Compiler Construction

Lecture 14: Semantic Analysis 11
(Definition and Circularity of Attribute Grammars)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/

@ Repetition: Attribute Grammars

Rm Compiler Construction nter semester 2009/10



Attribute Grammars

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

—> Semantic analysis = attribute evaluation

Result: attributed syntax tree

In greater detail:
o With every nonterminal a set of attributes is associated.
o Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leafs to the root)
Inherited: top-down computation (from the root to the leafs)

o With every production a set of semantic rules is associated.

m' Compiler Construction Winter semester 2009/10 3



Example: Knuth’s Binary Numbers I

Example (only synthesized attributes)

Binary numbers (with fraction):

Ggp: Numbers N — L v.0 = v.1
N—-L.L v0 = v.1+v.3/2"3
Lists L— B v.0 = v.l
[0 =1
L—-LB v.0 = 2x%xv.1l+v.2
[0 =1011+1
Bits B —0 v.0 = 0
Bits B—1 v.0 =1

Synthesized attributes of N,L,B: v (value; domain: V¥ := Q)
of L: I (length; domain: V!:=N)

Semantic rules: equations with attribute variables
(index = position of symbol; 0 = left-hand side)

m Compiler Construction Winter semester 2009/10 4



Example: Knuth’s Binary Numbers 11

Example (continued)
Syntax tree for 1101.01:

B—0:v0=0B—1:v.0=1L — B :
v.0=0v1L - B:l0=1L—-LB:v.0=2%v.1+v2L —- LB :10=

ooty

Compiler Construction Winter semester 2009/10 5



© Adding Inherited Attributes

Rm Compiler Construction ter semester 2009/10



Adding Inherited Attributes I

Example 14.1 (synthesized + inherited attributes)

Binary numbers (with fraction):
G5 : Numbers N — L v.0 = v.1
p.l =0
N—L.L v0 = v.1+0v.3
p.l =0
p.3 = —1.3
Lists L— B v.0 = v.1
1.0 =1
p.l = p.0
L—-LB v0 = vl+uv2
1.0 = 1141
p.l = p0+1
p.2 = p.0
Bits B —0 0=0
Bits B —1 v.0 = 2°0
Synthesized attributes of N, L, B: v (value; domain: V' := Q)
of L: I (length; domain: V! :=N)
Inherited attribute of L, B:  p (position; domain: V? :=7Z)

m' Compiler Construction



Adding Inherited Attributes 11

Example 14.1 (continued)

Syntax tree for 10. 1:

L—-B:l.0=1L—LB:l.0=11+
1N—1L.L:p.1:()N—>L.L:p.3=—l.3L—>LB:p.1:p.()+1L—>
LB:p2=p0L—-B:pl=p0B —-0:v.0=0B—1:0v.0=2L -

m Compiler Construction Winter semester 2009/10 8




© Formal Definition of Attribute Grammars

Rm Compiler Construction nter semester 2009/10



Formal Definition of Attribute Grammars 1

Definition 14.2 (Attribute grammar)

Let G = (N, %, P,S) € CFGy, with X := N X.

@ Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

@ Let att : X — 24% be an attribute assignment, and let
syn(Y) := att(Y) N Syn and inh(Y) := att(Y") N Inh for every Y € X.
@ Every production m =Yy — Y;...Y, € P determines the set
Var, = {a.i| o € att(Y;),i € {0,...,r}}
of attribute variables of w with the subsets of inner and outer variables:
Ing :={a.i| (i =0,a €syn(Y;)) or (i € [r],« € inh(Y;))}
Out, = Vary \ In,
@ A semantic rule of 7 is an equation of the form
ot = fag.01,. .., 0pn.0p)
where n € N, a.i € Ing, 5.1 € Outr, and f: V1 x ... x Vo — Ve,
@ For each m € P, let E; be a set with exactly one semantic rule for every
inner variable of m, and let E := (E, | m € P).

Then A := (G, E, V) is called an attribute grammar: 2 € AG.

m Compiler Construction Winter semester 2009/10 10




Formal Definition of Attribute Grammars II

Example 14.3 (cf. Example 14.1)

Ap € AG for binary numbers:
o Attributes: Att = Syn W Inh with Syn = {v,l} and Inh = {p}

o Value sets: V' =Q, VI=N, VP =7
@ Attribute assignment: | Y € X | N L B 01
syn(Y) [ {v} {v, i} {v} 0 0
inh(Y) | 0 {p} {p} 0 0

o Attribute variables:

meP N — L N —L.L L— B
Ing {v.0,p.1} {v.0,p.1,p.3}  {v.0,1.0,p.1}
Out, {v.1,1.1} {v.1,01.1,0.3,1.3}  {v.1,p.0}
meP L— LB B—0 B—1
Ing {v.0,1.0,p.1,p.2} {v.0} {v.0}
Out, | {v.1,v.2,1.1,p.0} {p.0} {p.0}

@ Semantic rules: see Example 14.1
(e.g., EN—p ={v.0=0.1,p.1 =0})

m Compiler Construction Winter semester 2009/10 11




Attribution of Syntax Trees I

Definition 14.4 (Attribution of syntax trees)

Let A = (G, E, V) € AG, and let t be a syntax tree of G with the set
of nodes K.

o K determines the set of attribute variables of ¢:
Vary := {a.k | k € K labelled with Y € X, o € att(Y)}.

@ Let kp € K be an (inner) node where production
m=Yy—Y;...Y, € Pis applied, and let k;,..., k. € K be the
corresponding successor nodes. The attribute equation system Ej,
of ko is obtained from F, by substituting every attribute index
i€{0,...,r} by k;.

o The attribute equation system of ¢ is given by

E; :=|J{Ex | k inner node of t}.

m Compiler Construction Winter semester 2009/10 12



Attribution of Syntax Trees II

For each a.k € Var; except the inherited attribute variables at the root
and the synthesized attribute variables at the leafs of t, E; contains
exactly one equation with left-hand side a.k.

Assumptions:
@ The start symbol does not have inherited attributes: inh(S) = (.

@ Synthesized attributes of terminal symbols are provided by the
scanner.

m' Compiler Construction Winter semester 2009/10 13



Attribution of Syntax Trees 111

Example 14.6 (cf. Example 14.1)

|
|
@Zﬁ [:@@ k7. @kgl:L@@
/// \\\ |
//// \\\\ i
@k:gI:L@@ @kg,l:B@ ® ko I: B®
l l l
| | |
@kg:B@ kG:O ]{1021
|
i
kg1
En_r.r: v.0=v14+v.3 1 By, : v.ky =v.k1 +v.kg
p.l1=0 Subsf p.kp =0
p.3 = -3 p.k‘g = —l.kg

Er_rg: v.0=v1+v.2 Fr. : v.ky =v.ko+v.ks
RWNTH

Compiler Construction Winter semester 2009/10 14



@ Circularity of Attribute Grammars

Rm Compiler Construction nter semester 2009/10 15



Solvability of Attribute Equation System I

Definition 14.7 (Solution of attribute equation system)

Let A = (G, E, V) € AG, and let t be a syntax tree of G. A solution of
E,; is a mapping
v: Vary — V

such that, for every a.k € Var, and a.k = f(a.ky,...,a.ky,) € Ey,

v(ak) = f(v(a.kr),...,v(aky)).

In general, the attribute equation system FE; of a given syntax tree ¢
can have

@ no solution,
@ exactly one solution, or

@ several solutions.

m Compiler Construction Winter semester 2009/10 16



Solvability of Attribute Equation System II

Example 14.8

e A—aB,B—beP

@ «a €syn(B), § € inh(B) — cyclic dependency:
° 32 = f(a.2) € Eaup

o .0 =g(B.0) € Eg_yp 7

a’/
= for V®:= VP :=N, g(z) := z, and

@ f(z):=z + 1: no solution b
@ f(z) := 2x: exactly one solution E: Bk
(v(ak) = v(B.k) = 0) ok
@ f(z) := x: infinitely many solutions
(v(a.k) = v(B.k) =y for any y € N)

m Compiler Construction Winter semester 2009/10 17



Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

Definition 14.9 (Circularity)

An attribute grammar A = (G, E, V) € AG is called circular if there
exists a syntax tree t such that the attribute equation system FE; is
recursive (i.e., some attribute variable of ¢ depends on itself).
Otherwise it is called noncircular.

Remark: because of the division of Var, into In, and Out,, cyclic
dependencies cannot occur at production level (see Corollary 14.11).

m' Compiler Construction Winter semester 2009/10



© Attribute Dependency Graphs

Rm Compiler Construction ter semester 2009/10 19



Attribute Dependency Graphs I

Goal: graphic representation of attribute dependencies

Definition 14.10 (Production dependency graph)

Let A= (G,E, V) € AG with G = (N, %, P,S). Every production
m € P determines the dependency graph D := (Var,, —,) where the
set of edges —,C Var, x Var, is given by

x—ry iff y=f(_..,z,...)€E,.

The dependency graph of a production is acyclic
(since —C Out, X Ing).

m Compiler Construction Winter semester 2009/10 20



Attribute Dependency Graphs 11

Example 14.12 (cf. Example 14.1)

Compiler Construction Winter semester 2009/10 21



Attribute Dependency Graphs III

Just as the attribute equation system FE; of a syntax tree ¢ is obtained
from the semantic rules of the contributing productions, the
dependency graph of ¢ is obtained by “glueing together” the
dependency graphs of the productions.

Definition 14.13 (Tree dependency graph)

Let A = (G,E, V) € AG, and let t be a syntax tree of G.

o The dependency graph of ¢ is defined by
Dy := (Vary, —¢) where the set of edges —;C Var; x Vary is given by
x—py it y=f(~..,z,...) € E.

o Dy is called cyclic if there exists x € Var; such that x —; z.

Corollary 14.14

An attribute grammar A = (G, E, V') € AG is circular iff there exists a
syntax tree t of G such that Dy is cyclic.

m Compiler Construction Winter semester 2009/10



Attribute Dependency Graphs IV

Example 14.15 (cf. Example 14.1)

(Acyclic) dependency graph of the syntax tree for 10.1:

Compiler Construction Winter semester 2009/10 23



	Repetition: Attribute Grammars
	Adding Inherited Attributes
	Formal Definition of Attribute Grammars
	Circularity of Attribute Grammars
	Attribute Dependency Graphs

