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Attribute Evaluation Methods

Given: (strongly) noncircular attribute grammar
A = 〈G,E ,V 〉 ∈ AG

syntax tree t of G

valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1 Topological sorting of Dt:
1 start with attribute variables which depend at most

on synthesized attributes of terminals (SynΣ)
2 proceed by successive substitution

2 Recursive functions (for strongly noncircular AGs):
1 for every A ∈ N and α ∈ syn(A), define evaluation

function gA,α with the following parameters:
the node of t where α has to be evaluated and
all inherited attributes of A on which α (potentially)

depends

2 for every α ∈ syn(S), evaluate gS,α(k0) where k0

denotes the root of t
3 Special cases: S-attributed grammars (yacc), L-attributed

grammars
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Attribute Evaluation by Recursive Functions

Restriction: only for strongly noncircular attribute grammars

Principle: 1 for every A ∈ N and α ∈ syn(A), define evaluation
function gA,α with the following parameters:

the node of t where α has to be evaluated (which is
labelled by A) and
all inherited attributes of A on which α (potentially)
depends (that is, {β ∈ inh(A) | (β, α) ∈ IS ′(A)})

2 given a syntax tree t with root k0, evaluate gS,α(k0) for
every α ∈ syn(S)

Result: evaluates synthesized attribute variables at root of t and all
attribute variables on which they actually depend (according to
Et)
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Definition of Evaluation Functions I

For every A ∈ N and α ∈ syn(A), let

IS ′(A) ⊆ inh(A) × syn(A) as computed by strong circularity test
(Algorithm 16.2)

inh(A, α) := {β ∈ inh(A) | (β, α) ∈ IS ′(A)}

A → δ1 | . . . | δm all A-productions in P

Then gA,α is given by
gA,α(k0, inh(A, α)) := case production applied at k0 of

...
A → δj : eval(α.0)

...
end

with

eval(γ.i) :=



























γ if γ ∈ Inh, i = 0
f(eval(γ1.i1), . . . , eval(γn.in)) if γ.i ∈ InA→δj

, γ.i =
f(γ1.i1, . . . , γn.in) ∈ EA→δj

gYi,γ(ki, eval(β1.i), . . . , eval(βl.i)) if γ ∈ Syn, i > 0, Yi ∈ N,
inh(Yi, γ) = {β1, . . . , βl}

v(γ.i) if γ ∈ Syn, i > 0, Yi ∈ Σ
where δj = Y1 . . . Yr, and where ki denotes the ith successor of k0
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Definition of Evaluation Functions II

Example (cf. Example 14.1)

G′

B :

S → L v.0 = v.1
p.1 = 0

S → L.L v.0 = v.1 + v.3
p.1 = 0
p.3 = −l.3

L → B v.0 = v.1
l.0 = 1
p.1 = p.0

L → LB v.0 = v.1 + v.2
l.0 = l.1 + 1
p.1 = p.0 + 1
p.2 = p.0

B → 0 v.0 = 0
B → 1 v.0 = 2p.0

A ∈ N S L B
IS ′(A) ∅ {(p, v)} {(p, v)}

gS,v(k0) = case production(k0) of
S → L : gL,v(k1, 0)
S → L.L : gL,v(k1, 0) +

gL,v(k3,−gL,l(k3))
end

gL,v(k0, p) = case production(k0) of
L → B : gB,v(k1, p)
L → LB : gL,v(k1, p + 1)

+ gB,v(k2, p)
end

gL,l(k0) = case production(k0) of
L → B : 1
L → LB : gL,l(k1) + 1

end
gB,v(k0, p) = case production(k0) of

B → 0 : 0
B → 1 : 2p

end
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Example Evaluation

Example (continued)

gS,v(k0) = case production(k0) of
S → L : gL,v(k1, 0)
S → L.L : gL,v(k1, 0) +

gL,v(k3,−gL,l(k3))
end

gL,v(k0, p) = case production(k0) of
L → B : gB,v(k1, p)
L → LB : gL,v(k1, p + 1)

+ gB,v(k2, p)
end

gL,l(k0) = case production(k0) of
L → B : 1
L → LB : gL,l(k1) + 1

end
gB,v(k0, p) = case production(k0) of

B → 0 : 0
B → 1 : 2p

end

Syntax tree t:

k0 : S

k1 : L k2 : . k3 : L

k4 : B k6 : B

k5 : 0 k7 : 1

gS,v(k0)
= gL,v(k1, 0) + gL,v(k3,−gL,l(k3))
= gB,v(k4, 0) + gL,v(k3,−gL,l(k3))
= 0 + gL,v(k3,−gL,l(k3))
= 0 + gB,v(k6,−gL,l(k3))
= 0 + 2−gL,l(k3)

= 0 + 2−1

= 0.5
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Why Strong Noncircularity?

If the attribute grammar is not strongly noncircular, then the
construction of the evaluation functions fails.

Example 17.1 (cf. Example 16.3)

S → A α.0 = α2.1
β1.1 = α1.1
β2.1 = α2.1

A → a α1.0 = β2.0
α2.0 = 2

A → b α1.0 = 1
α2.0 = β1.0

From Example 16.3:
IS ′(A) = {(β2, α1), (β1, α2)}

Definition of gS,α:

gS,α(k0)
= eval(α.0)
= eval(α2.1)
= gA,α2(k1, eval(β1.1))
= gA,α2(k1, eval(α1.1))
= gA,α2(k1, gA,α1(k1, eval(β2.1)))
= gA,α2(k1, gA,α1(k1, eval(α2.1))

=⇒ does not terminate!
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L-Attributed Grammars I

In an L-attributed grammar, attribute dependencies on the right-hand
sides of productions are only allowed to run from left to right.

Definition 17.2 (L-attributed grammar)

Let A = 〈G,E ,V 〉 ∈ AG such that, for every π ∈ P and
β.i = f(. . . , α.j, . . .) ∈ Eπ with β ∈ Inh and α ∈ Syn, j < i. Then A is
called an L-attributed grammar (notation: A ∈ LAG).

Corollary 17.3

Every A ∈ LAG is noncircular.

Compiler Construction Winter semester 2009/10 11



L-Attributed Grammars II

Example 17.4

L-attributed grammar:

S → AB i.1 = 0
i.2 = s.1 + 1
s.0 = s.2 + 1

A → aA i.2 = i.0 + 1
s.0 = s.2 + 1

A → c s.0 = i.0 + 1
B → b s.0 = i.0 + 1

S

A B

a A

c

b

0

1 2

3 4 5

6
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Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be
attributed by a depth-first, left-to-right tree traversal with two visits to
each node

1 top-down: evaluation of inherited attributes

2 bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing

1 top-down: expansion steps

2 bottom-up: reduction steps

Idea: extend LL parsing to support reduction steps, and integrate
attribute evaluation =⇒

use recursive-descent parser

add variables and operations for attribute evaluation
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Recursive-Descent Parsing and Evaluation I

Ingredients: variable token for current token
function next() for invoking the scanner
procedure print(i) for displaying the leftmost
analysis (or errors)

Method: to every A ∈ N we assign a procedure

A(in: inh(A), out: syn(A))

which

declares local variables for synthesized attributes on
right-hand sides,
tests token with regard to the lookahead sets of the
A-productions,
prints the corresponding rule number and
evaluates the corresponding right-hand side as
follows:

for a ∈ Σ: check token; call next()
for A ∈ N : call A with appropriate parameters
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Recursive- Parsing II

Example 17.5 (Arithmetic expressions; cf. Example 8.10)

proc main();
token := next(); S()

proc S(); (* S → A B *)
if token in {’a’,’c’} then

print(1); A(); B()
else print(error); stop fi

proc A(); (* A → a A | c *)
if token = ’a’ then

print(2); token := next(); A()
elsif token = ’c’ then

print(3); token := next()
else print(error); stop fi

proc B(); (* B → b *)
if token = ’b’ then

print(4); token := next()
else print(error); stop fi
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Recursive-Descent Parsing and Evaluation II

Example 17.6 (Arithmetic expressions; cf. Example 17.4)

proc main(); var s;
token := next(); S(s); print(s)

proc S(out s0); var s1,s2; (* S → A B *)
if token in {’a’,’c’} then

print(1); A(0,s1); B(s1 + 1,s2); s0 := s2 + 1
else print(error); stop fi

proc A(in i0,out s0); var s2; (* A → a A | c *)
if token = ’a’ then

print(2); token := next(); A(i0 + 1,s2); s0 := s2 + 1
elsif token = ’c’ then

print(3); token := next(); s0 := i0 + 1
else print(error); stop fi

proc B(in i0,out s0); (* B → b *)
if token = ’b’ then

print(4); token := next(); s0 := i0 + 1
else print(error); stop fi

Compiler Construction Winter semester 2009/10 16



Outline

1 Repetition: Attribute Evaluation

2 Why Strong Noncircularity?

3 Simultaneous Parsing and Attribute Evaluation

4 Generation of Intermediate Code

5 The Example Programming Language EPL

Compiler Construction Winter semester 2009/10 17



Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
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Modularization of Code Generation I

Splitting of code generation for programming language PL:

PL
trans
−→ IC

code
−→ MC

Frontend: trans generates machine-independent intermediate code
(IC) for abstract (stack) machine

Backend: code generates actual machine code (MC)

Advantages: IC machine independent =⇒

Portability: much easier to write IC compiler/interpreter for a new
machine (as opposed to rewriting the whole compiler)

Fast compiler implementation: generating IC much easier than
generating MC

Code size: IC programs usually smaller than corresponding MC
programs

Code optimization: division into machine-independent and
machine-dependent parts
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Modularization of Code Generation II

Example 17.7

1 UNiversal Computer-Oriented Language (UNCOL; ≈ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL1

...

PLn

UNCOL

MC1

...

MCm

only n + m translations
(in place of n · m)

2 Pascal’s pseudocode (P-code; ≈ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

3 The Amsterdam Compiler Kit (TACK; since 1980;
http://tack.sourceforge.net/)

4 Java Virtual Machine (JVM; Sun;
http://en.wikipedia.org/wiki/Java_Virtual_Machine)

5 Common Intermediate Language (CIL; Microsoft;
http://en.wikipedia.org/wiki/Common_Intermediate_Language)
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Language Structures I

Structures in imperative programming languages:
(object-oriented, declarative [functional/logic]: see special courses)

Basic data types and basic operations

Static and dynamic data structures

Expressions and assignments

Control structures (sequences, branching statements, loops, ...)

Procedures and functions

Modularity: blocks, modules, and classes

Use of procedures and blocks:

FORTRAN: non-recursive and non-nested procedures
=⇒ static memory management (memory requirement determined at
compile time)

C: recursive and non-nested procedures
=⇒ dynamic memory management using runtime stack (memory
requirement only known at runtime), no static links

Algol-like languages (Pascal, Modula): recursive and nested procedures
=⇒ dynamic memory management using runtime stack with static links
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Language Structures II

Structures in machine code: (von Neumann/SISD)

Memory hierarchy: accumulators, registers, cache, main memory,
background storage

Instruction types: arithmetic/Boolean/... operation, test/jump
instruction, transfer instruction, I/O instruction, ...

Address modes: direct/indirect, absolute/relative, ...

Architectures: RISC (few [fast but simple] instructions, many
registers), CISC (many [complex but slow] instructions,
few registers)

Structures in intermediate code:

Data types and operations like PL

Data stack with basic operations

Jumping instructions for control structures

Runtime stack for blocks, procedures, and static data structures

Heap for dynamic data structures
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The Example Programming Language EPL

Structures of EPL:

Only integer and Boolean values

Arithmetic and Boolean expressions with strict and non-strict
semantics

Control structures: sequence, branching, iteration

Nested blocks and recursive procedures with local and global
variables
( =⇒ dynamic memory management using runtime stack with
static links)

Procedure parameters and data structures later
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Syntax of EPL

Definition 17.8 (Syntax of EPL)

The syntax of EPL is defined as follows:

Z : z (* z is an integer *)

Ide : I (* I is an identifier *)

AExp : A ::= z | I | A1 + A2 | . . .

BExp : B ::= A1 < A2 | not B | B1 and B2 | B1 or B2

Cmd : C ::= I := A | C1;C2 | if B then C1 else C2 |
while B do C | I()

Dcl : D ::= DC DV DP

DC ::= ε | const I1 := z1, . . . ,In := zn;
DV ::= ε | var I1, . . . ,In;
DP ::= ε | proc I1;K1; . . . ;In;Kn;

Block : K ::= D C

Pgm : P ::= in/out I1, . . . ,In;K.
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