
Compiler Construction

Lecture 13: Syntactic Analysis IX(Wrap-Up)/
Semantic Analysis I (Attribute Grammars)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Outline

1 Generating Parsers Using yacc

2 Expressiveness of LL and LR Grammars

3 LL and LR Parsing in Practice

4 Overview

5 Problem Statement

6 Attribute Grammars

Compiler Construction Winter semester 2009/10 2

The yacc Tool

Usage of yacc (“yet another compiler compiler”):

spec.y
yacc
−→ y.tab.c lex.yy.c

[f]lex
←− spec.l

yacc specification Parser source Scanner source [f]lex specification
↓ cc ↓
a.out

Executable LALR(1) parser

Like for [f]lex, a yacc specification is of the form

Declarations (optional)
%%

Rules
%%

Auxiliary procedures (optional)

Compiler Construction Winter semester 2009/10 3

yacc Specifications

Declarations: Token definitions: %token Tokens
Not every token needs to be declared (’+’, ’=’, ...)
Start symbol: %start Symbol (optional)
C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions

A → α1 | α2 | . . . | αn represented as
A : α1 {Action1}

| α2 {Action2}
...
| αn {Actionn};

Semantic actions = C statements for computing attribute
values
$$ = attribute value of A
$i = attribute value of ith symbol on right-hand side
Default action: $$ = $1

Auxiliary procedures: scanner (if not [f]lex), error routines, ...

Compiler Construction Winter semester 2009/10 4

Example: Simple Desk Calculator I

%{/* SLR(1) grammar for arithmetic expressions (Example 11.1) */
#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ term { $$ = $1 + $3; }

| term { $$ = $1; };
term : term ’*’ factor { $$ = $1 * $3; }

| factor { $$ = $1; };
factor : ’(’ expr ’)’ { $$ = $2; }

| DIGIT { $$ = $1; };
%%
yylex() {
int c;
c = getchar();
if (isdigit(c)) yylval = c - ’0’; return DIGIT;
return c;

}

Compiler Construction Winter semester 2009/10 5

Example: Simple Desk Calculator II

> yacc calc.y

> cc y.tab.c -ly

> a.out

2+3

5

> a.out

2+3*5

17

Compiler Construction Winter semester 2009/10 6

An Ambiguous Grammar I

%{/* Ambiguous grammar for arithm. expressions (Ex. 12.13) */
#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { $$ = $1 + $3; }

| expr ’*’ expr { $$ = $1 * $3; }
| DIGIT { $$ = $1; };

%%
yylex() {
int c;
c = getchar();
if (isdigit(c)) {yylval = c - ’0’; return DIGIT;}
return c;

}

Compiler Construction Winter semester 2009/10 7

An Ambiguous Grammar II

Invoking yacc with the option -v produces a report y.output:

...
State 8

2 expr: expr . ’+’ expr
2 | expr ’+’ expr .
3 | expr . ’*’ expr

’+’ shift and goto state 6
’*’ shift and goto state 7

’+’ [reduce with rule 2 (expr)]
’*’ [reduce with rule 2 (expr)]

State 9

2 expr: expr . ’+’ expr
3 | expr . ’*’ expr
3 | expr ’*’ expr .

’+’ shift and goto state 6
’*’ shift and goto state 7

’+’ [reduce with rule 3 (expr)]
’*’ [reduce with rule 3 (expr)]

Compiler Construction Winter semester 2009/10 8

Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification

shift/reduce: prefer shift

resolves dangling-else ambiguity (Example 12.14) correctly
also adequate for strong following weak operator (* after
+; Example 12.13) and for right-associative operators
not appropriate for weak following strong operator and for
left-associative binary operators
(=⇒ reduce; see Example 12.13)

For ambiguous grammar:

> yacc ambig.y
conflicts: 4 shift/reduce
> cc y.tab.c -ly
> a.out
2+3*5
17
> a.out
2*3+5
16

Compiler Construction Winter semester 2009/10 9

Precedences and Associativities in yacc I

General mechanism for resolving conflicts:

%[left|right] Operators1
...

%[left|right] Operatorsn

operators in one line have given associativity and same precedence

precedence increases over lines

Example 13.1

%left ’+’ ’-’

%left ’*’ ’/’

%right ’^’

^ (right associative) binds stronger than * and / (left associative),
which in turn bind stronger than + and - (left associative)

Compiler Construction Winter semester 2009/10 10

Precedences and Associativities in yacc II

%{/* Ambiguous grammar for arithmetic expressions
with precedences and associativities */

#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%left ’+’
%left ’*’
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { $$ = $1 + $3; }

| expr ’*’ expr { $$ = $1 * $3; }
| DIGIT { $$ = $1; };

%%
yylex() {
int c;
c = getchar();
if (isdigit(c)) {yylval = c - ’0’; return DIGIT;}
return c;

}

Compiler Construction Winter semester 2009/10 11

Precedences and Associativities in yacc III

> yacc ambig-prio.y

> cc y.tab.c -ly

> a.out

2*3+5

11

> a.out

2+3*5

17

Compiler Construction Winter semester 2009/10 12

Outline

1 Generating Parsers Using yacc

2 Expressiveness of LL and LR Grammars

3 LL and LR Parsing in Practice

4 Overview

5 Problem Statement

6 Attribute Grammars

Compiler Construction Winter semester 2009/10 13

Overview of Grammar Classes

LR(0) •G (Ex. 9.14)

SLR(1) •GAE (Ex. 11.5)

LL(1) •G′

AE
(Ex. 7.7)

LR(1) •G (Ex. 12.11)

LALR(1) •GLR (Ex. 12.5)

LL(0)

(singletons)

Moreover:

LL(k) $ LL(k +1)
for every k ∈ N

LR(k) $ LR(k+1)
for every k ∈ N

LL(k) ⊆ LR(k)
for every k ∈ N

Compiler Construction Winter semester 2009/10 14

Overview of Language Classes

(cf. O. Mayer: Syntaxanalyse, BI-Verlag, 1978, p. 409ff)

REG

L(LL(0))

L(LR(0))

L(LL(1))

CFL

L(SLR(1)) = L(LALR(1)) =

unambiguous CFL

L(LR(1)) = det . CFL

Moreover:

L(LL(k)) $
L(LL(k + 1)) $
L(LR(1))
for every k ∈ N

L(LR(k)) =
L(LR(1))
for every k ≥ 1

Compiler Construction Winter semester 2009/10 15

Outline

1 Generating Parsers Using yacc

2 Expressiveness of LL and LR Grammars

3 LL and LR Parsing in Practice

4 Overview

5 Problem Statement

6 Attribute Grammars

Compiler Construction Winter semester 2009/10 16

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins
LL parsing technique easier to understand
recursive-descent parser easier to debug than LALR
action tables

Generality : LALR wins
“almost” LL(1) ⊆ LALR(1) (only pathological
counterexamples)
LL requires elimination of left recursion and left
factorization

Semantic actions : (see semantic analysis) LL wins
actions can be placed anywhere in LL parsers without
causing conflicts
in LALR: implicit ε-productions
=⇒ may generate conflicts

Error handling : LL wins
Compiler Construction Winter semester 2009/10 17

Outline

1 Generating Parsers Using yacc

2 Expressiveness of LL and LR Grammars

3 LL and LR Parsing in Practice

4 Overview

5 Problem Statement

6 Attribute Grammars

Compiler Construction Winter semester 2009/10 18

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
Compiler Construction Winter semester 2009/10 19

Outline

1 Generating Parsers Using yacc

2 Expressiveness of LL and LR Grammars

3 LL and LR Parsing in Practice

4 Overview

5 Problem Statement

6 Attribute Grammars

Compiler Construction Winter semester 2009/10 20

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

Are there identifiers that are not declared? Declared but not used?

Is x a scalar, an array, or a procedure? Of which type?

Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Where should the value of x be stored (register/stack/heap)?

Do p and q refer to the same memory location (aliasing)?

...

These cannot be expressed using context-free grammars!
(e.g., {ww | w ∈ Σ∗} /∈ CFLΣ)

Compiler Construction Winter semester 2009/10 21

Static Semantics

Static semantics refers to properties of program constructs

which are true for every occurrence of this construct in every
program execution (static) and

can be decided at compile time

but are context-sensitive and thus not expressible using
context-free grammars (semantics).

Example properties:

Static: type or declaredness of an identifier, number of registers
required to evaluate an expression, ...

Dynamic: value of an expression, size of runtime stack, ...

These properties are determined by

Scope rules: defines part of program where a declaration is valid

Visibility rules: defines part of scope where a declaration is visible
(overlapping of global and local declarations)

Typing rules: defines type consistency of expressions, statements, ...

Compiler Construction Winter semester 2009/10 22

Outline

1 Generating Parsers Using yacc

2 Expressiveness of LL and LR Grammars

3 LL and LR Parsing in Practice

4 Overview

5 Problem Statement

6 Attribute Grammars

Compiler Construction Winter semester 2009/10 23

Attribute Grammars I

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

=⇒ Semantic analysis = attribute evaluation

Result: attributed syntax tree

In greater detail:

With every nonterminal a set of attributes is associated.

Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leafs to the root)
Inherited: top-down computation (from the root to the leafs)

With every production a set of semantic rules is associated.

Compiler Construction Winter semester 2009/10 24

Attribute Grammars II

Advantage: attribute grammars provide a very flexible and broadly
applicable mechanism for transporting information throught the syntax
tree (“syntax-directed translation”)

Attribute values: symbol tables, data types, code, error flags, ...

Application in Compiler Construction:

static semantics
program analysis for optimization
code generation
error handling

Automatic attribute evaluation by compiler generators
(cf. yacc’s synthesized attributes)

Originally designed by D. Knuth for defining the semantics of
context-free languages (Math. Syst. Theory 2 (1968), pp. 127–145)

Compiler Construction Winter semester 2009/10 25

Example: Knuth’s Binary Numbers I

Example 13.2 (only synthesized attributes)

Binary numbers (with fraction):

GB : Numbers N → L v.0 = v.1
N → L.L v.0 = v.1 + v.3/2l.3

Lists L → B v.0 = v.1
l.0 = 1

L → LB v.0 = 2 ∗ v.1 + v.2
l.0 = l.1 + 1

Bits B → 0 v.0 = 0
Bits B → 1 v.0 = 1

Synthesized attributes of N,L,B: v (value; domain: V v := Q)
of L: l (length; domain: V l := N)

Semantic rules: equations with attribute variables
(index = position of symbol; 0 = left-hand side)

Compiler Construction Winter semester 2009/10 26

Example: Knuth’s Binary Numbers II

Example 13.2 (continued)

Syntax tree for 1101.01: N

L . L

L B

L B

L B

B

1

0

1

1

L B

B 1

0

v : 13.25

v : 13 v : 1 l : 2

v : 6 v : 1

v : 3 v : 0

v : 1 v : 1

v : 1

v : 0 l : 1 v : 1

v : 0

B → 0 : v.0 = 0B → 1 : v.0 = 1L → B :
v.0 = v.1L → B : l.0 = 1L → LB : v.0 = 2 ∗ v.1 + v.2L → LB : l.0 =
l.1 + 1N → L.L : v.0 = v.1 + v.3/2l.3Compiler Construction Winter semester 2009/10 27

	Generating Parsers Using yacc
	Expressiveness of LL and LR Grammars
	LL and LR Parsing in Practice
	Overview
	Problem Statement
	Attribute Grammars

