [B → ·β] ∈ LR(0)(ε)

[A→ γ1 · Y γ2] ∈ LR(0)(α)
=⇒ [A→ γ1Y · γ2] ∈ LR(0)(αY)

I0 := LR(0)(ε) : [S′ → ·S] [S → ·B] [S → ·C] [B → ·aB]
[B → ·b] [C → ·aC] [C → ·c]

I1 := LR(0)(S) : [S′ → S·]
I2 := LR(0)(B) : [S → B·]
I3 := LR(0)(C) : [S → C·]
I4 := LR(0)(a) : [B → a · B] [C → a · C] [B → ·aB] [B → ·b]

[C → ·aC] [C → ·c]
I5 := LR(0)(b) : [B → b·]
I6 := LR(0)(c) : [C → c·]
I7 := LR(0)(aB) : [B → aB·]
I8 := LR(0)(aC) : [C → aC·]

(LR(0)(aa) = LR(0)(a) = I4, LR(0)(ab) = LR(0)(b) = I5,
LR(0)(ac) = LR(0)(c) = I6, I9 := LR(0)(γ) = ∅ in all remaining cases)

no conflicts =⇒ G ∈ LR(0)
Compiler Construction Summer semester 2008 21

	Repetition: Top-Down Parsing
	Bottom-Up Parsing
	Nondeterministic Bottom-Up Parsing
	LR(k) Grammars
	LR(0) Grammars

