Compiler Construction

Lecture 11: Syntactic Analysis VII ([S]LR(1) Parsing)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/

© Repetition: LR(0) Parsing

Rm Compiler Construction nter semester 2009/10

LR(0) Items and Sets

Definition (LR(0) items and sets)

Let G = (N, X, P, S) € CFGyx, be start separated by S’ — S and
S' =k aAw =, affow (ie., A— [€ P).
@ [A — (1 - (2] is called an LR(0) item for af;.
o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of ~.
o LR(0)(G) = {LR(0)(7) | 7 € X"},

Definition (LR(0) conflicts)
Let G = (N,X,P,S) € CFGx, and I € LR(0)(G).
@ [has a shift/reduce conflict if there exist A — ajaae, B — 3 € P
such that
[A— a1 -aag],[B— p]€l.
@ [has a reduce/reduce conflict if there exist A > a,B — 3 € P

with A # B or a # (3 such that
[A— o],[B— p] el

m Compiler Construction Winter semester 2009/10

3

The LR(0) Action Function

Definition (LR(0) action function)
The LR(0) action function

act : LR(0)(G) — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifr(i)=A—aand [A— a] €T (i#0)
shift if [A— a1 -aag] €T

accept if [S"— S-]el

error if I =10

act(l) :=

For every G € CFGyx,, G € LR(0) iff act is well defined.

m Compiler Construction Winter semester 2009/10 4

The LR(0) Parsing Automaton

Definition (LR(0) parsing automaton)

Let G = (N,X, P,S) € LR(0). The (deterministic) LR(0) parsing automaton
of G is defined by the following components.

@ Input alphabet ¥

@ Pushdown alphabet I' := LR(0)(G)

@ Output alphabet A := [p] U {0, error}

@ Configurations X* x I'* x A*

@ Initial configuration (w, Iy, &) where Iy := LR(0)(¢)
@ Final configurations {e} x {e} x A*

® Transitions:

shift: (aw,al,z) b (w,all’, 2) if act(I) = shift and goto(I,a) = I’
reduce: (w,all...IL,,2)¢F (w,all’, zi) if act(I,) = red,
w(i)=A—Y:...Y,, and goto(I, A) =I'
accept: (g,1p1,2) F (g,e,20) if act(l) = accept
error: (w,al, z) - (e,e, zerror) if act(I) = error

m Compiler Construction Winter semester 2009/10

5

© SLR(1) Parsing

Rm Compiler Construction ter semester 2009/10

Conflicts in LR(0) Parsing

In practice: often G ¢ LR(0)

Example 11.1

Gup: E — E E — B+T | T
T ~T+F|F F— (E)|a|b

LR(0)(G ag) with conflicts:

Iy: [F'—--E] [EFE—-E+T] I,: [EfE—FE] [E— E-+T|
[E — T [T — TxF| I,: [E— T [T — T -*F]
[T—>-F] [F—>(E)] I3 : [T—>F]

[F' — -a] [F' — -b]
L: [F> (-B)]|E— E+T] I: [F—a]
[E — T] [T — TxF] Is: [F — b
[T — -F] [F— -(E)] I;: [E— E+-T] [T — ‘TxF]
[F — -a] [F — -b] [T — -F] [F — -(B)]
[F' — -a [F' — -b]

Iy: [T > T* - F|[F—(E)] I: [F—o(E)] [E—E-+T]
[F — -a] [F — -b] Ly: [E— E+T] [T — T -*F]

I : [T—> T*F‘] 1o : [F — (E)]

Adding Lookahead 1

Goal: resolving conflicts by considering first input symbol

Observations:
o [A — ﬁl . aﬁg] S LR(O)(OLﬁl)
= S =} aAw =, afrafaw
7N
pushdown next input symbol

Thus: shift only on lookahead a
o [A— B] € LR(0)(af)
= S’ = adrw =, afrw

7N

pushdown input
— z€fo(A) CX. (r =conlyifw=c¢)

Thus: reduce with A — [only if lookahead z € fo(A)

m' Compiler Construction Winter semester 2009/10

Adding Lookahead 11

Example 11.2 (cf. Example 11.1)

Gug: E' — F (0)

E SE+T|T (1,2 AE,N fé{if}l)
T S T«F|F (3,4) B |5
F - (E)|a|b (5,6,7))

o I, = {[E' - B, [E — E-+T}:
@ accept on lookahead e
o shift on lookahead +
o I, ={[E — T[T — T - *F]}:
o red 2 on lookahead +/) /e
o shift on lookahead *
o Iip = {[E — B+T'], [T — T - *Fl}:
o red 1 on lookahead +/) /e
e shift on lookahead *

= SLR(1) parsing (Simple LR(1))

m Compiler Construction Winter semester 2009/10 9

The SLR(1) Action Function

Definition 11.3 (SLR(1) action function)

The SLR(1) action function
act : LR(0)(G) x X. — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifn(i)=A— o, [A—a]el (i#0),
and z € fo(A)
act(I,x) := ¢ shift if [A— oy -zaz] €l and z € ¥
accept if [S"— S:]eland z=¢
error otherwise

Definition 11.4 (SLR(1) grammar)

A grammar G € CFGx has the SLR(1) property (notation:
G € SLR(1)) if its SLR(1) action function is well defined.

Together, act and the LR(0) goto function (cf. Definition 10.1) form
the SLR(1) parsing table of G.

m Compiler Construction Winter semester 2009/10 10

The SLR(1) Parsing Table

[E— : .
E — T T — -T*F| Ir: [E— T [T — T -*F]
T — -F] [F—-(BE)] I3: [T — F
F — -a] [F — b
L: [Fo (-B)] [E— -E+qT] Is: [F— a] Ag,N Y]
E — T [T — -T*F| Is: [F — b I +{§}
T —-F] [F—-(B)] Ir: [E— E+-T|[T — -T*F| = {;{f B} 35}}
Pl [P T~ F P (B F a0
F — -a] [F — b sl
Is: [T —>T*-F|[F—-(E)] Is: [F— (E:)] |[E— E-+T)]
F — -a] [F — b Iio: [E— E+T] [T — T - *F|
I : [T — T*F} Iio: [F — (E)}
LR(0)(GaEg) act goto
+ * () a b 5 E T F + * () a b
Iy shift shift shift I Io I3 I Is Ig
I shift accept Iz
I red 2 shift red 2 red 2 Is
I3 red4 red4 red 4 red 4
Iy shift shift shift Ig Is I3 Iy Is Ig
Is red6 red 6 red 6 red 6
Is red7 red7 red 7 red 7
I7 shift shift shift Lo I3 Iy Is Ig
Is shift shift shift I11 I Is Ig
Ig shift shift I 112
Io red1 shift red 1 red 1 Is
I11 red3 red3 red 3 red 3
T2 red5 red 5 red 5 red 5

m Compiler Construction Winter semester 2009/10 11

The SLR(1) Parsing Automaton

Definition 11.6 (SLR(1) parsing automaton)

The SLR(1) parsing automaton is defined as in the LR(0) case (see
Definition 10.9), except for the transition relation:

shift: (aw,al, z) F (w,all’, z) if act(I,a) = shift and
goto(I,a) =1
reduce,: (aw,ally...I,,2)F (aw,all’, i) if act(I,,a) = red s,
w(i)=A—Y;...Y,, and goto(I,A) =TI’
reduce.: (e,ally ... I, 2) b (e,all’, i) if act(l,,c) = red 1,
w(i)=A—Y;...Y,, and goto([,A) =TI’

accept: (e,Ipl,2) F (g,¢,20) if act([,c) = accept

errory: (aw,al, z) F (g,¢e, z error) if act(l,a) = error

errore: (g,al,z) - (e,e, zerror) if act(l,e) = error

m Compiler Construction Winter semester 2009/10

© LR(1) Parsing

Rm Compiler Construction nter semester 2009/10 13

SLR(1) Conflicts

Problem: not all conflicts can be resolved using fo sets

Example 11.7

Grr:S'"—S S—L=R|R L—*R|a R—L
LR(0)(GLRr):
Iy := LR(0)(¢) : [S" — 5] [S — -L=R] [S — ‘R]
Lo+ (Lo [R—-I
I := LR(0)(S) : [S" — S
Iy := LR(0)(L) : [S— L-=R] [R— L
Is:= LR(0)(R) : [S — R
I, := LR(0)(*) : [L - *-R] [R— L] [L — *xR] [L — -a]
Iy = LR(0)(a): [L—a]
Is:= LR(0)(L=): [S— L=-R] [R— ‘L] [L — *xR] [L — -a]
I; := LR(0)(*R) : [L — *R]
Is:= LR(0)(*L): [R— L]
Iy :== LR(0)(L=R) : [S — L=R']
But: conflict in I not SLR(1)-solvable since = € fo(R)

Compiler Construction Winter semester 2009/10 14

LR(1) Items and Sets 1

Observation: not every element of fo(A) can follow every occurrence
of A
— refinement of LR(0) items by adding possible lookahead symbols

Definition 11.8 (LR(1) items and sets)

Let G = (N, X%, P,S) € CFGy, be start separated by S — S.

o If 8" =% aAaw =, affraw, then [A — [31 - B2, a] is called an
LR(1) item for of.

o If ' =% aA =, af1fs, then [A — (1 - fa,¢] is called an LR(1)
item for af;.

o Given v € X*, LR(1)(vy) denotes the set of all LR(1) items for ~,
called the LR(1) set (or: LR(1) information) of ~.

o LR(1)(G) :={LR(1)(v) |y € X*}.

m Compiler Construction Winter semester 2009/10 15

LR(1) Items and Sets II

Corollary 11.9

Q For every v € X*, LR(1)(7y) is finite.
Q@ LR(1)(G) is finite.
Q For every v € X*, LR(1)(y) “contains” LR(0)(7), i.e.,

{[A— B1-Ba] | [A— b1 B2,2] € LR(1)(7)} = LR(0)(v)-

Q [A— (1 P2,2] € LR(1)(G) = z € fo(4)

m Compiler Construction Winter semester 2009/10 16

LR(1) Conflicts

Definition 11.10 (LR(1) conflicts)

Let G = (N,X,P,S) € CFGy and I € LR(1)(G).
@ [has a shift/reduce conflict if there exist A — ajaas, B — 3 € P

and x € Y. such that
[A — a1 - aag, z],[B — (-,a] € I.

@ I has a reduce/reduce conflict if there exist x € 3. and
A— a,B— (€ P with A# B or a # (8 such that
[A — a-,z2],[B — (2] € 1.

G € LR(1) iff no I € LR(1)(G) contains conflicting items.

m Compiler Construction Winter semester 2009/10 17

Computing LR(1) Sets I

The computation of LR(0) sets (cf. Theorem 9.13) can be extended to
cover right contexts:

Theorem 11.12 (Computing LR(1) sets)

Let G = (N, X, P,S) € CFGy, be start separated by S" — S and
reduced.
Q LR(1)(e) is the least set such that
o [§'— -S,e] € LR(1)(¢) and
o if [A— -By,z] € LR(1)(¢), B— B € P, and y € fi(yx), then
[B— -08,y] € LR(1)(e).
Q@ LR(1)(aY) (x € X*,Y € X) is the least set such that
o if [A = Y ° Y’)’?vw] € LR(].)(O(),
then [A — 1Y - y2,2] € LR(1)(aY) and
o if [A = v - Bys,z] € LR(1)(aY), B— B € P, and y € fi(y2x), then
[B— -0,y] € LR(1)(aY).

4

m Compiler Construction Winter semester 2009/10 18

Computing LR(1) Sets 1I
Example 11.13 (cf. Example 11.7)

Grr:8'"—-S S—L=R|R L—*R|a R— L
LR(1)(GLr): [S" — -S,e] € LR(1)(e) [A — -Bv,z] € LR(1)(¢), B — B € P,y € fi(yz
= [B — B,y] € LR(1)(e)
Iy := LR(1)(e) : [— .S, €] [S— -L=R,e] [S— -R,e] [L— *R,=]
[L - 3, =] [R - 'L>E] [L — *R, 6} [L = &, 6}
Ii := LR(1)(S) : [S" — S- €]
I5:= LR(1)(L) : [S— L-=R,e] [R— L€
I3 := LR(1)(R) : [S — R- €]
L= LRO)(: [L—*-Re [L—+Re [R— L [R— L
L—+RY [L—-an [L—*Re [L—ad
I := LR(1)(a) : [L — a-,=] [L — a-, €]
Is := LR(1)(L=) : [S— L=-R,e] [R— -L,¢] [L — *R,e] [L— -a,¢]
I := LR(1)(*R) : [L — *R-, =] [L — *R-, €]
Iy := LR(1)(*L) : [R — L-, =] [R — L-¢]
Iy := LR(1)(L=R) : [S — L=R- €]
Il := LR(1)(L=L): [R — L-¢|
It := LR(1)(L=%) : [L —*-Rye] [R—-Le [L — *R,e] [L— -a,¢]
Iiy := LR(1)(L=a) : [L — a-é€]
Ily := LR(1)(L=*R) : [L — *R-]
]{4 o= @
In I4: shift on =/reduce on ¢ = Grr € LR(1)

m Compiler Construction Winter semester 2009/10 19

The LR(1) Action Function

Definition 11.14 (LR(1) action function)

The LR(1) action function
act : LR(1)(G) x . — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifn(i))=A—aand [A—a,z]e]
shift — if [A— aq-zag,yl€landz e
accept if [S" — S.,eleTandz=¢

error otherwise

act([,x) :=

For every G € CFGx,, G € LR(1) iff its LR(1) action function is well
defined.

m Compiler Construction Winter semester 2009/10 20

The LR(1) goto Function

The goto function is defined in analogy to the LR(0) case
(Definition 10.1). Likewise, it can be obtained using a powerset
construction.

Definition 11.16 (LR(1) goto function)

The function goto : LR(1)(G) x X — LR(1)(G) is determined by

goto(I,Y)=1" iff there exists v € X* such that
I =LR(1)(y) and I’ = LR(1)(7Y).

Again, act and goto form the LR(1) parsing table of G.

m' Compiler Construction Winter semester 2009/10 21

The LR(1) Parsing Table

Example 11.17 (cf. Example 11.13)

LR(1)(GLR) act/goto|x, goto| N
* = a e |S L R
7 shift/ T} shift /T T I, T
0 accept
I shift/ I} red 5
I3 red 2
I shift /I shift /I I
I red 4
I shift/ I/, shift /1., I, I
Il red 3
I red 5
I red 1
Io red 5
I, |shift/I], shift /1., I, Il
Iy red 4
Iig red 3
(empty = error /()
RWTH Compiler Construction Winter semester 2009/10

The LR(1) Parsing Automaton I

Definition 11.18 (LR(1) parsing automaton)

The LR(1) parsing automaton is defined as in the LR(0) case (see
Definition 10.9), except for the transition relation:

shift: (aw,al, z) F (w,all’, z) if act(I,a) = shift and
goto(I,a) =1
reduce,: (aw,all ... I, 2)F (aw,all’, zi) if act(I,,a) = redi,
(i) =A—Y;...Y,, and goto(I,A) =TI’
reduce.: (e,ally...I,,2) F (e,all’, zi) if act(l,,e) = red i,
w(i)=A—Y;...Y,, and goto(I,A) =TI’

accept: (e,Ipl,z) F (g,e,20) if act([,e) = accept

errory: (aw,al, z) F (g,¢e, zerror) if act(I,a) = error

errore: (g,al,z) - (e,e, zerror) if act(l,e) = error

m Compiler Construction Winter semester 2009/10

The LR(1) Parsing Automaton II

Example 11.19 (cf. Example 11.13)

Grr:8"—-S(0) S—L=R|R(1,2) L—*R|a(3,4 R—L (5
LR(1)(GLr) act/goto[s. goto|n
* = a e |SL R
I shift /T; shift /17 17 15 15| LR(1) parsing of a=+a:
I accept (a=*a, I} , €)
Iig shift/I§ red 5 b (=*a, Iy1} , €)
I red 2 b (=*a, IH1} , 4)
I shift/I} shift /I Is Ir| + (=a, INI}14 4)
I red 4 F(a LI, 4)
I shift /11, shift/ 1, IoIs| v (e ILIGILIL T, 4)
I red 3 F(e LTI, 44)
Iy red 5 F(e LTI, 445)
I red 1 F(e ILIGIGT, 4453)
Io red 5 F(e INIGIEL, 44535)
I shift/ 11, shift/ 1, Iolis| (& Il , 445351)
I, red 4 F(ee , 4453510)
Iis red 3
(empty = error /()
m Compiler Construction Winter semester 2009/10 24

	Repetition: LR(0) Parsing
	SLR(1) Parsing
	LR(1) Parsing

