Compiler Construction

Lecture 10: Syntactic Analysis VI (LR(0) Parsing)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/

@ Repetition: Bottom-Up Parsing

Rm Compiler Construction nter semester 2009/10

Nondeterministic Bottom-Up Automaton

Definition (Nondeterministic bottom-up parsing automaton)

Let G = (N,X, P,S) € CFGy. The nondeterministic bottom-up
parsing automaton of G, NBA(G), is defined by the following
components.

o Input alphabet: ¥

Pushdown alphabet: X

Output alphabet: [p]

Configurations: ¥* x X* x [p]* (top of pushdown to the right)
Transitions for w € ¥*, a € X*, and z € [p]*:

shifting steps: (aw,a, 2) - (w, aa,z) if a € X

reduction steps: (w,af,z2) F (w,ad,zi) f (i) = A —

@ Initial configuration for w € ¥*: (w,¢,¢)

e 6 ¢ ¢

@ Final configurations: {e} x {S} x [p]*

m Compiler Construction Winter semester 2009/10 3

Nondeterminisn in NBA(G)

Remark: NBA(G) is generally nondeterministic
o Shift or reduce? Example:

(bw, aa, z) F {Ezul;?ﬁii)z) ifr(i)=A—a

o If reduce: which “handle” 7 Example:

(w.can,2) - §

o If reduce B: which left-hand side A7 Example:

(w.00,9) - {

(w, aA, zi)

(w,aaB, zj) if (i) = A —aband w(j) =B —b

Ez’gg’ Z)) ifr(i)=A—aand7n(j)=B —a
@ When to terminate parsing? Example:

(€,8,2) F (e,A,zi) if m(i) = A — S
——

final

Rm Compiler Construction Winter semester 2009/10

LR(k) Grammars

Goal: resolve remaining nondeterminism of NBA(G) by supporting

lookahead of k£ € N symbols on the input

= LR(k): reading of input from left to right with %-lookahead,
computing a rightmost analysis

Definition (LR (k) grammar)

Let G = (N,X, P,S) € CFGyx be start separated and k € N. Then G has the
LR(k) property (notation: G € LR(k)) if for all rightmost derivations of the
form

g =% dAw =, afw
=* A =, afv

such that firsty (w) = firstg (v), it follows that o/ = a, A’ = A, and v’ = v.

Remarks:
o If G € LR(k), then the reduction of afw to aAw is already determined
by af firsty (w).

® Therefore NBA(G) in configuration (w, o8, z) can decide whether to
shift or to reduce and, in the second case, how to reduce.

m Compiler Construction Winter semester 2009/10 5

LR(0) Items and Sets

Definition (LR(0) items and sets)

Let G = (N, X, P, S) € CFGyx, be start separated by S’ — S and
S' =k aAw =, affow (ie., A— [€ P).
@ [A — (1 - (2] is called an LR(0) item for af;.
o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of ~.
o LR(0)(G) = {LR(0)(7) | 7 € X"},

Definition (LR(0) conflicts)
Let G = (N,X,P,S) € CFGx, and I € LR(0)(G).
@ [has a shift/reduce conflict if there exist A — ajaae, B — 3 € P
such that
[A— a1 -aag],[B— p]€l.
@ [has a reduce/reduce conflict if there exist A > a,B — 3 € P

with A # B or a # (3 such that
[A— o],[B— p] el

m Compiler Construction Winter semester 2009/10

6

Computing LR(0) Sets I

Theorem (Computing LR(0) sets)

Let G = (N, X, P,S) € CFGy, be start separated by S" — S and
reduced.

Q LR(0)(e) is the least set such that
o [§"— -S| € LR(0)(e) and
o if [A— -By] € LR(0)(¢) and B — (3 € P,
then [B — -0] € LR(0)(e).
Q@ LR(0)(aY) (€ X*,Y € X) is the least set such that
o if [A = m - Y7 € LR(0)(a),
then [A — 7Y - y2] € LR(0)(aY) and
o if [A — v - By € LR(0)(aY) and B — € P,
then [B — -f] € LR(0)(aY).

m Compiler Construction Winter semester 2009/10

Computing LR(0) Sets II

G: 8-S Iy := LR(0)(e) : [S" — -9]
S - B|C [S—-B] [S—-C]
B — aB|b [B — -aB] [B — -b]
C —aC|c [C — aC] [C —]
I := LR(0)(S): [S"— 5]
I, := LR(0)(B): [S — B
Iy = LR(0)(C) : [S — C]
I, := LR(0)(a): [B—a-B][C —a-C]
[B — -aB] [B — -b]
[C — -aC] [C — -]
I5 := LR(0)(b) : [B — b]
Is := LR(0)(c) : [C — ¢]
I; := LR(0)(aB) : [B — aB]
I := LR(0)(aC) : [C — aC']
Ig = (Z)
no conflicts = G € LR(0)

Ninter semester 2009/10 8

© LR(0) Parsing

Rm Compiler Construction ter semester 2009/10

The goto Function I

Observation: if G € LR(0), then LR(0)(y) yields deterministic
shift /reduce decision for NBA(G) in a configuration with pushdown ~y
= new pushdown alphabet: LR(0)(G) in place of X

Moreover LR(0)(vY') is determined by LR(0)(y) and Y but
independent from v in the following sense:

LR(0)(y) = LR(0)(v') = LR(0)(yY) = LR(0)('Y)

Definition 10.1 (LR(0) goto function)

The function goto : LR(0)(G) x X — LR(0)(G) is determined by

goto(I,Y)=1" iff there exists v € X* such that
I =LR(0)(y) and I' = LR(0)(7Y).

m Compiler Construction Winter semester 2009/10 10

The goto Function II

Example 10.2 (cf. Example 9.14)

Iy := LR(0)(e) : [S" — -9]
[S—-B] [S—-C] goto|S B C a b c
[B — -aB] [B — | I |h L L I I; Ig
[C — -aC] [C — -] L
I := LR(0)(S): [S'— S I
Iy :== LR(0)(B) : [S — B] I3
13 = LR(O)(C) [S—> C] I4 I7 Ig I4 I5 IG
I, := LR(0)(a): [B—a-B][C—a-C] I
[B — -aB] [B — -] Ig
[C — aC] [C —] I;
Is := LR(0)(b) : [B — b Ig
Is := LR(0)(c) : [C — ¢] Iy
I; := LR(0)(aB) : [B — aB]
58 = é/R(O)(aC) : [C — aC'] (empty = Iy)
9 1=

m Compiler Construction Winter semester 2009/10

Computing LR(0)(G) and goto I

Goal: obtaining LR(0)(G) and goto by powerset construction

Given G = (N, X%, P, S) € CFGy, (start separated by S’ — S and
reduced), the nondeterministic finite automaton
A(G) :=(Q, X, 0,q0, F') € NFAx is defined as follows.
o State set Q :={[A — (1] | A — (152 € P} (LR(0) items of G)
o Input alphabet X = NUX
o Transition function ¢ : Q x X. — 29 where
° §([A— 1 Y(],Y) 3 [A— (Y - 5]
2 §([A— B1-Bfal,e)5[B— plif B—>p€P
@ Initial state go := [S' — -S] € Q
o Final states F := () (irrelevant)

Example 10.3 (cf. Example 10.2)

AG) for G: 8" — S (on the board)
S - B|C
B —aB|b
C —aC|c

m' Compiler Construction Winter semester 2009/10 12

Computing LR(0)(G) and goto 11

Transformation of 2(G) into Ql/((?) = (Q, X,0,qo,0) € DFAx by

powerset, construction:
o Q := 29 (only reachable subsets)
° go:=¢([S"—-9))

00:Q0xX—Q: (1Y) »—>5<Uq€T5(q,Y))

—

If A(G) is constructed as above, then Q = LR(0)(G) and 6 = goto.

m' Compiler Construction Winter semester 2009/10 13

Computing LR(0)(G) and goto III

Example 10.5 (cf. Example 10.3)

5 —
IQ% ~ B %jﬁ] CLs=cl|L
[C — -aC] [C — -] .
‘4 a T~
I5 | [B — b] v Iy v [C — ¢]|Ts
b |[B— a- B [CHG-C]/’
[B — -aB] [B — -b]
I||B—aB]| B U [C — aC]|Is

(omitted: sink state Iy = ()

Compiler Construction Winter semester 2009/10

14

© The LR(0) Parsing Automaton

Rm Compiler Construction ter semester 2009/10 15

The LR(0) Action Function

The automaton will be defined using another table, the action
function, which determines the shift/reduce decision.
(Reminder: 7(0) = 5" — 5)

Definition 10.6 (LR(0) action function)

The LR(0) action function
act : LR(0)(G) — {redi | i € [p]} U {shift, accept, error}
is defined by
redi ifn(i)=A—aand[A—a]ecl (i#0)
shift if [A— a1 -aag] €T
accept if [S"— S-]el
error if I =10

act([) :=

For every G € CFGyx, G € LR(0) iff act is well defined.

Together, act and goto form the LR(0) parsing table of G.

m Compiler Construction Winter semester 2009/10 16

The LR(0) Parsing Table

Example 10.8 (cf. Example 10.2)

G: §—= S8 (0)
— B|C 1,2
5 aBb (34 fo:=LRO)E): [5 = -S]
C —aClc (56) g:-ﬂg] {g:-.(gi]
C — -aC] [C—]
LR(0)(G)| act goto I ;= LR(0)(S) : [S" — &]
_ S BC ab c| p.— LR(0)(B): [S — B
Iy shift |I1 I Is 14 Is Is I3 := LR(0)(C) : [S — C']
Iy |accept Iy := LR(0)(a): [B—a-B][C —a-C]
Iz red 1 B — -aB] [B —]
I3 req 2 C —-aC] [C—
1, shift Ir Is Is Is Is| [, .= LR(O)(b): [B — b]
Is red 4 Is .= LR(0)(c) : [C — ¢]
Is red 6 I; := LR(0)(aB) : [B — aB]
I7 red 3 Ig := LR(0)(aC) : [C' — aC']
Is red 5 Iy = Q)
Iy error
(empty = Io)

m Compiler Construction Winter semester 2009/10 17

The LR(0) Parsing Automaton I

Definition 10.9 (LR(0) parsing automaton)

Let G = (N,X, P,S) € LR(0). The (deterministic) LR(0) parsing automaton
of G is defined by the following components.

@ Input alphabet ¥

@ Pushdown alphabet I' := LR(0)(G)

@ Output alphabet A := [p] U {0, error}

@ Configurations X* x I'* x A*

@ Initial configuration (w, Iy, &) where Iy := LR(0)(¢)
@ Final configurations {e} x {e} x A*

@ Transitions:

shift: (aw,al,z) b (w,all’, 2) if act(I) = shift and goto(I,a) = I’
reduce: (w,all ... IL,,2) ¢ (w,all’, zi) if act(I,) = red,
(i) =A—-Y:...Y,, and goto(I, A) =TI’
accept: (g,1p1,2) F (g,g,20) if act(l) = accept
error: (w,al, z) F (e,€, zerror) if act() = error

m Compiler Construction Winter semester 2009/10

18

The LR(0) Parsing Automaton II

Example 10.10 (cf. Example 10.8)

(0
(1,2
B —aB|b (3,4) LR(0) parsing of aac:
C —aC|c (5,6) (aac, Iy e)
LR(0)(G)| act goto F(ac, Ioly ¢)
S BCab c F(¢ lolyly ;e)
To shift |} I I3 I I Ig| t(& Iolalslg, e)
I accept (e, Iolalyls, 6)
I red 1 = (g, IOI4I8) 65)
I3 red 2 F(e Iols 655)
7 shift I Is I Is Iy| F(& Iolh 6552)
iz red 4 F(ge , 65520)
I red 6
17 red 3 Check by rightmost deriva-
Iy red 5 tion (on the board)
Iy error
(empty = Ig

Compiler Construction Winter semester 2009/10 19

The LR(0) Parsing Automaton III

Theorem 10.11 (Correctness of LR(0) Parsing Automaton)

If G € LR(0), then the LR(0) parsing automaton of G is deterministic,
and for every w € ¥* and z € {0,...,p}*:

(w, I, e) F* (e,e,2) iff Z is a rightmost analysis of w

omitted

m' Compiler Construction Winter semester 2009/10 20

	Repetition: Bottom-Up Parsing
	LR(0) Parsing
	The LR(0) Parsing Automaton

