Compiler Construction

Lecture 12: Syntactic Analysis VIII (LALR(1) Parsing)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

Rm Compiler Construction ‘Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/

© Repetition: [S]LR(1) Parsing

Rm Compiler Construction ter semester 2009/10

The SLR(1) Action Function

Definition (SLR(1) action function)

The SLR(1) action function
act : LR(0)(G) x . — {redi | i € [p]} U {shift, accept, error}
is defined by
redi ifn(i)=A— o, [A—a]el (i#0),
and x € fo(A)
act(I,x) := ¢ shift if [A— oy -zag] €l andz € X
accept if [§'— S:]elandx=c¢
error otherwise

Definition (SLR(1) grammar)

A grammar G € CFGx has the SLR(1) property (notation:
G € SLR(1)) if its SLR(1) action function is well defined.

Together, act and the LR(0) goto function (cf. Definition 10.1) form
the SLR(1) parsing table of G.

m Compiler Construction Winter semester 2009/10 3

LR(1) Items and Sets 1

Observation: not every element of fo(A) can follow every occurrence
of A
— refinement of LR(0) items by adding possible lookahead symbols

Definition (LR(1) items and sets)
Let G = (N, X%, P,S) € CFGy, be start separated by S — S.

o If 8" =% aAaw =, affraw, then [A — [31 - B2, a] is called an
LR(1) item for of.

o If ' =% aA =, af1fs, then [A — (1 - fa,¢] is called an LR(1)
item for af;.

o Given v € X*, LR(1)(vy) denotes the set of all LR(1) items for ~,
called the LR(1) set (or: LR(1) information) of ~.

o LR(1)(G) :={LR(1)(v) |y € X*}.

m Compiler Construction Winter semester 2009/10 4

LR(0) vs. LR(1)

GLR : Sl — S S — L=R | R LR(I)(GLR) :
L—*R|a R—L Ij(e) - S — .S, €] [S — -L=R, €]
S — ‘R, L — %R, =
LR(0)(GLR) : L— -a, =E}} {R = '275} }
Io(e) : S' — .S] [S — -L=R] L — xRe] [L — -a¢]
S — -R] [L — *R] Ii(S) g S’ — S €]
o gy B Bk
M — . . pa— - E
B0 ETmen AR SR
: — R R— L= [R—-L
Ii(*) L—x-R] [R— L] L — .*]7%, L] L — -a,f}}
I5(a) ; ﬁ : a*]R} [L — .a} . . é — ->#<R_7 6] i — -a, E}
(i) (55 o Al A5, B2t RaBSTY
— % — -a L — %R, ¢] L — -a €]
me: o gem: gl fim i
g : — L= — L&
Io(L=R) : [S — L=R'] 13(L=R) : [S— L=R.€]
Iio(L=L): [R — L-,¢€]
I, (L=x) L—x-Re] [R— -L,e]
L — xR,e] [L — -a,¢]
I,(L=a): [L — a,e]
Da(L=*R) : [L — *R- €]

Compiler Construction Winter semester 2009/10

The LR(1) Action Function

Definition (LR(1) action function)

The LR(1) action function
act : LR(1)(G) x . — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifn(i))=A—aand [A —a,z]e]
shift if [A— oy -zag,yl€land z € X
accept if [S" — S-,elelTandz=¢

error otherwise

act([,x) :=

For every G € CFGyx,, G € LR(1) iff its LR(1) action function is well
defined.

m Compiler Construction Winter semester 2009/10 6

© LALR(1) Parsing

Rm Compiler Construction ter semester 2009/10

LALR(1) Parsing

@ Motivation: resolving conflicts using LR(1) too expensive

o Example 11.7/11.13: |LR(0)(Grg)| = 11, [LR(1)(GLR)| = 15

@ A. Johnstone, E. Scott: Generalised Reduction Modified LR
Parsing for Domain Specific Language Prototyping, HICSS 02,
TEEE, 2002, nttp://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495

Grammar | |LR(0)(G)| |LR(1)(G)]

Ansi-C 381 1788

Pascal 368 1395

@ Observation: potential redundancy by containment of LR(0) sets
in LR(1) sets (cf. Corollary 11.9)

Definition 12.1 (LR(0) equivalence)

Let Irg : LR(1)(G) — LR(0)(G) be defined by

Iro(I) :={[A— B1-Po] | [A— B1-Po,z] € 1}.
Two sets I1,I5 € LR(1)(G) are called LR(0)-equivalent (notation:
Il ~0 IQ) if 11'0([1) = lI'()(IQ).

m Compiler Construction Winter semester 2009/10

http://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495

LR(0) Equivalence

Example 12.2 (cf. Example 11.7/11.13)

GLr: S§' =S S— L=R|R LRO)(GLR) :
L—*R|a R—L Ij(e) - g’ — I%S',E]} ﬁ — L;R,]s]
— R, e — xR, =
LR(0)(GLr) : L — a= [R— -L,é]
Io(e) : S’ — -S| [S — -L=R] L — *R,e] [L— -a,¢]
S—-R] [L— *R] HOK S — S €]
L — -a [R— L] L(L) : S — L-=R,e] [R — L-,é]
I (S) : S’ — S I§(R) o S — R-,¢]
Ix(L) : S — L-=R] [R— L] (%) : L—*-R=] [L— xR,
I3(R) : S — R R — -L,=] R— -L,¢
Ia(*) : L—*-R] [R— L] L— *R,=] [L— -a =]
L— *R] [L— -a] L — *R,e] [L— -a,¢]
I5(a) : L— a] Il(a) : L — a,=] L — a¢]
Is(L=): [S— L=-R][R— L IN(L=): [S—L=-R,e] [R— L
L— *R] [L— -2 L — *R,e] [L— -a,¢]
Iz(*R) : [L — *R] I5(xR) : L — *R-,=] [L — *R- €]
Ig(xL): [R— L' [§(*) : R — L= R — L-,€]
Ig(L=R) : [S — L=R'] I(L=R): [S — L=R:,¢]
— [,’1 ~0 [{1 1}0(L=L): R_>L'75}
[é ~0 [iQ [11(L=*) ¢ [L—%*-Re] [R— -Le]
g o , L — *R.e] [L—-a¢]
I ~o I7, 1}2(L=a) : L —a,g]
I13(L=*R) : [L — *R-, €]

m Compiler Construction Winter semester 2009/10

LALR(1) Sets 1

For every G € CFGy, |[LR(1)(G)/ ~o | = |[LR(0)(G)|.

Idea: merge LR(0)-equivalent LR(1) sets (maintaining the lookahead
information, but possibly introducing conflicts)

Definition 12.4 (LALR(1) sets)

Let G € CFGx.

o An information I € LR(1)(G) determines the LALR(1) set
Ulll~o = U{I" € LR()(G) | I ~o I}
@ The set of all LALR(1) sets of G is denoted by LALR(1)(G).

Remark: by Corollary 12.3, |LALR(1)(G)| = |LR(0)(G)]
(but LALR(1) sets provide additional lookahead information)

m Compiler Construction Winter semester 2009/10 10

LALR(1) Sets 1I

Example 12.5 (cf. Example 12.2)

Grr:S8' —S S—L=R|R L—*R|a R—1L

LR(O)(GLR) : LALR(l)(GLR):

Iy(e) : S —-S] [S—-L=R] Ij:=1I: S" — -S| [S — -L=R, €]
S — -R] [L — -*R] S — ‘R, ¢] [L — *R,=/¢]
L — -a] [R — -L] L — .a,=/¢] [R— -L,¢]

L(S): [9—29] I':=1: S — S €]

I(L): [S— L-=R][R— L] I =1 S — L-=R,e] [R— L-¢]

I3(R): [S— R] I =1 S — R- €]

Is(¥): [L—*-R] [R— L] I{=ILUI;: [L—* R=/e] [R— L,=/e]
L— *R] [L— - L — *R,=/e] [L— -a=/e]

Is(a): [L—a] I§ =g Ul : [L — a,=/e]

IG(L=) : SHL:R] [RHL]]é/ = Ié : S_>L='R7E] [R_>L’E]
L — *R] [L— 4] L — *R, €] [L — -a,¢€]

I;(*R) : [L — *R/] I =T, Ulis: [L — *R-,=/€]

Is(xL): [R— L 1 = W 2 TR = e =]

Iy(L=R) : [S — L=R'] iy =1 ¢ S — L=R-,¢]

m Compiler Construction Winter semester 2009/10 11

The LALR(1) Action Function

The LALR(1) action function is defined in analogy to the LR(1) case
(Definition 11.14).

Definition 12.6 (LALR(1) action function)

The LALR(1) action function

act : LALR(1)(G) x Xz — {redi | i € [p]} U {shift, accept, error}
is defined by
redi ifr(i)=A—aand [A— a,z]€l
shift if [A— a;-zag,yl€land z € X
accept if [S" — S, elelTandz=¢
error otherwise

act([,z) :=

Definition 12.7 (LALR(1) grammar)

A grammar G € CFGx, has the LALR(1) property (notation:
G € LALR(1)) if its LALR(1) action function is well defined.

m Compiler Construction Winter semester 2009/10 12

The LALR(1) goto Function

Example 12.8 (cf. Example 12.5)

GLRr € LALR(l)

Also the LR(1) goto function (Definition 11.16) carries over to the
LALR(1) case. Reason:

Let G € CFGyx, and I1,1s € LR(1)(G) such that Iy ~o Is. Then, for
every Y € X, goto(11,Y) ~o goto(l2,Y).

Again, act and goto form the LALR(1) parsing table of G.

m' Compiler Construction Winter semester 2009/10

The LALR(1) Parsing Table

Example 12.10 (cf. Example 12.5)

LALR(1)(GLR) act/goto|x, goto| N
* = a € S L R
7 shift/T7 shift/ 7 T I 17
i accept
I} shift /I red 5
I red 2
I shift/ 17 shift /I o
I red 4 red 4
I shift/I” shift/ I I
I red 3 red 3
Iy red 5 red 5
I red 1
(empty = error /()

m Compiler Construction Winter semester 2009/10 14

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 12.11

G:S5 —S S— aAd|bBd|aBe|bde

LR(1)(g) :
LR(1)(S) :
LR(1)(a) :
LR(1)(b) :
LR(1)(aA) :
LR(1)(ac) :
LR(1)(bB) :
LR(1)(bc) :
LR(1)(aAd)
LR(1)(bB4) :

S’ — .S €]
S — bAe, €]
S’ — S €]

S —a-Ad,e]| [S— a- Be,¢]
S —b-Bde| [S—b- Ae,¢]

S —ad-d,e|
A — c-,d]
S —bB-d,¢]
B — c-,d]

: [S — add, €]

S — bBd., €]

no conflicts = G € LR(1)

LR(1)(ac) ~o LR(1)(bc), but LR(1)(ac)U LR(1)(bc) has conflicts
= G ¢ LALR(1)

[S — -add, €]

[B — c-e]

[A — c-, €]

A—c

B—c
[S — -bBd,¢] [S — -aBe,¢]

[A— -c,d] [B— -c,e€]
[B— c,d] [A— e
LR(1)(aB): [S — aB-e,¢]
LR(1)(bA): [S— bA-e,g]
LR(1)(aBe): [S — aBe-,¢]
LR(1)(bAe) : [S — bAe-, €]

Compiler Construction

Winter semester 2009/10

15

Efficient Construction of LALR(1) Parsers

Naive algorithm to construct LALR(1) parser for G € CFGx:
@ Construct LR(1)(G)
© Determine and merge LR(0)-equivalent LR(1) sets

Problem: no reduction of peak space requirement

Idea of improved algorithm (see Aho/Lam/Sethi/Ullman: Compilers:
Principles, Techniques, and Tools, 2nd ed., p. 270ff):

@ Represent each set of items by its kernel, i.e., by the items of the
form [S" — -S,e] or [A — (1 - B2, x| where 31 # ¢

@ Construct LALR(1) kernels from LR(0) kernels similarly to LR(1)
items

© Compute LALR(1) sets by taking the e-closure

(applied in yacc parser generator)

m' Compiler Construction Winter semester 2009/10 16

© Bottom-Up Parsing of Ambiguous Grammars

Rm Compiler Construction nter semester 2009/10

Ambiguous Grammars

Reminder (Definition 5.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

If G € CFGy is ambiguous, then G & |J,cny LR(K).

Proof.

Assume that there exist £ € N and G € LR(k) such that G is ambiguous.
Hence there exists w € L(G) with different right derivations. Let aAv be the
last common sentence of the two derivations (i.e., 5 # §'):

=, afv =>Fw

=, af'v=Fw

But since firsty (v) = firsty(v) for every v € ¥*, Definition 9.7 yields that

B = 3. Contradiction O

S = aAv

4

However ambiguity is a natural specification method which generally avoids

involved syntactic constructs.
m Compiler Construction Winter semester 2009/10 18

Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)
G:E - FE E — E+E | E*E | a

Precedence: * > + Associativity: left

(thus: at+a*a+a :=(a+(axa))+a)

LR(0)(G):

Iy := LR(0)(¢) : [E) — -E] [E — -E+E| [E — -E*E]| [E — -a]
I .= LR(0)(E) : [E' — E] [E - E-+E| [E — E -*E]
L=IR(0)a): [E—al

I .= LR(0)(E+): |E — E+-E|[E — -E+E| [E — -E+E] [E — -3
I,:= LR(0)(E*): [E — E*x-E][E— E+E] [E — -E*E] [E — -a]
I5 := LR(0)(E+E) : [E — E+E] [E — E-+E| [E — E - xE]

Is := LR(0)(E*E) : [E — E*E] [E — E-+E|] [E — E - xE]

Conflicts: I1: SLR(1)-solvable (reduce on e, shift on +/*)
I5, Is: not SLR(1)-solvable (+, * € fo(FE))

Solution:
Is: * >+ == act([5, *) := shift, + left assoc. = act(I5,+) :=red1
Ig: * >+ = act(lg, +) := red 2, * left assoc. = act(lg, *) := red 2

m Compiler Construction Winter semester 2009/10 19

Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling)

G:5—>8 S—iSeS|iS|a
Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(0)(G):

Iy := LR(0)(¢) : {S’ — 5] [S — -iSeS] [S — i8]

I := LR(0)(S) : [

I = LR(0)(1): [S—1-SeS|[S—1-9] [S— -iSeS]
[S — -iS] [S — -a]

I3 := LR(0)(a) : [S — a]

I, := LR(0)(iS): [S—1S5-eS][S — iS]

I5 := LR(0)(iSe): [S — iSe-S][S — -iSeS] [S — -i5]
[
[
(

Is := LR(0)(iSeS) : [S — iSeS']

Solution (1): act(ly,e) := shift

m Compiler Construction Winter semester 2009/10 20

	Repetition: [S]LR(1) Parsing
	LALR(1) Parsing
	Bottom-Up Parsing of Ambiguous Grammars

