
Compiler Construction

Lecture 14: Semantic Analysis II
(Definition and Circularity of Attribute Grammars)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/


Outline

1 Repetition: Attribute Grammars

2 Adding Inherited Attributes

3 Formal Definition of Attribute Grammars

4 Circularity of Attribute Grammars

5 Attribute Dependency Graphs

Compiler Construction Winter semester 2009/10 2



Attribute Grammars

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

=⇒ Semantic analysis = attribute evaluation

Result: attributed syntax tree

In greater detail:

With every nonterminal a set of attributes is associated.

Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leafs to the root)
Inherited: top-down computation (from the root to the leafs)

With every production a set of semantic rules is associated.

Compiler Construction Winter semester 2009/10 3



Example: Knuth’s Binary Numbers I

Example (only synthesized attributes)

Binary numbers (with fraction):

GB : Numbers N → L v.0 = v.1
N → L.L v.0 = v.1 + v.3/2l.3

Lists L → B v.0 = v.1
l.0 = 1

L → LB v.0 = 2 ∗ v.1 + v.2
l.0 = l.1 + 1

Bits B → 0 v.0 = 0
Bits B → 1 v.0 = 1

Synthesized attributes of N,L,B: v (value; domain: V v := Q)
of L: l (length; domain: V l := N)

Semantic rules: equations with attribute variables
(index = position of symbol; 0 = left-hand side)

Compiler Construction Winter semester 2009/10 4



Example: Knuth’s Binary Numbers II

Example (continued)

Syntax tree for 1101.01: N

L . L

L B

L B

L B

B

1

0

1

1

L B

B 1

0

v : 13.25

v : 13 v : 1 l : 2

v : 6 v : 1

v : 3 v : 0

v : 1 v : 1

v : 1

v : 0 l : 1 v : 1

v : 0

B → 0 : v.0 = 0B → 1 : v.0 = 1L → B :
v.0 = v.1L → B : l.0 = 1L → LB : v.0 = 2 ∗ v.1 + v.2L → LB : l.0 =
l.1 + 1N → L.L : v.0 = v.1 + v.3/2l.3Compiler Construction Winter semester 2009/10 5



Outline

1 Repetition: Attribute Grammars

2 Adding Inherited Attributes

3 Formal Definition of Attribute Grammars

4 Circularity of Attribute Grammars

5 Attribute Dependency Graphs

Compiler Construction Winter semester 2009/10 6



Adding Inherited Attributes I

Example 14.1 (synthesized + inherited attributes)

Binary numbers (with fraction):
G′

B : Numbers N → L v.0 = v.1
p.1 = 0

N → L.L v.0 = v.1 + v.3
p.1 = 0
p.3 = − l.3

Lists L → B v.0 = v.1
l.0 = 1
p.1 = p.0

L → LB v.0 = v.1 + v.2
l.0 = l.1 + 1
p.1 = p.0 + 1
p.2 = p.0

Bits B → 0 v.0 = 0
Bits B → 1 v.0 = 2p.0

Synthesized attributes of N,L,B: v (value; domain: V v := Q)
of L: l (length; domain: V l := N)

Inherited attribute of L,B: p (position; domain: V p := Z)

Compiler Construction Winter semester 2009/10 7



Adding Inherited Attributes II

Example 14.1 (continued)

Syntax tree for 10.1:

N

L . L

L B

B

B

0

1

1

v : 2.5

v : 2 l : 2p : 0

v : 2 l : 1p : 1

v : 0.5 l : 1p : −1

v : 0p : 0

v : 2p : 1

v : 0.5p : −1

L → B : l.0 = 1L → LB : l.0 = l.1 +
1N → L.L : p.1 = 0N → L.L : p.3 = −l.3L → LB : p.1 = p.0 + 1L →
LB : p.2 = p.0L → B : p.1 = p.0B → 0 : v.0 = 0B → 1 : v.0 = 2p.0L →
B : v.0 = v.1L → LB : v.0 = v.1 + v.2N → L.L : v.0 = v.1 + v.3Compiler Construction Winter semester 2009/10 8



Outline

1 Repetition: Attribute Grammars

2 Adding Inherited Attributes

3 Formal Definition of Attribute Grammars

4 Circularity of Attribute Grammars

5 Attribute Dependency Graphs

Compiler Construction Winter semester 2009/10 9



Formal Definition of Attribute Grammars I

Definition 14.2 (Attribute grammar)

Let G = 〈N, Σ, P, S〉 ∈ CFGΣ with X := N ⊎ Σ.

Let Att = Syn ⊎ Inh be a set of (synthesized or inherited) attributes, and
let V =

⋃
α∈Att

V α be a union of value sets.

Let att : X → 2Att be an attribute assignment, and let
syn(Y ) := att(Y ) ∩ Syn and inh(Y ) := att(Y ) ∩ Inh for every Y ∈ X .

Every production π = Y0 → Y1 . . . Yr ∈ P determines the set
Varπ := {α.i | α ∈ att(Yi), i ∈ {0, . . . , r}}

of attribute variables of π with the subsets of inner and outer variables:
Inπ := {α.i | (i = 0, α ∈ syn(Yi)) or (i ∈ [r], α ∈ inh(Yi))}

Outπ := Varπ \ Inπ

A semantic rule of π is an equation of the form
α.i = f(α1.i1, . . . , αn.in)

where n ∈ N, α.i ∈ Inπ, αj .ij ∈ Outπ, and f : V α1 × . . . × V αn → V α.

For each π ∈ P , let Eπ be a set with exactly one semantic rule for every
inner variable of π, and let E := (Eπ | π ∈ P ).

Then A := 〈G,E ,V 〉 is called an attribute grammar: A ∈ AG.
Compiler Construction Winter semester 2009/10 10



Formal Definition of Attribute Grammars II

Example 14.3 (cf. Example 14.1)

AB ∈ AG for binary numbers:

Attributes: Att = Syn ⊎ Inh with Syn = {v, l} and Inh = {p}

Value sets: V v = Q, V l = N, V p = Z

Attribute assignment: Y ∈ X N L B 0 1
syn(Y ) {v} {v, l} {v} ∅ ∅
inh(Y ) ∅ {p} {p} ∅ ∅

Attribute variables:

π ∈ P N → L N → L.L L → B
Inπ {v.0, p.1} {v.0, p.1, p.3} {v.0, l.0, p.1}
Outπ {v.1, l.1} {v.1, l.1, v.3, l.3} {v.1, p.0}

π ∈ P L → LB B → 0 B → 1

Inπ {v.0, l.0, p.1, p.2} {v.0} {v.0}
Outπ {v.1, v.2, l.1, p.0} {p.0} {p.0}

Semantic rules: see Example 14.1
(e.g., EN→L = {v.0 = v.1, p.1 = 0})

Compiler Construction Winter semester 2009/10 11



Attribution of Syntax Trees I

Definition 14.4 (Attribution of syntax trees)

Let A = 〈G,E ,V 〉 ∈ AG , and let t be a syntax tree of G with the set
of nodes K.

K determines the set of attribute variables of t:
Var t := {α.k | k ∈ K labelled with Y ∈ X,α ∈ att(Y )}.

Let k0 ∈ K be an (inner) node where production
π = Y0 → Y1 . . . Yr ∈ P is applied, and let k1, . . . , kr ∈ K be the
corresponding successor nodes. The attribute equation system Ek0

of k0 is obtained from Eπ by substituting every attribute index
i ∈ {0, . . . , r} by ki.

The attribute equation system of t is given by
Et :=

⋃
{Ek | k inner node of t}.

Compiler Construction Winter semester 2009/10 12



Attribution of Syntax Trees II

Corollary 14.5

For each α.k ∈ Var t except the inherited attribute variables at the root
and the synthesized attribute variables at the leafs of t, Et contains
exactly one equation with left-hand side α.k.

Assumptions:

The start symbol does not have inherited attributes: inh(S) = ∅.

Synthesized attributes of terminal symbols are provided by the
scanner.

Compiler Construction Winter semester 2009/10 13



Attribution of Syntax Trees III

Example 14.6 (cf. Example 14.1)

Attributed syntax tree for 10.1: k0 : N

k1 : L k7 : . k8 : L

k2 : L k5 : B

k3 : B

k9 : B

k6 : 0

k4 : 1

k10 : 1

v

v lp

v lp

v lp

vp

vp

vp

EN→L.L : v.0 = v.1 + v.3
p.1 = 0
p.3 = −l.3

subst
−→

Ek0 : v.k0 = v.k1 + v.k8

p.k1 = 0
p.k8 = −l.k8

EL→LB : v.0 = v.1 + v.2
l.0 = l.1 + 1 subst

−→

Ek1 : v.k1 = v.k2 + v.k5

l.k1 = l.k2 + 1Compiler Construction Winter semester 2009/10 14



Outline

1 Repetition: Attribute Grammars

2 Adding Inherited Attributes

3 Formal Definition of Attribute Grammars

4 Circularity of Attribute Grammars

5 Attribute Dependency Graphs

Compiler Construction Winter semester 2009/10 15



Solvability of Attribute Equation System I

Definition 14.7 (Solution of attribute equation system)

Let A = 〈G,E ,V 〉 ∈ AG , and let t be a syntax tree of G. A solution of
Et is a mapping

v : Var t → V

such that, for every α.k ∈ Var t and α.k = f(α.k1, . . . , α.kn) ∈ Et,

v(α.k) = f(v(α.k1), . . . , v(α.kn)).

In general, the attribute equation system Et of a given syntax tree t
can have

no solution,

exactly one solution, or

several solutions.

Compiler Construction Winter semester 2009/10 16



Solvability of Attribute Equation System II

Example 14.8

A → aB,B → b ∈ P

α ∈ syn(B), β ∈ inh(B)

β.2 = f(α.2) ∈ EA→aB

α.0 = g(β.0) ∈ EB→b

=⇒ for V α := V β := N, g(x) := x, and

f(x) := x + 1: no solution

f(x) := 2x: exactly one solution
(v(α.k) = v(β.k) = 0)

f(x) := x: infinitely many solutions
(v(α.k) = v(β.k) = y for any y ∈ N)

=⇒ cyclic dependency:

A

a k : B

b

β α

Et : β.k = f(α.k)
α.k = g(β.k)

Compiler Construction Winter semester 2009/10 17



Circularity of Attribute Grammars

Goal: unique solvability of equation system
=⇒ avoid cyclic dependencies

Definition 14.9 (Circularity)

An attribute grammar A = 〈G,E ,V 〉 ∈ AG is called circular if there
exists a syntax tree t such that the attribute equation system Et is
recursive (i.e., some attribute variable of t depends on itself).
Otherwise it is called noncircular.

Remark: because of the division of Varπ into Inπ and Outπ, cyclic
dependencies cannot occur at production level (see Corollary 14.11).

Compiler Construction Winter semester 2009/10 18



Outline

1 Repetition: Attribute Grammars

2 Adding Inherited Attributes

3 Formal Definition of Attribute Grammars

4 Circularity of Attribute Grammars

5 Attribute Dependency Graphs

Compiler Construction Winter semester 2009/10 19



Attribute Dependency Graphs I

Goal: graphic representation of attribute dependencies

Definition 14.10 (Production dependency graph)

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉. Every production
π ∈ P determines the dependency graph Dπ := 〈Varπ,→π〉 where the
set of edges →π⊆ Varπ × Varπ is given by

x →π y iff y = f(. . . , x, . . .) ∈ Eπ.

Corollary 14.11

The dependency graph of a production is acyclic
(since →π⊆ Outπ × Inπ).

Compiler Construction Winter semester 2009/10 20



Attribute Dependency Graphs II

Example 14.12 (cf. Example 14.1)

1 N → L.L :
v.0 = v.1 + v.3
p.1 = 0
p.3 = −l.3

=⇒ DN→L.L :
N

L . L

v.0

v.1 l.1p.1 v.3 l.3p.3

2 L → LB :
v.0 = v.1 + v.2
l.0 = l.1 + 1
p.1 = p.0 + 1
p.2 = p.0

=⇒ DN→LB :
L

L B

v.0 l.0p.0

v.1 l.1p.1 v.2p.2

Compiler Construction Winter semester 2009/10 21



Attribute Dependency Graphs III

Just as the attribute equation system Et of a syntax tree t is obtained
from the semantic rules of the contributing productions, the
dependency graph of t is obtained by “glueing together” the
dependency graphs of the productions.

Definition 14.13 (Tree dependency graph)

Let A = 〈G,E ,V 〉 ∈ AG , and let t be a syntax tree of G.

The dependency graph of t is defined by
Dt := 〈Var t,→t〉 where the set of edges →t⊆ Var t×Var t is given by

x →t y iff y = f(. . . , x, . . .) ∈ Et.

Dt is called cyclic if there exists x ∈ Var t such that x →+
t x.

Corollary 14.14

An attribute grammar A = 〈G,E ,V 〉 ∈ AG is circular iff there exists a
syntax tree t of G such that Dt is cyclic.

Compiler Construction Winter semester 2009/10 22



Attribute Dependency Graphs IV

Example 14.15 (cf. Example 14.1)

(Acyclic) dependency graph of the syntax tree for 10.1:

k0 : N

k1 : L k7 : . k8 : L

k2 : L

k3 : B

k5 : B k9 : B

k6 : 0

k4 : 1

k10 : 1

v.k0

v.k1 l.k1p.k1

v.k2 l.k2p.k2

v.k8 l.k8p.k8

v.k5p.k5

v.k3p.k3

v.k9p.k9

Compiler Construction Winter semester 2009/10 23


	Repetition: Attribute Grammars
	Adding Inherited Attributes
	Formal Definition of Attribute Grammars
	Circularity of Attribute Grammars
	Attribute Dependency Graphs

