
Compiler Construction

Lecture 15: Semantic Analysis III (Circularity Test)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/


Outline

1 Repetition: Definition and Circularity of Attribute Grammars

2 Testing Attribute Grammars for Circularity

3 The Circularity Test

4 Correctness and Complexity of the Circularity Test

Compiler Construction Winter semester 2009/10 2



Formal Definition of Attribute Grammars

Definition (Attribute grammar)

Let G = 〈N, Σ, P, S〉 ∈ CFGΣ with X := N ⊎ Σ.

Let Att = Syn ⊎ Inh be a set of (synthesized or inherited) attributes, and
let V =

⋃

α∈Att
V α be a union of value sets.

Let att : X → 2Att be an attribute assignment, and let
syn(Y ) := att(Y ) ∩ Syn and inh(Y ) := att(Y ) ∩ Inh for every Y ∈ X .

Every production π = Y0 → Y1 . . . Yr ∈ P determines the set
Varπ := {α.i | α ∈ att(Yi), i ∈ {0, . . . , r}}

of attribute variables of π with the subsets of inner and outer variables:
Inπ := {α.i | (i = 0, α ∈ syn(Yi)) or (i ∈ [r], α ∈ inh(Yi))}

Outπ := Varπ \ Inπ

A semantic rule of π is an equation of the form
α.i = f(α1.i1, . . . , αn.in)

where n ∈ N, α.i ∈ Inπ, αj .ij ∈ Outπ, and f : V α1 × . . . × V αn → V α.

For each π ∈ P , let Eπ be a set with exactly one semantic rule for every
inner variable of π, and let E := (Eπ | π ∈ P ).

Then A := 〈G,E ,V 〉 is called an attribute grammar: A ∈ AG.
Compiler Construction Winter semester 2009/10 3



Solvability of Attribute Equation System

Example

A → aB,B → b ∈ P

α ∈ syn(B), β ∈ inh(B)

β.2 = f(α.2) ∈ EA→aB

α.0 = g(β.0) ∈ EB→b

=⇒ for V α := V β := N, g(x) := x, and

f(x) := x + 1: no solution

f(x) := 2x: exactly one solution
(v(α.k) = v(β.k) = 0)

f(x) := x: infinitely many solutions
(v(α.k) = v(β.k) = y for any y ∈ N)

=⇒ cyclic dependency:

A

a k : B

b

β α

Et : β.k = f(α.k)
α.k = g(β.k)

Compiler Construction Winter semester 2009/10 4



Circularity of Attribute Grammars

Goal: unique solvability of equation system
=⇒ avoid cyclic dependencies

Definition (Circularity)

An attribute grammar A = 〈G,E ,V 〉 ∈ AG is called circular if there
exists a syntax tree t such that the attribute equation system Et is
recursive (i.e., some attribute variable of t depends on itself).
Otherwise it is called noncircular.

Remark: because of the division of Varπ into Inπ and Outπ, cyclic
dependencies cannot occur at production level (see Corollary 14.11).

Compiler Construction Winter semester 2009/10 5



Attribute Dependency Graphs I

Just as the attribute equation system Et of a syntax tree t is obtained
from the semantic rules of the contributing productions, the
dependency graph of t is obtained by “glueing together” the
dependency graphs of the productions.

Definition (Tree dependency graph)

Let A = 〈G,E ,V 〉 ∈ AG , and let t be a syntax tree of G.

The dependency graph of t is defined by
Dt := 〈Var t,→t〉 where the set of edges →t⊆ Var t×Var t is given by

x →t y iff y = f(. . . , x, . . .) ∈ Et.

Dt is called cyclic if there exists x ∈ Var t such that x →+
t x.

Corollary

An attribute grammar A = 〈G,E ,V 〉 ∈ AG is circular iff there exists a
syntax tree t of G such that Dt is cyclic.

Compiler Construction Winter semester 2009/10 6



Attribute Dependency Graphs II

Example (cf. Example 14.1)

(Acyclic) dependency graph of the syntax tree for 10.1:

k0 : N

k1 : L k7 : . k8 : L

k2 : L

k3 : B

k5 : B k9 : B

k6 : 0

k4 : 1

k10 : 1

v.k0

v.k1 l.k1p.k1

v.k2 l.k2p.k2

v.k8 l.k8p.k8

v.k5p.k5

v.k3p.k3

v.k9p.k9

Compiler Construction Winter semester 2009/10 7



Outline

1 Repetition: Definition and Circularity of Attribute Grammars

2 Testing Attribute Grammars for Circularity

3 The Circularity Test

4 Correctness and Complexity of the Circularity Test

Compiler Construction Winter semester 2009/10 8



Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph Dt of a given syntax
tree t is caused by the occurrence of a “cover” production
π = A0 → w0A1w1 . . . Arwr ∈ P in a node k0 of t such that

the dependencies in Ek0 yield the “upper end” of the cycle and

for at least one i ∈ [r], some attributes in syn(Ai) depend on
attributes in inh(Ai).

Example 15.1

on the board

To identify such “critical” situations we need to determine for each
i ∈ [r] the possible ways in which attributes in syn(Ai) can depend on
attributes in inh(Ai).

Compiler Construction Winter semester 2009/10 9



Attribute Dependency Graphs and Circularity II

Definition 15.2 (Attribute dependence)

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉.

If t is a syntax tree with root label A ∈ N and root node k,
α ∈ syn(A), and β ∈ inh(A) such that β.k →+

t α.k, then α is

dependent on β below A in t (notation: β
A
→֒ α).

For every syntax tree t with root label A ∈ N ,

is(A, t) := {(β, α) ∈ inh(A) × syn(A) | β
A
→֒ α in t}.

For every A ∈ N ,
IS (A) := {is(A, t) | t syntax tree with root label A}

⊆ 2Inh×Syn .

Remark: it is important that IS (A) is a system of attribute
dependence sets, not a union (later: strong noncircularity).

Example 15.3

on the board
Compiler Construction Winter semester 2009/10 10



Outline

1 Repetition: Definition and Circularity of Attribute Grammars

2 Testing Attribute Grammars for Circularity

3 The Circularity Test

4 Correctness and Complexity of the Circularity Test

Compiler Construction Winter semester 2009/10 11



The Circularity Test I

In the circularity test, the dependency systems IS (A) are iteratively
computed. It employs the following notation:

Definition 15.4

Given π = A → w0A1w1 . . . Arwr ∈ P and is i ⊆ inh(Ai) × syn(Ai) for
every i ∈ [r], let

is [π; is1, . . . , isr] ⊆ inh(A) × syn(A)
be given by

is[π; is1, . . . , isr] :=
{

(β, α) | (β.0, α.0) ∈ (→π ∪
⋃r

i=1{(β
′.pi, α

′.pi) | (β′, α′) ∈ is i})
+
}

where pi :=
∑i

j=1 |wj−1| + i.

Example 15.5

on the board

Compiler Construction Winter semester 2009/10 12



The Circularity Test II

Algorithm 15.6 (Circularity test for attribute grammars)

Input: A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉

Procedure: 1 for every A ∈ N , iteratively construct IS (A) as
follows:

1 if π = A → w ∈ P , then is [π] ∈ IS (A)
2 if π = A → w0A1w1 . . . Arwr ∈ P and is i ∈ IS(Ai)

for every i ∈ [r], then is [π; is1, . . . , isr] ∈ IS (A)

2 test whether A is circular by checking if there exist
π = A → w0A1w1 . . . Arwr ∈ P and isi ∈ IS (Ai) for
every i ∈ [r] such that the following relation is cyclic:

→π ∪
⋃r

i=1{(β.pi, α.pi) | (β, α) ∈ isi}

(where pi :=
∑i

j=1 |wj−1| + i)

Output: “yes” or “no”

Compiler Construction Winter semester 2009/10 13



The Circularity Test III

Example 15.7

DS→AB: S

A B

α

α1 α2β α1 α2β

DB→AB: B

A B

α1 α2β

α1 α2β α1 α2β

DA→B: A

B

α1 α2β

α1 α2β

DA→a: A

a

α1 α2β

DA→c: A

c

α1 α2β

DB→b: B

b

α1 α2β

Application of Algorithm 15.6: on the board

Compiler Construction Winter semester 2009/10 14



Outline

1 Repetition: Definition and Circularity of Attribute Grammars

2 Testing Attribute Grammars for Circularity

3 The Circularity Test

4 Correctness and Complexity of the Circularity Test

Compiler Construction Winter semester 2009/10 15



Correctness and Complexity of Circularity Test

Theorem 15.1 (Correctness of circularity test)

An attribute grammar is circular iff Algorithm 15.6 yields the answer “yes”.

Proof.
by induction on the syntax tree t with cyclic Dt

Lemma 15.2
The time complexity of the circularity test is exponential in the size of the
attribute grammar (= maximal length of right-hand sides of productions).

Proof.

by reduction of the word problem of alternating Turing machines (see
M. Jazayeri: A Simpler Construction for Showing the Intrinsically

Exponential Complexity of the Circularity Problem for Attribute Grammars,
Comm. of the ACM 28(4), 1981, pp. 715–720)

Compiler Construction Winter semester 2009/10 16


	Repetition: Definition and Circularity of Attribute Grammars
	Testing Attribute Grammars for Circularity
	The Circularity Test
	Correctness and Complexity of the Circularity Test

