
Compiler Construction

Lecture 11: Syntactic Analysis VII ([S]LR(1) Parsing)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Outline

1 Repetition: LR(0) Parsing

2 SLR(1) Parsing

3 LR(1) Parsing

Compiler Construction Winter semester 2009/10 2

LR(0) Items and Sets

Definition (LR(0) items and sets)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ be start separated by S′ → S and
S′ ⇒∗

r αAw ⇒r αβ1β2w (i.e., A → β1β2 ∈ P).

[A → β1 · β2] is called an LR(0) item for αβ1.
Given γ ∈ X∗, LR(0)(γ) denotes the set of all LR(0) items for γ,
called the LR(0) set (or: LR(0) information) of γ.
LR(0)(G) := {LR(0)(γ) | γ ∈ X∗}.

Definition (LR(0) conflicts)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ and I ∈ LR(0)(G).

I has a shift/reduce conflict if there exist A → α1aα2, B → β ∈ P
such that

[A → α1 · aα2], [B → β·] ∈ I.
I has a reduce/reduce conflict if there exist A → α,B → β ∈ P
with A 6= B or α 6= β such that

[A → α·], [B → β·] ∈ I.
Compiler Construction Winter semester 2009/10 3

The LR(0) Action Function

Definition (LR(0) action function)

The LR(0) action function
act : LR(0)(G) → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I) :=











red i if π(i) = A → α and [A → α·] ∈ I (i 6= 0)
shift if [A → α1 · aα2] ∈ I
accept if [S′ → S·] ∈ I
error if I = ∅

Corollary

For every G ∈ CFGΣ, G ∈ LR(0) iff act is well defined.

Compiler Construction Winter semester 2009/10 4

The LR(0) Parsing Automaton

Definition (LR(0) parsing automaton)

Let G = 〈N, Σ, P, S〉 ∈ LR(0). The (deterministic) LR(0) parsing automaton
of G is defined by the following components.

Input alphabet Σ

Pushdown alphabet Γ := LR(0)(G)

Output alphabet ∆ := [p] ∪ {0, error}

Configurations Σ∗ × Γ∗ × ∆∗

Initial configuration (w, I0, ε) where I0 := LR(0)(ε)

Final configurations {ε} × {ε} × ∆∗

Transitions:

shift: (aw, αI, z) ⊢ (w, αII ′, z) if act(I) = shift and goto(I, a) = I ′

reduce: (w, αII1 . . . In, z) ⊢ (w, αII ′, zi) if act(In) = red i,
π(i) = A → Y1 . . . Yn, and goto(I, A) = I ′

accept: (ε, I0I, z) ⊢ (ε, ε, z 0) if act(I) = accept

error: (w, αI, z) ⊢ (ε, ε, z error) if act(I) = error

Compiler Construction Winter semester 2009/10 5

Outline

1 Repetition: LR(0) Parsing

2 SLR(1) Parsing

3 LR(1) Parsing

Compiler Construction Winter semester 2009/10 6

Conflicts in LR(0) Parsing

In practice: often G /∈ LR(0)

Example 11.1

GAE : E′ → E E → E+T | T
T → T*F | F F → (E) | a | b

LR(0)(GAE) with conflicts:

I0 : [E′ → ·E] [E → ·E+T] I1 : [E′ → E·] [E → E · +T]
[E → ·T] [T → ·T*F] I2 : [E → T ·] [T → T · *F]
[T → ·F] [F → ·(E)] I3 : [T → F ·]
[F → ·a] [F → ·b]

I4 : [F → (· E)] [E → ·E+T] I5 : [F → a·]
[E → ·T] [T → ·T*F] I6 : [F → b·]
[T → ·F] [F → ·(E)] I7 : [E → E+ · T] [T → ·T*F]
[F → ·a] [F → ·b] [T → ·F] [F → ·(E)]

[F → ·a] [F → ·b]
I8 : [T → T* · F] [F → ·(E)] I9 : [F → (E ·)] [E → E · +T]

[F → ·a] [F → ·b] I10 : [E → E+T ·] [T → T · *F]
I11 : [T → T*F ·] I12 : [F → (E)·]

Compiler Construction Winter semester 2009/10 7

Adding Lookahead I

Goal: resolving conflicts by considering first input symbol

Observations:

[A → β1 · aβ2] ∈ LR(0)(αβ1)
=⇒ S′ ⇒∗

r αAw ⇒r αβ1

ր
pushdown

aβ2w
տ
next input symbol

Thus: shift only on lookahead a

[A → β·] ∈ LR(0)(αβ)
=⇒ S′ ⇒∗

r αAxw ⇒r αβ
ր

pushdown

xw
տ
input

=⇒ x ∈ fo(A) ⊆ Σε (x = ε only if w = ε)

Thus: reduce with A → β only if lookahead x ∈ fo(A)

Compiler Construction Winter semester 2009/10 8

Adding Lookahead II

Example 11.2 (cf. Example 11.1)

GAE : E′ → E (0)
E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

A ∈ N fo(A)
E′ {ε}
E {+,), ε}

I1 = {[E′ → E·], [E → E · +T]}:
accept on lookahead ε
shift on lookahead +

I2 = {[E → T ·], [T → T · *F]}:

red 2 on lookahead +/)/ε
shift on lookahead *

I10 = {[E → E+T ·], [T → T · *F]}:
red 1 on lookahead +/)/ε
shift on lookahead *

=⇒ SLR(1) parsing (Simple LR(1))

Compiler Construction Winter semester 2009/10 9

The SLR(1) Action Function

Definition 11.3 (SLR(1) action function)

The SLR(1) action function
act : LR(0)(G) × Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I, x) :=



















red i if π(i) = A → α, [A → α·] ∈ I (i 6= 0),
and x ∈ fo(A)

shift if [A → α1 · xα2] ∈ I and x ∈ Σ
accept if [S′ → S·] ∈ I and x = ε
error otherwise

Definition 11.4 (SLR(1) grammar)

A grammar G ∈ CFGΣ has the SLR(1) property (notation:
G ∈ SLR(1)) if its SLR(1) action function is well defined.

Together, act and the LR(0) goto function (cf. Definition 10.1) form
the SLR(1) parsing table of G.

Compiler Construction Winter semester 2009/10 10

The SLR(1) Parsing Table

Example 11.5 (cf. Example 11.1)

I0 : [E′ → ·E] [E → ·E+T] I1 : [E′ → E·] [E → E · +T]
[E → ·T] [T → ·T*F] I2 : [E → T ·] [T → T · *F]
[T → ·F] [F → ·(E)] I3 : [T → F ·]
[F → ·a] [F → ·b]

I4 : [F → (· E)] [E → ·E+T] I5 : [F → a·]
[E → ·T] [T → ·T*F] I6 : [F → b·]
[T → ·F] [F → ·(E)] I7 : [E → E+ · T] [T → ·T*F]
[F → ·a] [F → ·b] [T → ·F] [F → ·(E)]

[F → ·a] [F → ·b]
I8 : [T → T* · F] [F → ·(E)] I9 : [F → (E ·)] [E → E · +T]

[F → ·a] [F → ·b] I10 : [E → E+T ·] [T → T · *F]
I11 : [T → T*F ·] I12 : [F → (E)·]

A ∈ N fo(A)
E′ {ε}
E {+,), ε}
T {+, *,), ε}
F {+, *,), ε}

LR(0)(GAE) act goto
+ * () a b ε E T F + * () a b

I0 shift shift shift I1 I2 I3 I4 I5 I6
I1 shift accept I7
I2 red 2 shift red 2 red 2 I8
I3 red 4 red 4 red 4 red 4
I4 shift shift shift I9 I2 I3 I4 I5 I6
I5 red 6 red 6 red 6 red 6
I6 red 7 red 7 red 7 red 7
I7 shift shift shift I10 I3 I4 I5 I6
I8 shift shift shift I11 I4 I5 I6
I9 shift shift I7 I12
I10 red 1 shift red 1 red 1 I8
I11 red 3 red 3 red 3 red 3
I12 red 5 red 5 red 5 red 5

Compiler Construction Winter semester 2009/10 11

The SLR(1) Parsing Automaton

Definition 11.6 (SLR(1) parsing automaton)

The SLR(1) parsing automaton is defined as in the LR(0) case (see
Definition 10.9), except for the transition relation:

shift: (aw,αI, z) ⊢ (w,αII ′, z) if act(I, a) = shift and
goto(I, a) = I ′

reducea: (aw,αII1 . . . In, z) ⊢ (aw,αII ′, zi) if act(In, a) = red i,
π(i) = A → Y1 . . . Yn, and goto(I,A) = I ′

reduceε: (ε, αII1 . . . In, z) ⊢ (ε, αII ′, zi) if act(In, ε) = red i,
π(i) = A → Y1 . . . Yn, and goto(I,A) = I ′

accept: (ε, I0I, z) ⊢ (ε, ε, z 0) if act(I, ε) = accept

errora: (aw,αI, z) ⊢ (ε, ε, z error) if act(I, a) = error

errorε: (ε, αI, z) ⊢ (ε, ε, z error) if act(I, ε) = error

Compiler Construction Winter semester 2009/10 12

Outline

1 Repetition: LR(0) Parsing

2 SLR(1) Parsing

3 LR(1) Parsing

Compiler Construction Winter semester 2009/10 13

SLR(1) Conflicts

Problem: not all conflicts can be resolved using fo sets

Example 11.7

GLR : S′ → S S → L=R | R L → *R | a R → L

LR(0)(GLR):

I0 := LR(0)(ε) : [S′ → ·S] [S → ·L=R] [S → ·R]
[L → ·*R] [L → ·a] [R → ·L]

I1 := LR(0)(S) : [S′ → S·]
I2 := LR(0)(L) : [S → L · =R] [R → L·]
I3 := LR(0)(R) : [S → R·]
I4 := LR(0)(*) : [L → * · R] [R → ·L] [L → ·*R] [L → ·a]
I5 := LR(0)(a) : [L → a·]
I6 := LR(0)(L=) : [S → L= · R] [R → ·L] [L → ·*R] [L → ·a]
I7 := LR(0)(*R) : [L → *R·]
I8 := LR(0)(*L) : [R → L·]
I9 := LR(0)(L=R) : [S → L=R·]

But: conflict in I2 not SLR(1)-solvable since = ∈ fo(R)

Compiler Construction Winter semester 2009/10 14

LR(1) Items and Sets I

Observation: not every element of fo(A) can follow every occurrence
of A
=⇒ refinement of LR(0) items by adding possible lookahead symbols

Definition 11.8 (LR(1) items and sets)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ be start separated by S′ → S.

If S′ ⇒∗
r αAaw ⇒r αβ1β2aw, then [A → β1 · β2, a] is called an

LR(1) item for αβ1.

If S′ ⇒∗
r αA ⇒r αβ1β2, then [A → β1 · β2, ε] is called an LR(1)

item for αβ1.

Given γ ∈ X∗, LR(1)(γ) denotes the set of all LR(1) items for γ,
called the LR(1) set (or: LR(1) information) of γ.

LR(1)(G) := {LR(1)(γ) | γ ∈ X∗}.

Compiler Construction Winter semester 2009/10 15

LR(1) Items and Sets II

Corollary 11.9

1 For every γ ∈ X∗, LR(1)(γ) is finite.
2 LR(1)(G) is finite.
3 For every γ ∈ X∗, LR(1)(γ) “contains” LR(0)(γ), i.e.,

{[A → β1 · β2] | [A → β1 · β2, x] ∈ LR(1)(γ)} = LR(0)(γ).

4 [A → β1 · β2, x] ∈ LR(1)(G) =⇒ x ∈ fo(A)

Compiler Construction Winter semester 2009/10 16

LR(1) Conflicts

Definition 11.10 (LR(1) conflicts)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ and I ∈ LR(1)(G).

I has a shift/reduce conflict if there exist A → α1aα2, B → β ∈ P
and x ∈ Σε such that

[A → α1 · aα2, x], [B → β·, a] ∈ I.

I has a reduce/reduce conflict if there exist x ∈ Σε and
A → α,B → β ∈ P with A 6= B or α 6= β such that

[A → α·, x], [B → β·, x] ∈ I.

Lemma 11.11

G ∈ LR(1) iff no I ∈ LR(1)(G) contains conflicting items.

Compiler Construction Winter semester 2009/10 17

Computing LR(1) Sets I

The computation of LR(0) sets (cf. Theorem 9.13) can be extended to
cover right contexts:

Theorem 11.12 (Computing LR(1) sets)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ be start separated by S′ → S and
reduced.

1 LR(1)(ε) is the least set such that

[S′ → ·S, ε] ∈ LR(1)(ε) and
if [A → ·Bγ, x] ∈ LR(1)(ε), B → β ∈ P , and y ∈ fi(γx), then
[B → ·β, y] ∈ LR(1)(ε).

2 LR(1)(αY) (α ∈ X∗, Y ∈ X) is the least set such that

if [A → γ1 · Y γ2, x] ∈ LR(1)(α),
then [A → γ1Y · γ2, x] ∈ LR(1)(αY) and
if [A → γ1 · Bγ2, x] ∈ LR(1)(αY), B → β ∈ P , and y ∈ fi(γ2x), then
[B → ·β, y] ∈ LR(1)(αY).

Compiler Construction Winter semester 2009/10 18

Computing LR(1) Sets II

Example 11.13 (cf. Example 11.7)

GLR : S′ → S S → L=R | R L → *R | a R → L

LR(1)(GLR): [S′ → ·S, ε] ∈ LR(1)(ε) [A → ·Bγ, x] ∈ LR(1)(ε), B → β ∈ P, y ∈ fi(γx)
=⇒ [B → ·β, y] ∈ LR(1)(ε)

I ′

0 := LR(1)(ε) : [S′ → ·S, ε] [S → ·L=R, ε] [S → ·R, ε] [L → ·*R,=]
[L → ·a, =] [R → ·L, ε] [L → ·*R, ε] [L → ·a, ε]

I ′

1 := LR(1)(S) : [S′ → S·, ε]
I ′

2 := LR(1)(L) : [S → L · =R, ε] [R → L·, ε]
I ′

3 := LR(1)(R) : [S → R·, ε]
I ′

4 := LR(1)(*) : [L → * · R, =] [L → * · R, ε] [R → ·L, =] [R → ·L, ε]
[L → ·*R, =] [L → ·a, =] [L → ·*R, ε] [L → ·a, ε]

I ′

5 := LR(1)(a) : [L → a·, =] [L → a·, ε]
I ′

6 := LR(1)(L=) : [S → L= · R, ε] [R → ·L, ε] [L → ·*R, ε] [L → ·a, ε]
I ′

7 := LR(1)(*R) : [L → *R·, =] [L → *R·, ε]
I ′

8 := LR(1)(*L) : [R → L·, =] [R → L·, ε]
I ′

9 := LR(1)(L=R) : [S → L=R·, ε]
I ′

10 := LR(1)(L=L) : [R → L·, ε]
I ′

11 := LR(1)(L=*) : [L → * · R, ε] [R → ·L, ε] [L → ·*R, ε] [L → ·a, ε]
I ′

12 := LR(1)(L=a) : [L → a·, ε]
I ′

13 := LR(1)(L=*R) : [L → *R·, ε]
I ′

14 := ∅
In I ′

2: shift on =/reduce on ε =⇒ GLR ∈ LR(1)
Compiler Construction Winter semester 2009/10 19

The LR(1) Action Function

Definition 11.14 (LR(1) action function)

The LR(1) action function
act : LR(1)(G) × Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I, x) :=











red i if π(i) = A → α and [A → α·, x] ∈ I
shift if [A → α1 · xα2, y] ∈ I and x ∈ Σ
accept if [S′ → S·, ε] ∈ I and x = ε
error otherwise

Corollary 11.15

For every G ∈ CFGΣ, G ∈ LR(1) iff its LR(1) action function is well
defined.

Compiler Construction Winter semester 2009/10 20

The LR(1) goto Function

The goto function is defined in analogy to the LR(0) case
(Definition 10.1). Likewise, it can be obtained using a powerset
construction.

Definition 11.16 (LR(1) goto function)

The function goto : LR(1)(G) × X → LR(1)(G) is determined by

goto(I, Y) = I ′ iff there exists γ ∈ X∗ such that
I = LR(1)(γ) and I ′ = LR(1)(γY).

Again, act and goto form the LR(1) parsing table of G.

Compiler Construction Winter semester 2009/10 21

The LR(1) Parsing Table

Example 11.17 (cf. Example 11.13)

LR(1)(GLR) act/goto|Σε
goto|N

* = a ε S L R
I ′0 shift/I ′4 shift/I ′5 I ′1 I ′2 I ′3
I ′1 accept
I ′2 shift/I ′6 red 5
I ′3 red 2
I ′4 shift/I ′4 shift/I ′5 I ′8 I ′7
I ′5 red 4
I ′6 shift/I ′11 shift/I ′12 I ′10 I ′9
I ′7 red 3
I ′8 red 5
I ′9 red 1
I ′10 red 5
I ′11 shift/I ′11 shift/I ′12 I ′10 I ′13
I ′12 red 4
I ′13 red 3

(empty = error/∅)

Compiler Construction Winter semester 2009/10 22

The LR(1) Parsing Automaton I

Definition 11.18 (LR(1) parsing automaton)

The LR(1) parsing automaton is defined as in the LR(0) case (see
Definition 10.9), except for the transition relation:

shift: (aw,αI, z) ⊢ (w,αII ′, z) if act(I, a) = shift and
goto(I, a) = I ′

reducea: (aw,αII1 . . . In, z) ⊢ (aw,αII ′, zi) if act(In, a) = red i,
π(i) = A → Y1 . . . Yn, and goto(I,A) = I ′

reduceε: (ε, αII1 . . . In, z) ⊢ (ε, αII ′, zi) if act(In, ε) = red i,
π(i) = A → Y1 . . . Yn, and goto(I,A) = I ′

accept: (ε, I0I, z) ⊢ (ε, ε, z 0) if act(I, ε) = accept

errora: (aw,αI, z) ⊢ (ε, ε, z error) if act(I, a) = error

errorε: (ε, αI, z) ⊢ (ε, ε, z error) if act(I, ε) = error

Compiler Construction Winter semester 2009/10 23

The LR(1) Parsing Automaton II

Example 11.19 (cf. Example 11.13)

GLR : S′ → S (0) S → L=R | R (1, 2) L → *R | a (3, 4) R → L (5)

LR(1)(GLR) act/goto|Σε
goto|N

* = a ε S L R
I ′

0 shift/I ′

4 shift/I ′

5 I ′

1 I ′

2 I ′

3

I ′

1 accept

I ′

2 shift/I ′

6 red 5
I ′

3 red 2
I ′

4 shift/I ′

4 shift/I ′

5 I ′

8 I ′

7

I ′

5 red 4
I ′

6 shift/I ′

11 shift/I ′

12 I ′

10 I ′

9

I ′

7 red 3
I ′

8 red 5
I ′

9 red 1
I ′

10 red 5
I ′

11 shift/I ′

11 shift/I ′

12 I ′

10I ′

13

I ′

12 red 4
I ′

13 red 3
(empty = error/∅)

LR(1) parsing of a=*a:

(a=*a, I ′

0 , ε)
⊢ (=*a, I ′

0I
′

5 , ε)
⊢ (=*a, I ′

0I
′

2 , 4)
⊢ (*a, I ′

0I
′

2I
′

6 , 4)
⊢ (a, I ′

0I
′

2I
′

6I
′

11 , 4)
⊢ (ε, I ′

0I
′

2I
′

6I
′

11I
′

12, 4)
⊢ (ε, I ′

0I
′

2I
′

6I
′

11I
′

10, 44)
⊢ (ε, I ′

0I
′

2I
′

6I
′

11I
′

13, 445)
⊢ (ε, I ′

0I
′

2I
′

6I
′

10 , 4453)
⊢ (ε, I ′

0I
′

2I
′

6I
′

9 , 44535)
⊢ (ε, I ′

0I
′

1 , 445351)
⊢ (ε, ε , 4453510)

Compiler Construction Winter semester 2009/10 24

	Repetition: LR(0) Parsing
	SLR(1) Parsing
	LR(1) Parsing

