Compiler Construction

Lecture 13: Syntactic Analysis IX(Wrap-Up)/
Semantic Analysis I (Attribute Grammars)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/

@ Cenerating Parsers Using yacc

Rm Compiler Construction nter semester 2009/10

The yacc Tool

Usage of yacc (“yet another compiler compiler”):

yacc [f11lex
spec.y — y.tab.c lex.yy.c — spec.1l
yacc specification Parser source Scanner source [£f]11lex specification
Leel
a.out

Executable LALR(1) parser

Like for [f]lex, a yacc specification is of the form

Declarations (optional)
hto

Rules

hoto

Augziliary procedures (optional)

Rm Compiler Construction Winter semester 2009/10

yacc Specifications

Declarations: @ Token definitions: %token Tokens
@ Not every token needs to be declared (°+’, ’=?, ...)
@ Start symbol: %start Symbol (optional)
@ C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions

@ A—ay|az]...|a, represented as
A : ay {Action;}
| as {Actiong}

| a, {Action,};
® Semantic actions = C statements for computing attribute
values
@ $$ = attribute value of A
@ $i = attribute value of ith symbol on right-hand side
@ Default action: $$ = $1

Auxiliary procedures: scanner (if not [£f]1lex), error routines, ...

m' Compiler Construction Winter semester 2009/10 4

Example: Simple Desk Calculator 1

%{/* SLR(1) grammar for arithmetic expressions (Example 11.1) */
#include <stdio.h>
#include <ctype.h>

3

%token DIGIT

Dot

line : expr ’\n’ { prlntf("Vd\n" $1); };
expr : expr ’+’ term {$$=9%1+ $3; }
| term {$$=81; };
term : term ’*’ factor { $$ = $1 * $3; }
| factor { $$ = $1; };
factor : ’(’ expr ’)’ { $$ = $2; }
| DIGIT { 88 = $1; };
hte
yylex() {
int c;
= getchar();
if (isdigit(c)) yylval = ¢ - ’0’; return DIGIT;
return c;
}

Rm Compiler Construction Winter semester 2009/10

Example: Simple Desk Calculator 11

> yacc calc.y

> cc y.tab.c -1y
> a.out

2+3

5

> a.out

2+3%5

17

Rm Compiler Construction Winter semester 2009/10 6

An Ambiguous Grammar I

%{/* Ambiguous grammar for arithm. expressions (Ex. 12.13) */
#include <stdio.h>
#include <ctype.h>

h}

%token DIGIT

ho

line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr {83 =81+ 93; }
| expr ’*’ expr { $8 = $1 * $3; }
| DIGIT {$$=91; };
YA
yylex() {
int c;

c = getchar();
if (isdigit(c)) {yylval = ¢ - ’0’; return DIGIT;}
return c;

Rm Compiler Construction Winter semester 2009/10 7

An Ambiguous Grammar II

Invoking yacc with the option -v produces a report y.output:
State 8

2 expr: expr . ’+’ expr

2 | expr ’+’ expr .

3 | expr . ’*’ expr

’+’ shift and goto state 6
’*’ shift and goto state 7

242 [reduce with rule 2 (expr)]

%2 [reduce with rule 2 (expr)]
State 9

2 expr: expr . ’+’ expr

3 | expr . ’*’ expr

3 | expr %’ expr .

’+’ shift and goto state 6
’*’ shift and goto state 7

742 [reduce with rule 3 (expr)]
%2 [reduce with rule 3 (expr)]

Rm Compiler Construction Winter semester 2009/10

Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification
shift /reduce: prefer shift

@ resolves dangling-else ambiguity (Example 12.14) correctly

@ also adequate for strong following weak operator (* after
+; Example 12.13) and for right-associative operators

@ not appropriate for weak following strong operator and for
left-associative binary operators
(= reduce; see Example 12.13)

For ambiguous grammar:

> yacc ambig.y

conflicts: 4 shift/reduce
> cc y.tab.c -1y

> a.out

2+3%*5

17

> a.out

2%x3+5

16

Rm Compiler Construction Winter semester 2009/10 9

Precedences and Associativities in yacc I

General mechanism for resolving conflicts:

hlleft|right] Operators;
hlleft|right] Operators,

@ operators in one line have given associativity and same precedence

@ precedence increases over lines

Example 13.1
Yleft *+2 2=
hleft x> 2/’
%right °>°°

" (right associative) binds stronger than * and / (left associative),
which in turn bind stronger than + and - (left associative)

m' Compiler Construction Winter semester 2009/10 10

Precedences and Associativities in yacc 11

%{/* Ambiguous grammar for arithmetic expressions
with precedences and associativities */
#include <stdio.h>
#include <ctype.h>
h}
%token DIGIT
%hleft >+’
%hleft %’
ol
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { 8% =81+ $3; }
| expr ’*’ expr { $$ =81 % $3; }
| DIGIT { 8% = 815 };

Dot
yylex() {
int c;
c = getchar();
if (isdigit(c)) {yylval = ¢ - ’0’; return DIGIT;}
return c;

Rm Compiler Construction Winter semester 2009/10

Precedences and Associativities in yacc 111

> yacc ambig-prio.y
> cc y.tab.c -1y

> a.out

2%3+5

11

> a.out

2+3%5

17

Rm Compiler Construction Winter semester 2009/10 12

© Expressiveness of LL and LR Grammars

Rm Compiler Construction nter semester 2009/10 13

Overview of Grammar Classes

LL(1) G4y (Ex. 7.7)
Moreover:
. LL(0) o LL(k) G LL(k+1)
(singletons) for every k € N
® LR(k) & LR(k+1)
oG (Ex. 9.14) for every k € N

o LL(k) C LR(k)
for every k € N

eGap (Ex. 11.5)

eGrr (Ex. 12.5)

oG (Ex. 12.11)

m Compiler Construction Winter semester 2009/10 14

Overview of Language Classes

(cf. O. Mayer: Syntaxanalyse, BI-Verlag, 1978, p. 409ff)

L(LL(1))
REC Moreover:
o L(LL(k)) S
L(LL(0)) L(LL(k+1)) S
L(LR(1)
for every k € N
o L(LR(k)) =
= = L(LR(1))
= det. CFL for every k > 1
unambiguous CFL
CFL

15

m Compiler Construction Winter semester 2009/10

© LL and LR Parsing in Practice

Rm Compiler Construction nter semester 2009/10 16

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
o LL parsing technique easier to understand
@ recursive-descent parser easier to debug than LALR
action tables
Generality : LALR wins
o “almost” LL(1) C LALR(1) (only pathological
counterexamples)
o LL requires elimination of left recursion and left
factorization
Semantic actions : (see semantic analysis) LL wins
@ actions can be placed anywhere in LL parsers without
causing conflicts
o in LALR: implicit e-productions

m' Compiler Construction Winter semester 2009/10 17

Q Overview

Rm iler Construction /inter semester

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

Y
Syntactic analysis (Parser))

Y
(Somantic analysis)

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Winter semester 2009/10 19

© Problem Statement

Rm Compiler Construction nter semester 2009/10 20

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

o Are there identifiers that are not declared? Declared but not used?
o Is x a scalar, an array, or a procedure? Of which type?

@ Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Where should the value of x be stored (register/stack/heap)?

Do p and q refer to the same memory location (aliasing)?

¢ & ¢ ¢

o ...

These cannot be expressed using context-free grammars!

(e.g., {ww | we X*} ¢ CFLy)

Rm Compiler Construction Winter semester 2009/10

Static Semantics

Static semantics refers to properties of program constructs
@ which are true for every occurrence of this construct in every
program execution (static) and
@ can be decided at compile time
@ but are context-sensitive and thus not expressible using
context-free grammars (semantics).

Example properties:
Static: type or declaredness of an identifier, number of registers
required to evaluate an expression, ...
Dynamic: value of an expression, size of runtime stack, ...

These properties are determined by

Scope rules: defines part of program where a declaration is valid

Visibility rules: defines part of scope where a declaration is visible
(overlapping of global and local declarations)

Typing rules: defines type consistency of expressions, statements, ...

m' Compiler Construction Winter semester 2009/10

O Attribute Grammars

Rm Compiler Construction inter semester 2009/10 23

Attribute Grammars 1

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

—> Semantic analysis = attribute evaluation

Result: attributed syntax tree

In greater detail:
o With every nonterminal a set of attributes is associated.
o Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leafs to the root)
Inherited: top-down computation (from the root to the leafs)

o With every production a set of semantic rules is associated.

m' Compiler Construction Winter semester 2009/10 24

Attribute Grammars 11

Advantage: attribute grammars provide a very flexible and broadly
applicable mechanism for transporting information throught the syntax
tree (“syntax-directed translation”)

o Attribute values: symbol tables, data types, code, error flags, ...
o Application in Compiler Construction:

o static semantics

@ program analysis for optimization

e code generation

e error handling
o Automatic attribute evaluation by compiler generators

(cf. yacc’s synthesized attributes)

o Originally designed by D. Knuth for defining the semantics of
context-free languages (Math. Syst. Theory 2 (1968), pp. 127-145)

m' Compiler Construction Winter semester 2009/10 25

Example: Knuth’s Binary Numbers I

Example 13.2 (only synthesized attributes)

Binary numbers (with fraction):

Ggp: Numbers N — L v.0 = v.1
N—-L.L v0 = v.1+v.3/2"3
Lists L— B v.0 = v.l
[0 =1
L—-LB v.0 = 2x%xv.1l+v.2
[0 =1011+1
Bits B —0 v.0 = 0
Bits B—1 v.0 =1

Synthesized attributes of N,L,B: v (value; domain: V¥ := Q)
of L: I (length; domain: V!:=N)

Semantic rules: equations with attribute variables
(index = position of symbol; 0 = left-hand side)

m Compiler Construction Winter semester 2009/10 26

Example: Knuth’s Binary Numbers 11

Example 13.2 (continued)

Syntax tree for 1101.01:

B—0:v0=0B—1:v.0=1L — B :
v.0=0v1L - B:l0=1L—-LB:v.0=2%v.1+v2L —- LB :10=

ooty

Compiler Construction Winter semester 2009/10

	Generating Parsers Using yacc
	Expressiveness of LL and LR Grammars
	LL and LR Parsing in Practice
	Overview
	Problem Statement
	Attribute Grammars

