

Compiler Construction

Lecture 14: Semantic Analysis II (Definition and Circularity of Attribute Grammars)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/cc09/>

Winter semester 2009/10

- 1 Repetition: Attribute Grammars
- 2 Adding Inherited Attributes
- 3 Formal Definition of Attribute Grammars
- 4 Circularity of Attribute Grammars
- 5 Attribute Dependency Graphs

Goal: compute context-dependent but runtime-independent properties of a given program

Idea: enrich context-free grammar by **semantic rules** which annotate syntax tree with **attribute values**

⇒ **Semantic analysis = attribute evaluation**

Result: **attributed syntax tree**

In greater detail:

- With every nonterminal a set of attributes is associated.
- Two types of attributes are distinguished:
 - Synthesized:** bottom-up computation (from the leafs to the root)
 - Inherited:** top-down computation (from the root to the leafs)
- With every production a set of semantic rules is associated.

Example: Knuth's Binary Numbers I

Example (only synthesized attributes)

Binary numbers (with fraction):

G_B :	Numbers	$N \rightarrow L$	$v.0 = v.1$
		$N \rightarrow L.L$	$v.0 = v.1 + v.3/2^{l.3}$
Lists		$L \rightarrow B$	$v.0 = v.1$
			$l.0 = 1$
		$L \rightarrow LB$	$v.0 = 2 * v.1 + v.2$
			$l.0 = l.1 + 1$
Bits		$B \rightarrow 0$	$v.0 = 0$
Bits		$B \rightarrow 1$	$v.0 = 1$

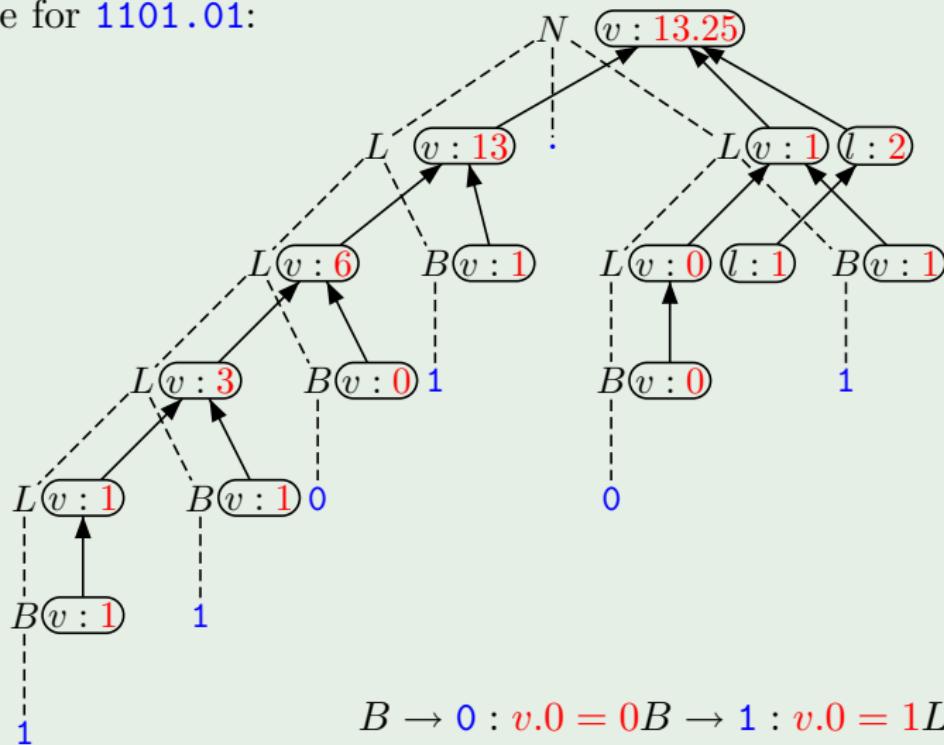
Synthesized attributes of N, L, B : v (value; domain: $V^v := \mathbb{Q}$)
of L : l (length; domain: $V^l := \mathbb{N}$)

Semantic rules: equations with attribute variables
(index = position of symbol; 0 = left-hand side)

Example: Knuth's Binary Numbers II

Example (continued)

Syntax tree for 1101.01:



$v.0 \equiv v.1L \rightarrow B : l.0 \equiv 1L \rightarrow LB : v.0 \equiv 2 * v.1 + v.2L \rightarrow LB : l.0 \equiv$

- 1 Repetition: Attribute Grammars
- 2 Adding Inherited Attributes
- 3 Formal Definition of Attribute Grammars
- 4 Circularity of Attribute Grammars
- 5 Attribute Dependency Graphs

Adding Inherited Attributes I

Example 14.1 (synthesized + inherited attributes)

Binary numbers (with fraction):

G'_B : Numbers	$N \rightarrow L$	$v.0 = v.1$
		$p.1 = 0$
	$N \rightarrow L.L$	$v.0 = v.1 + v.3$
		$p.1 = 0$
		$p.3 = -l.3$
Lists	$L \rightarrow B$	$v.0 = v.1$
		$l.0 = 1$
		$p.1 = p.0$
	$L \rightarrow LB$	$v.0 = v.1 + v.2$
		$l.0 = l.1 + 1$
		$p.1 = p.0 + 1$
		$p.2 = p.0$
Bits	$B \rightarrow 0$	$v.0 = 0$
Bits	$B \rightarrow 1$	$v.0 = 2^{p.0}$

Synthesized attributes of N, L, B : v (value; domain: $V^v := \mathbb{Q}$)

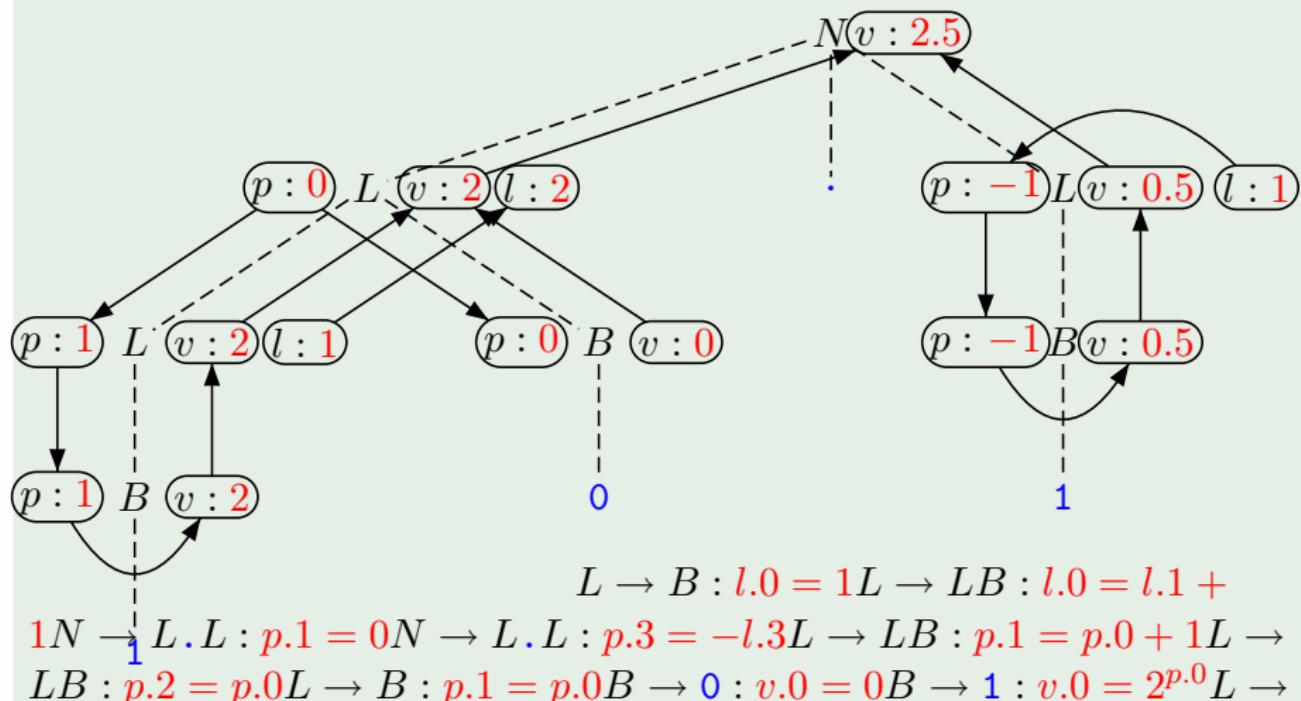
of L : l (length; domain: $V^l := \mathbb{N}$)

Inherited attribute of L, B : p (position; domain: $V^p := \mathbb{Z}$)

Adding Inherited Attributes II

Example 14.1 (continued)

Syntax tree for 10.1:



- 1 Repetition: Attribute Grammars
- 2 Adding Inherited Attributes
- 3 Formal Definition of Attribute Grammars
- 4 Circularity of Attribute Grammars
- 5 Attribute Dependency Graphs

Definition 14.2 (Attribute grammar)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ with $X := N \uplus \Sigma$.

- Let $Att = Syn \uplus Inh$ be a set of (synthesized or inherited) attributes, and let $V = \bigcup_{\alpha \in Att} V^{\alpha}$ be a union of value sets.
- Let $att : X \rightarrow 2^{Att}$ be an attribute assignment, and let $syn(Y) := att(Y) \cap Syn$ and $inh(Y) := att(Y) \cap Inh$ for every $Y \in X$.
- Every production $\pi = Y_0 \rightarrow Y_1 \dots Y_r \in P$ determines the set

$$Var_{\pi} := \{\alpha.i \mid \alpha \in att(Y_i), i \in \{0, \dots, r\}\}$$

of attribute variables of π with the subsets of inner and outer variables:

$$In_{\pi} := \{\alpha.i \mid (i = 0, \alpha \in syn(Y_i)) \text{ or } (i \in [r], \alpha \in inh(Y_i))\}$$
$$Out_{\pi} := Var_{\pi} \setminus In_{\pi}$$

- A semantic rule of π is an equation of the form

$$\alpha.i = f(\alpha_1.i_1, \dots, \alpha_n.i_n)$$

where $n \in \mathbb{N}$, $\alpha.i \in In_{\pi}$, $\alpha_j.i_j \in Out_{\pi}$, and $f : V^{\alpha_1} \times \dots \times V^{\alpha_n} \rightarrow V^{\alpha}$.

- For each $\pi \in P$, let E_{π} be a set with exactly one semantic rule for every inner variable of π , and let $E := (E_{\pi} \mid \pi \in P)$.

Then $\mathfrak{A} := \langle G, E, V \rangle$ is called an attribute grammar: $\mathfrak{A} \in AG$.

Example 14.3 (cf. Example 14.1)

$\mathfrak{A}_B \in AG$ for binary numbers:

- Attributes: $Att = Syn \uplus Inh$ with $Syn = \{v, l\}$ and $Inh = \{p\}$
- Value sets: $V^v = \mathbb{Q}$, $V^l = \mathbb{N}$, $V^p = \mathbb{Z}$
- Attribute assignment:

$Y \in X$	N	L	B	0	1
$syn(Y)$	$\{v\}$	$\{v, l\}$	$\{v\}$	\emptyset	\emptyset
$inh(Y)$	\emptyset	$\{p\}$	$\{p\}$	\emptyset	\emptyset

- Attribute variables:

$\pi \in P$	$N \rightarrow L$	$N \rightarrow L \cdot L$	$L \rightarrow B$
In_π	$\{v.0, p.1\}$	$\{v.0, p.1, p.3\}$	$\{v.0, l.0, p.1\}$
Out_π	$\{v.1, l.1\}$	$\{v.1, l.1, v.3, l.3\}$	$\{v.1, p.0\}$
$\pi \in P$	$L \rightarrow LB$	$B \rightarrow 0$	$B \rightarrow 1$
In_π	$\{v.0, l.0, p.1, p.2\}$	$\{v.0\}$	$\{v.0\}$
Out_π	$\{v.1, v.2, l.1, p.0\}$	$\{p.0\}$	$\{p.0\}$

- Semantic rules: see Example 14.1
(e.g., $E_{N \rightarrow L} = \{v.0 = v.1, p.1 = 0\}$)

Definition 14.4 (Attribution of syntax trees)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G with the set of nodes K .

- K determines the set of **attribute variables of t** :

$$Var_t := \{\alpha.k \mid k \in K \text{ labelled with } Y \in X, \alpha \in \text{att}(Y)\}.$$

- Let $k_0 \in K$ be an (inner) node where production $\pi = Y_0 \rightarrow Y_1 \dots Y_r \in P$ is applied, and let $k_1, \dots, k_r \in K$ be the corresponding successor nodes. The **attribute equation system** E_{k_0} of k_0 is obtained from E_π by substituting every attribute index $i \in \{0, \dots, r\}$ by k_i .
- The **attribute equation system** of t is given by

$$E_t := \bigcup \{E_k \mid k \text{ inner node of } t\}.$$

Corollary 14.5

For each $\alpha.k \in \text{Var}_t$ except the inherited attribute variables at the root and the synthesized attribute variables at the leafs of t , E_t contains **exactly one equation** with left-hand side $\alpha.k$.

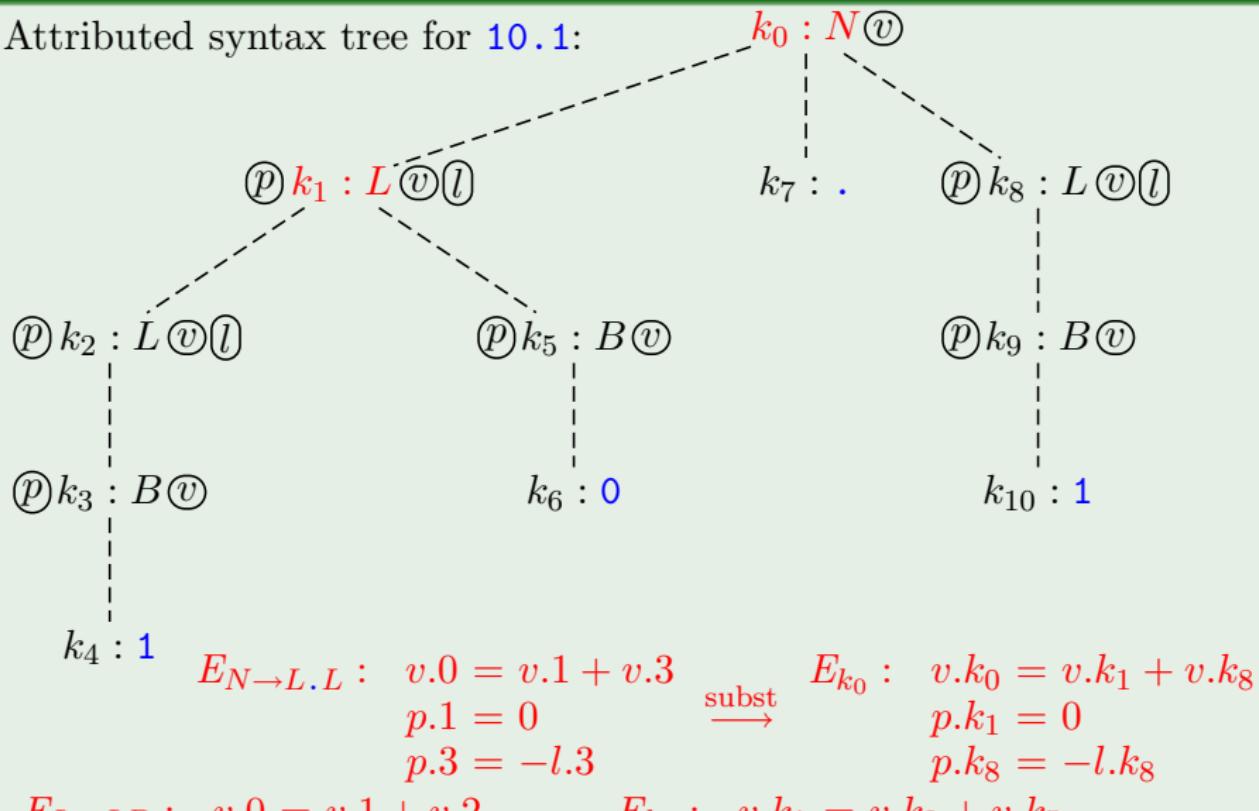
Assumptions:

- The start symbol does not have inherited attributes: $\text{inh}(S) = \emptyset$.
- Synthesized attributes of terminal symbols are provided by the scanner.

Attribution of Syntax Trees III

Example 14.6 (cf. Example 14.1)

Attributed syntax tree for 10.1:



- 1 Repetition: Attribute Grammars
- 2 Adding Inherited Attributes
- 3 Formal Definition of Attribute Grammars
- 4 Circularity of Attribute Grammars
- 5 Attribute Dependency Graphs

Definition 14.7 (Solution of attribute equation system)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G . A **solution** of E_t is a mapping

$$v : \text{Var}_t \rightarrow V$$

such that, for every $\alpha.k \in \text{Var}_t$ and $\alpha.k = f(\alpha.k_1, \dots, \alpha.k_n) \in E_t$,

$$v(\alpha.k) = f(v(\alpha.k_1), \dots, v(\alpha.k_n)).$$

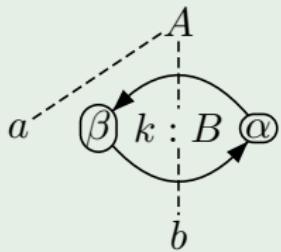
In general, the attribute equation system E_t of a given syntax tree t can have

- no solution,
- exactly one solution, or
- several solutions.

Example 14.8

- $A \rightarrow aB, B \rightarrow b \in P$
- $\alpha \in \text{syn}(B), \beta \in \text{inh}(B)$
- $\beta.2 = f(\alpha.2) \in E_{A \rightarrow aB}$
- $\alpha.0 = g(\beta.0) \in E_{B \rightarrow b}$

\implies **cyclic dependency:**



\implies for $V^\alpha := V^\beta := \mathbb{N}$, $g(x) := x$, and

- $f(x) := x + 1$: **no solution**
- $f(x) := 2x$: **exactly one solution**
 $(v(\alpha.k) = v(\beta.k) = 0)$
- $f(x) := x$: **infinitely many solutions**
 $(v(\alpha.k) = v(\beta.k) = y \text{ for any } y \in \mathbb{N})$

$$E_t : \begin{aligned} \beta.k &= f(\alpha.k) \\ \alpha.k &= g(\beta.k) \end{aligned}$$

Goal: **unique solvability** of equation system
⇒ avoid cyclic dependencies

Definition 14.9 (Circularity)

An attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$ is called **circular** if there exists a syntax tree t such that the attribute equation system E_t is recursive (i.e., some attribute variable of t depends on itself). Otherwise it is called **noncircular**.

Remark: because of the division of Var_π into In_π and Out_π , cyclic dependencies cannot occur at production level (see Corollary 14.11).

- 1 Repetition: Attribute Grammars
- 2 Adding Inherited Attributes
- 3 Formal Definition of Attribute Grammars
- 4 Circularity of Attribute Grammars
- 5 Attribute Dependency Graphs

Goal: graphic representation of attribute dependencies

Definition 14.10 (Production dependency graph)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$. Every production $\pi \in P$ determines the **dependency graph** $D_\pi := \langle Var_\pi, \rightarrow_\pi \rangle$ where the set of edges $\rightarrow_\pi \subseteq Var_\pi \times Var_\pi$ is given by

$$x \rightarrow_\pi y \quad \text{iff} \quad y = f(\dots, x, \dots) \in E_\pi.$$

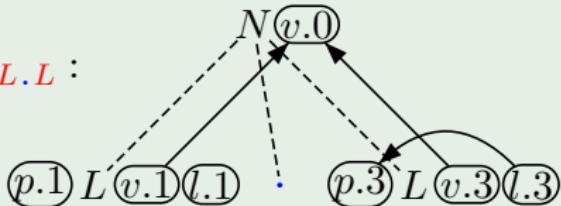
Corollary 14.11

*The dependency graph of a production is acyclic
(since $\rightarrow_\pi \subseteq Out_\pi \times In_\pi$).*

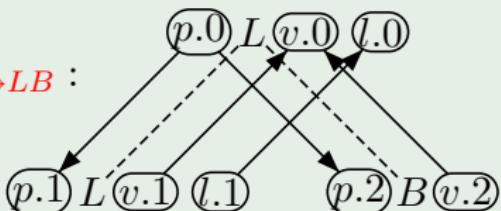
Attribute Dependency Graphs II

Example 14.12 (cf. Example 14.1)

① $N \rightarrow L.L :$ $\Rightarrow D_{N \rightarrow L.L} :$
 $v.0 = v.1 + v.3$
 $p.1 = 0$
 $p.3 = -l.3$



② $L \rightarrow LB :$ $\Rightarrow D_{N \rightarrow LB} :$
 $v.0 = v.1 + v.2$
 $l.0 = l.1 + 1$
 $p.1 = p.0 + 1$
 $p.2 = p.0$



Attribute Dependency Graphs III

Just as the attribute equation system E_t of a syntax tree t is obtained from the semantic rules of the contributing productions, the dependency graph of t is obtained by “glueing together” the dependency graphs of the productions.

Definition 14.13 (Tree dependency graph)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G .

- The **dependency graph** of t is defined by $D_t := \langle Var_t, \rightarrow_t \rangle$ where the set of edges $\rightarrow_t \subseteq Var_t \times Var_t$ is given by
$$x \rightarrow_t y \quad \text{iff} \quad y = f(\dots, x, \dots) \in E_t.$$
- D_t is called **cyclic** if there exists $x \in Var_t$ such that $x \rightarrow_t^+ x$.

Corollary 14.14

An attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$ is **circular** iff there exists a syntax tree t of G such that D_t is **cyclic**.

Example 14.15 (cf. Example 14.1)

(Acyclic) dependency graph of the syntax tree for 10.1:

