Compiler Construction

Lecture 15: Semantic Analysis III (Circularity Test)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/

@ Repetition: Definition and Circularity of Attribute Grammars

Rm Compiler Construction ter semester 2009/10

Formal Definition of Attribute Grammars

Definition (Attribute grammar)
Let G = (N, X, P,S) € CFGs, with X := N W 3.

@ Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

@ Let att : X — 24% be an attribute assignment, and let
syn(Y) := att(Y) N Syn and inh(Y) := att(Y") N Inh for every Y € X.
@ Every production m =Yy — Y;...Y, € P determines the set
Var, = {a.i| o € att(Y;),i € {0,...,r}}
of attribute variables of w with the subsets of inner and outer variables:
Ing :={a.i| (i =0,a €syn(Y;)) or (i € [r],« € inh(Y;))}
Out, = Vary \ In,
@ A semantic rule of 7 is an equation of the form
ot = fag.01,. .., 0pn.0p)
where n € N, a.i € Ing, 5.1 € Outr, and f: V1 x ... x Vo — Ve,
@ For each m € P, let E; be a set with exactly one semantic rule for every
inner variable of m, and let E := (E, | m € P).

Then A := (G, E, V) is called an attribute grammar: 2 € AG.

m Compiler Construction Winter semester 2009/10 3

Solvability of Attribute Equation System

e A—aB,B—beP

@ «a €syn(B), § € inh(B) — cyclic dependency:
° 32 = f(a.2) € Eaup

o .0 =g(B.0) € Eg_yp 7

a’/
= for V®:= VP :=N, g(z) := z, and

@ f(z):=z + 1: no solution b
@ f(z) := 2x: exactly one solution E: Bk=f(ak)
(v(ak) =v(B.k) =0) a.k = g(
@ f(z) := x: infinitely many solutions
(v(a.k) = v(B.k) =y for any y € N)

Compiler Construction Winter semester 2009/10

Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

Definition (Circularity)

An attribute grammar A = (G, E, V) € AG is called circular if there
exists a syntax tree t such that the attribute equation system FE; is
recursive (i.e., some attribute variable of ¢ depends on itself).
Otherwise it is called noncircular.

Remark: because of the division of Var, into In, and Out,, cyclic
dependencies cannot occur at production level (see Corollary 14.11).

m' Compiler Construction Winter semester 2009/10

Attribute Dependency Graphs I

Just as the attribute equation system FE; of a syntax tree ¢ is obtained
from the semantic rules of the contributing productions, the
dependency graph of ¢ is obtained by “glueing together” the
dependency graphs of the productions.

Definition (Tree dependency graph)

Let A = (G,E, V) € AG, and let t be a syntax tree of G.

o The dependency graph of ¢ is defined by
Dy := (Vary, —¢) where the set of edges —;C Var; x Vary is given by
x—py it y=f(~..,z,...) € E.

o Dy is called cyclic if there exists x € Var; such that x —; z.

An attribute grammar A = (G, E, V') € AG is circular iff there exists a
syntax tree t of G such that Dy is cyclic.

m Compiler Construction Winter semester 2009/10 6

Attribute Dependency Graphs 11

Example (cf. Example 14.1)

(Acyclic) dependency graph of the syntax tree for 10.1:

Compiler Construction Winter semester 2009/10

© Testing Attribute Grammars for Circularity

Rm Compiler Construction ter semester 2009/10

Attribute Dependency Graphs and Circularity 1

Observation: a cycle in the dependency graph D; of a given syntax
tree t is caused by the occurrence of a “cover” production
T = Ay — wodjwy ... A,w, € P in a node kg of ¢ such that
o the dependencies in Ej, yield the “upper end” of the cycle and
o for at least one ¢ € [r], some attributes in syn(4;) depend on
attributes in inh(A;).

on the board l

To identify such “critical” situations we need to determine for each
i € [r] the possible ways in which attributes in syn(4;) can depend on
attributes in inh(4;).

Rm Compiler Construction Winter semester 2009/10 9

Attribute Dependency Graphs and Circularity II

Definition 15.2 (Attribute dependence)

Let A = (G, E, V) € AG with G = (N, %, P, S).

o If ¢ is a syntax tree with root label A € N and root node k,
a € syn(A), and (3 € inh(A) such that 8.k —; a.k, then o is

dependent on 3 below A in ¢ (notation: [& Q).
o For every syntax tree t with root label A € N,
A
is(A,t) :=={(B,a) € inh(A) x syn(4) | f — « in t}.
o For every A € N,

IS(A) := {is(A,t) | t syntax tree with root label A}
C 2Inh><5’yn‘

Remark: it is important that IS(A) is a system of attribute
dependence sets, not a union (later: strong noncircularity).

on the board ‘

m Compiler Construction Winter semester 2009/10 10

© The Circularity Test

Rm Compiler Construction nter semester 2009/10 11

The Circularity Test I

In the circularity test, the dependency systems IS(A) are iteratively
computed. It employs the following notation:
Definition 15.4

Given 1 = A — woAjws ... Ayw, € P and is; C inh(A4;) x syn(4;) for
every i € [r], let

is[m;is1, ..., is,] C inh(A) x syn(A)
be given by
STy AS1, .., 1Sp) 1=

{(8,0)1(80,0.0) € (=x VUL {(8"pi,0) | (8,) € isi})* }
where p; := Z;Zl lwj—1| + 4.

on the board

Compiler Construction Winter semester 2009/10 12

The Circularity Test 11

Algorithm 15.6 (Circularity test for attribute grammars)

Input: A= (G,E, V)€ AG with G = (N,%, P, S)
Procedure: @ for every A € N, iteratively construct IS(A) as
follows:
@ ifm=A— weE P, then is[r] € IS(A)
Q@ ifmt=A— widiw ... A,w, € P and is; € IS(4;)
for every i € [r], then is[m;is1,...,1s,] € IS(A)
© test whether A is circular by checking if there exist
T =A— woAdjw; ... Ayw, € P and is; € IS(A;) for
every i € [r] such that the following relation is cyclic:
o UU (B i i) | (B,a) € isi}
(where p; := Y%y |wj—1] + 1)
Output: “yes” or “no”

m Compiler Construction Winter semester 2009/10 13

The Circularity Test 111
@

Application of Algorithm 15.6: on the board

m Compiler Construction Winter semester 2009/10 14

@ Correctness and Complexity of the Circularity Test

Rm Compiler Construction ter semester 2009/10 15

Correctness and Complexity of Circularity Test

Theorem 15.1 (Correctness of circularity test)

An attribute grammar is circular iff Algorithm 15.6 yields the answer “yes”.

by induction on the syntax tree ¢ with cyclic D;]

Lemma 15.2

The time complexity of the circularity test is exponential in the size of the
attribute grammar (= maximal length of right-hand sides of productions).

by reduction of the word problem of alternating Turing machines (see

M. Jazayeri: A Simpler Construction for Showing the Intrinsically
Exponential Complexity of the Circularity Problem for Attribute Grammars,
Comm. of the ACM 28(4), 1981, pp. 715-720) O

Compiler Construction Winter semester 2009/10

	Repetition: Definition and Circularity of Attribute Grammars
	Testing Attribute Grammars for Circularity
	The Circularity Test
	Correctness and Complexity of the Circularity Test

