
Compiler Construction

Lecture 10: Syntactic Analysis VI (LR(0) Parsing)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Outline

1 Repetition: Bottom-Up Parsing

2 LR(0) Parsing

3 The LR(0) Parsing Automaton

Compiler Construction Winter semester 2009/10 2

Nondeterministic Bottom-Up Automaton

Definition (Nondeterministic bottom-up parsing automaton)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ. The nondeterministic bottom-up
parsing automaton of G, NBA(G), is defined by the following
components.

Input alphabet: Σ

Pushdown alphabet: X

Output alphabet: [p]

Configurations: Σ∗ ×X∗ × [p]∗ (top of pushdown to the right)

Transitions for w ∈ Σ∗, α ∈ X∗, and z ∈ [p]∗:

shifting steps: (aw,α, z) ⊢ (w,αa, z) if a ∈ Σ
reduction steps: (w,αβ, z) ⊢ (w,αA, zi) if π(i) = A→ β

Initial configuration for w ∈ Σ∗: (w, ε, ε)

Final configurations: {ε} × {S} × [p]∗

Compiler Construction Winter semester 2009/10 3

Nondeterminisn in NBA(G)

Remark: NBA(G) is generally nondeterministic

Shift or reduce? Example:

(bw, αa, z) ⊢

{
(w,αab, z)
(bw, αA, zi)

if π(i) = A→ a

If reduce: which “handle” β? Example:

(w,αab, z) ⊢

{
(w,αA, zi)
(w,αaB, zj)

if π(i) = A→ ab and π(j) = B → b

If reduce β: which left-hand side A? Example:

(w,αa, z) ⊢

{
(w,αA, zi)
(w,αB, zj)

if π(i) = A→ a and π(j) = B → a

When to terminate parsing? Example:

(ε, S, z)
︸ ︷︷ ︸

final

⊢ (ε,A, zi) if π(i) = A→ S

Compiler Construction Winter semester 2009/10 4

LR(k) Grammars

Goal: resolve remaining nondeterminism of NBA(G) by supporting
lookahead of k ∈ N symbols on the input
=⇒ LR(k): reading of input from left to right with k-lookahead,

computing a rightmost analysis

Definition (LR(k) grammar)

Let G = 〈N, Σ, P, S〉 ∈ CFGΣ be start separated and k ∈ N. Then G has the
LR(k) property (notation: G ∈ LR(k)) if for all rightmost derivations of the
form

S

{

⇒∗

r αAw ⇒r αβw
⇒∗

r
α′A′w′ ⇒r αβv

such that firstk(w) = firstk(v), it follows that α′ = α, A′ = A, and w′ = v.

Remarks:

If G ∈ LR(k), then the reduction of αβw to αAw is already determined
by αβ firstk(w).

Therefore NBA(G) in configuration (w, αβ, z) can decide whether to
shift or to reduce and, in the second case, how to reduce.

Compiler Construction Winter semester 2009/10 5

LR(0) Items and Sets

Definition (LR(0) items and sets)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ be start separated by S′ → S and
S′ ⇒∗

r αAw ⇒r αβ1β2w (i.e., A→ β1β2 ∈ P).

[A→ β1 · β2] is called an LR(0) item for αβ1.
Given γ ∈ X∗, LR(0)(γ) denotes the set of all LR(0) items for γ,
called the LR(0) set (or: LR(0) information) of γ.
LR(0)(G) := {LR(0)(γ) | γ ∈ X∗}.

Definition (LR(0) conflicts)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ and I ∈ LR(0)(G).

I has a shift/reduce conflict if there exist A→ α1aα2, B → β ∈ P

such that
[A→ α1 · aα2], [B → β·] ∈ I.

I has a reduce/reduce conflict if there exist A→ α,B → β ∈ P

with A 6= B or α 6= β such that
[A→ α·], [B → β·] ∈ I.

Compiler Construction Winter semester 2009/10 6

Computing LR(0) Sets I

Theorem (Computing LR(0) sets)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ be start separated by S′ → S and
reduced.

1 LR(0)(ε) is the least set such that

[S′ → ·S] ∈ LR(0)(ε) and
if [A→ ·Bγ] ∈ LR(0)(ε) and B → β ∈ P ,
then [B → ·β] ∈ LR(0)(ε).

2 LR(0)(αY) (α ∈ X∗, Y ∈ X) is the least set such that

if [A→ γ1 · Y γ2] ∈ LR(0)(α),
then [A→ γ1Y · γ2] ∈ LR(0)(αY) and
if [A→ γ1 · Bγ2] ∈ LR(0)(αY) and B → β ∈ P ,
then [B → ·β] ∈ LR(0)(αY).

Compiler Construction Winter semester 2009/10 7

Computing LR(0) Sets II

Example

G : S′ → S
S → B | C
B → aB | b
C → aC | c

I0 := LR(0)(ε) : [S′ → ·S]
[S → ·B] [S → ·C]
[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

I1 := LR(0)(S) : [S′ → S·]
I2 := LR(0)(B) : [S → B·]
I3 := LR(0)(C) : [S → C·]
I4 := LR(0)(a) : [B → a ·B] [C → a · C]

[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

I5 := LR(0)(b) : [B → b·]
I6 := LR(0)(c) : [C → c·]
I7 := LR(0)(aB) : [B → aB·]
I8 := LR(0)(aC) : [C → aC·]
I9 := ∅

no conflicts =⇒ G ∈ LR(0)

Compiler Construction Winter semester 2009/10 8

Outline

1 Repetition: Bottom-Up Parsing

2 LR(0) Parsing

3 The LR(0) Parsing Automaton

Compiler Construction Winter semester 2009/10 9

The goto Function I

Observation: if G ∈ LR(0), then LR(0)(γ) yields deterministic
shift/reduce decision for NBA(G) in a configuration with pushdown γ

=⇒ new pushdown alphabet: LR(0)(G) in place of X

Moreover LR(0)(γY) is determined by LR(0)(γ) and Y but
independent from γ in the following sense:

LR(0)(γ) = LR(0)(γ′) =⇒ LR(0)(γY) = LR(0)(γ′Y)

Definition 10.1 (LR(0) goto function)

The function goto : LR(0)(G) ×X → LR(0)(G) is determined by

goto(I, Y) = I ′ iff there exists γ ∈ X∗ such that
I = LR(0)(γ) and I ′ = LR(0)(γY).

Compiler Construction Winter semester 2009/10 10

The goto Function II

Example 10.2 (cf. Example 9.14)

I0 := LR(0)(ε) : [S′ → ·S]
[S → ·B] [S → ·C]
[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

I1 := LR(0)(S) : [S′ → S·]
I2 := LR(0)(B) : [S → B·]
I3 := LR(0)(C) : [S → C·]
I4 := LR(0)(a) : [B → a · B] [C → a · C]

[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

I5 := LR(0)(b) : [B → b·]
I6 := LR(0)(c) : [C → c·]
I7 := LR(0)(aB) : [B → aB·]
I8 := LR(0)(aC) : [C → aC·]
I9 := ∅

goto S B C a b c
I0 I1 I2 I3 I4 I5 I6

I1

I2

I3

I4 I7 I8 I4 I5 I6

I5

I6

I7

I8

I9

(empty = I9)

Compiler Construction Winter semester 2009/10 11

Computing LR(0)(G) and goto I

Goal: obtaining LR(0)(G) and goto by powerset construction

Given G = 〈N,Σ, P, S〉 ∈ CFGΣ (start separated by S′ → S and
reduced), the nondeterministic finite automaton
A(G) := 〈Q,X, δ, q0, F 〉 ∈ NFAX is defined as follows.

State set Q := {[A→ β1 · β2] | A→ β1β2 ∈ P} (LR(0) items of G)
Input alphabet X = N ∪ Σ
Transition function δ : Q×Xε → 2Q where

δ([A→ β1 · Y β2], Y) ∋ [A→ β1Y · β2]
δ([A→ β1 · Bβ2], ε) ∋ [B → ·β] if B → β ∈ P

Initial state q0 := [S′ → ·S] ∈ Q

Final states F := ∅ (irrelevant)

Example 10.3 (cf. Example 10.2)

A(G) for G : S′ → S
S → B | C
B → aB | b
C → aC | c

(on the board)

Compiler Construction Winter semester 2009/10 12

Computing LR(0)(G) and goto II

Transformation of A(G) into Â(G) := 〈Q̂,X, δ̂, q̂0, ∅〉 ∈ DFAX by
powerset construction:

Q̂ := 2Q (only reachable subsets)

q̂0 := ε([S′ → ·S])

δ̂ : Q̂×X → Q̂ : (T, Y) 7→ ε
(
⋃

q∈T δ(q, Y)
)

Lemma 10.4

If Â(G) is constructed as above, then Q̂ = LR(0)(G) and δ̂ = goto.

Compiler Construction Winter semester 2009/10 13

Computing LR(0)(G) and goto III

Example 10.5 (cf. Example 10.3)

[S′ → ·S]
[S → ·B] [S → ·C]
[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

[S′ → S·]

[S → B·] [S → C·]

[B → a · B] [C → a · C]
[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

[B → b·] [C → c·]

[B → aB·] [C → aC·]

I0 = q̂0

I1

I2 I3

I4
I5 I6

I7 I8

S

B

C

ab

c

b

c

B

C

a

(omitted: sink state I9 = ∅)
Compiler Construction Winter semester 2009/10 14

Outline

1 Repetition: Bottom-Up Parsing

2 LR(0) Parsing

3 The LR(0) Parsing Automaton

Compiler Construction Winter semester 2009/10 15

The LR(0) Action Function

The automaton will be defined using another table, the action
function, which determines the shift/reduce decision.
(Reminder: π(0) = S′ → S)

Definition 10.6 (LR(0) action function)

The LR(0) action function
act : LR(0)(G) → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I) :=







red i if π(i) = A→ α and [A→ α·] ∈ I (i 6= 0)
shift if [A→ α1 · aα2] ∈ I
accept if [S′ → S·] ∈ I
error if I = ∅

Corollary 10.7

For every G ∈ CFGΣ, G ∈ LR(0) iff act is well defined.

Together, act and goto form the LR(0) parsing table of G.
Compiler Construction Winter semester 2009/10 16

The LR(0) Parsing Table

Example 10.8 (cf. Example 10.2)

G : S′ → S (0)
S → B | C (1, 2)
B → aB | b (3, 4)
C → aC | c (5, 6)

LR(0)(G) act goto
S B C a b c

I0 shift I1 I2 I3 I4 I5 I6

I1 accept
I2 red 1
I3 red 2
I4 shift I7 I8 I4 I5 I6

I5 red 4
I6 red 6
I7 red 3
I8 red 5
I9 error

(empty = I9)

I0 := LR(0)(ε) : [S′ → ·S]
[S → ·B] [S → ·C]
[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

I1 := LR(0)(S) : [S′ → S·]
I2 := LR(0)(B) : [S → B·]
I3 := LR(0)(C) : [S → C·]
I4 := LR(0)(a) : [B → a · B] [C → a · C]

[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

I5 := LR(0)(b) : [B → b·]
I6 := LR(0)(c) : [C → c·]
I7 := LR(0)(aB) : [B → aB·]
I8 := LR(0)(aC) : [C → aC·]
I9 := ∅

Compiler Construction Winter semester 2009/10 17

The LR(0) Parsing Automaton I

Definition 10.9 (LR(0) parsing automaton)

Let G = 〈N, Σ, P, S〉 ∈ LR(0). The (deterministic) LR(0) parsing automaton
of G is defined by the following components.

Input alphabet Σ

Pushdown alphabet Γ := LR(0)(G)

Output alphabet ∆ := [p] ∪ {0, error}

Configurations Σ∗ × Γ∗ ×∆∗

Initial configuration (w, I0, ε) where I0 := LR(0)(ε)

Final configurations {ε} × {ε} ×∆∗

Transitions:

shift: (aw, αI, z) ⊢ (w, αII ′, z) if act(I) = shift and goto(I, a) = I ′

reduce: (w, αII1 . . . In, z) ⊢ (w, αII ′, zi) if act(In) = red i,
π(i) = A→ Y1 . . . Yn, and goto(I, A) = I ′

accept: (ε, I0I, z) ⊢ (ε, ε, z 0) if act(I) = accept

error: (w, αI, z) ⊢ (ε, ε, z error) if act(I) = error

Compiler Construction Winter semester 2009/10 18

The LR(0) Parsing Automaton II

Example 10.10 (cf. Example 10.8)

G : S′ → S (0)
S → B | C (1, 2)
B → aB | b (3, 4)
C → aC | c (5, 6)

LR(0)(G) act goto
S B C a b c

I0 shift I1 I2 I3 I4 I5 I6

I1 accept
I2 red 1
I3 red 2
I4 shift I7 I8 I4 I5 I6

I5 red 4
I6 red 6
I7 red 3
I8 red 5
I9 error

(empty = I9)

LR(0) parsing of aac:

(aac, I0 , ε)
⊢ (ac, I0I4 , ε)
⊢ (c, I0I4I4 , ε)
⊢ (ε, I0I4I4I6, ε)
⊢ (ε, I0I4I4I8, 6)
⊢ (ε, I0I4I8 , 65)
⊢ (ε, I0I3 , 655)
⊢ (ε, I0I1 , 6552)
⊢ (ε, ε , 65520)

Check by rightmost deriva-
tion (on the board)

Compiler Construction Winter semester 2009/10 19

The LR(0) Parsing Automaton III

Theorem 10.11 (Correctness of LR(0) Parsing Automaton)

If G ∈ LR(0), then the LR(0) parsing automaton of G is deterministic,
and for every w ∈ Σ∗ and z ∈ {0, . . . , p}∗:

(w, I0, ε) ⊢
∗ (ε, ε, z) iff ←−z is a rightmost analysis of w

Proof.

omitted

Compiler Construction Winter semester 2009/10 20

	Repetition: Bottom-Up Parsing
	LR(0) Parsing
	The LR(0) Parsing Automaton

