Compiler Construction

Lecture 17: Semantic Analysis V (Attribute Evaluation)/
Code Generation I (Foundations)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/

@ Repetition: Attribute Evaluation

Rm Compiler Construction ter semester 2009/10

Attribute Evaluation Methods

Given: @ (strongly) noncircular attribute grammar
A=(G,E,V)e AG
@ syntax tree ¢ of G
@ valuation v : Syny, — V where
Syny, := {a.k | k labelled by a € ¥, € syn(a)} C Vary
Goal: extend v to (partial) solution v : Vary — V
Methods: @ Topological sorting of D;:
@ start with attribute variables which depend at most
on synthesized attributes of terminals (Synsy;)
© proceed by successive substitution
© Recursive functions (for strongly noncircular AGs):
@ for every A € N and a € syn(A), define evaluation
function ga . with the following parameters:
@ the node of t where a has to be evaluated and
@ all inherited attributes of A on which « (potentially)
depends
@ for every a € syn(S), evaluate gs o(ko) where ko
denotes the root of ¢
© Special cases: S-attributed grammars (yacc), L-attributed
grammars

m' Compiler Construction

Winter semester 2009/10 3

Attribute Evaluation by Recursive Functions

Restriction: only for strongly noncircular attribute grammars

Principle: @ for every A € N and « € syn(A), define evaluation
function g4 o with the following parameters:

¢ the node of ¢ where « has to be evaluated (which is
labelled by A) and
¢ all inherited attributes of A on which a (potentially)
depends (that is, {3 € inh(A) | (3,a) € IS'(A)})
@ given a syntax tree ¢ with root kg, evaluate gg o (ko) for
every a € syn(S)

Result: evaluates synthesized attribute variables at root of ¢ and all
attribute variables on which they actually depend (according to
E)

Rm Compiler Construction Winter semester 2009/10 4

Definition of Evaluation Functions I

For every A € N and « € syn(A), let

@ IS'(A) Cinh(A) x syn(A) as computed by strong circularity test
(Algorithm 16.2)

@ inh(4,a):= {3 €inh(4) | (B3,a) € IS'(A)}

@ A— 41 |...|dn all A-productions in P

Then g4 . is given by
gA,a(ko,inh(A, a)) := case production applied at ko of

A= 0; : eval(c.0)

end '

with
~ if ye Inh,i =0
fleval(vy1.i1), . .., eval(yp.in)) ifyi€lInas;,vi =
eval L . f(’)/l.il, R ,’yn.in) S EAﬂgj
(v.1) : gy ~(ki,eval(fr.i),. .., eval(5.9)) if v € Syn,i >0,Y; € N,
lnh(}/zvry) = {ﬂla e 7ﬂl}
v(v.1) ifye Syn,i>0,Y;€X
where §; = Y7 ...Y,, and where k; denotes the ith successor of kg

m' Compiler Construction Winter semester 2009/10 5

Definition of Evaluation Functions I1

Example (cf. Example 14.1)

G gs.»(ko) = case production(ky) of
_ S—1L: (k1,0)
S — L v.0 = v.1 gL\,
pl=0 S—>L.L:gL7U(k¢1,0) T
S—L.L v0=v1-+2.3 gL,v(k‘:’n _gL,l(k‘3
p3=—13 gr,0(ko,p) = case production(kg) of
L—-B v0=ul L — B :gpy(k1,p)
10 =1 L — LB:gpy(k,p+1)
p.1 =p.0 . + 9B,v(k2,p)
L LB O=w1l .2 el
- 12 0 — ;}1 _:_11) gr,1(ko) = case production(kg) of
pl=p0+1 L—B:1
0.2 = p.0 L—LB:gri(k)+1
B—0 00=0 end '
B 1 0.0 = 2P0 9B.v(ko,p) = case production(kg) of
B—0:0
AeN|S L B B—1:2°
A0 (ol (o)l end

m Compiler Construction Winter semester 2009/10 6

Example Evaluation

Example (continued)

Syntax tree t:
gs,v(ko) = case production(ky) of

S — L:gpu(ki,0) ko =5
S—L.L: gL,v(kl,O) + /// i \\\
ond 9r.v(ks, —gr.,1(k3)) kil kar. KoL
gr1..v(ko,p) = case production(ky) of i i
L — B:gpy(k1,p) ky: B ke : B
L— LB:gp.(ki,p+1) i i
+ 9B,v(k2,p) ’ ’
end ks : 0 kr:1
gr.1(ko) = case production(ky) of
' L—B:1 gs,v(ko)
L— LB:gr (k) +1 = 9gr,0(k1,0) + gr,o(k3, —9gr,1(k3))
end = 9,0(ks,0) + gr,0(ks, —gri(ks
95.0(ko, p) = case production(kg) of = 0+gr,v(ks, —gr,1(ks
B—0:0 = 0+ gp,v(ke, —gr.1(ks))
B—1:2? = 04 2 9z.(ks)
end — 0421
= 0.5

m Compiler Construction Winter semester 2009/10 7

© Why Strong Noncircularity?

Rm Compiler Construction ter semester 2009/10

Why Noncircularity?

If the attribute grammar is not strongly noncircular, then the
construction of the evaluation functions fails.

Example 17.1 (cf. Example 16.3)

S— A al=al

61.1 = Oél.l
62.1 = OéQ.l
A—a «a1.0=70.0
042.0 =2
A—Db a1.0 =1
042.0 = /31.0

From Example 16.3:
IS'(A) = {(B2, 1), (B1, a2)}

Definition of gg q:

gS,a(kO)

eval(a.0)

eval(aw.1)

9A,az (K1, eval(fr.1))

9A,a, (K1, eval(ay.1))

9A,a2 (K1, 9a,a1 (K1, eval(B2.1)))
gA,OQ (kla 9A,a1 (kla eval(()zz.l))

=— does not terminate!

Compiler Construction Winter semester 2009/10

9

© Simultaneous Parsing and Attribute Evaluation

Rm Compiler Construction nter semester 2009/10 10

L-Attributed Grammars 1

In an L-attributed grammar, attribute dependencies on the right-hand
sides of productions are only allowed to run from left to right.

Definition 17.2 (L-attributed grammar)

Let 2 = (G, E, V) € AG such that, for every m € P and
Bi=f(...,a.j,...) € Ex with 8 € Inh and o € Syn, j < i. Then U is
called an L-attributed grammar (notation: 2 € LAG).

FEvery A € LAG is noncircular.

m Compiler Construction Winter semester 2009/10 11

L-Attributed Grammars 11

Example 17.4

L-attributed grammar:
S— AB il =0

1.2 =s.1+1

s.0=s52+1 .
A—aAd 12 =i0+1

5.0 = s2+1 a

A—c s.0 =40+1
B —b s.0 =30+1

m' Compiler Construction Winter semester 2009/10 12

Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be
attributed by a depth-first, left-to-right tree traversal with two visits to
each node

@ top-down: evaluation of inherited attributes

© bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing
@ top-down: expansion steps

@ bottom-up: reduction steps

Idea: extend LL parsing to support reduction steps, and integrate
attribute evaluation —

@ use recursive-descent parser

o add variables and operations for attribute evaluation

Rm Compiler Construction Winter semester 2009/10

Recursive-Descent Parsing |

Ingredients: e variable token for current token
o function next () for invoking the scanner
o procedure print (i) for displaying the leftmost
analysis (or errors)
Method: to every A € N we assign a procedure
A(in: inh(A), out: syn(A))

which

@ declares local variables for synthesized attributes on
right-hand sides,

@ tests token with regard to the lookahead sets of the
A-productions,

@ prints the corresponding rule number and

@ evaluates the corresponding right-hand side as
follows:

o for a € X: check token; call next ()
o for A € N: call A with appropriate parameters

Rm Compiler Construction Winter semester 2009/10 14

Recursive- Parsing I1

Example 17.5 (Arithmetic expressions; cf. Example 8.10)

proc main();
token := next(); SO
proc SO; (xS — A B %)
if token in {’a’,’c’} then
print(1); AQ; BO
else print(error); stop fi
proc AQ); (x A — a A | c %)
if token = ’a’ then
print(2); token := next(); AQ)
elsif token = ’c’ then
print(3); token := next()
else print(error); stop fi
proc BO; (x B — b *)
if token = ’b’ then
print(4); token := next()
else print(error); stop fi

m Compiler Construction Winter semester 2009/10 15

Recursive-Descent Parsing

Example 17.6 (Arithmetic expressions; cf. Example 17.4)

proc main(); var s;
token := next(); S(s); print(s)
proc S(out s0); var si,s2; (x S — A B %)

if token in {’a’,’c’} then
print(1); A(0,s1); B(sl + 1,82); sO :=

=82 + 1
else print(error); stop fi

proc A(in i0,out s0); var s2; (x A — a A | c*)
if token = ’a’ then
print(2); token := next(); A(iO + 1,s2); s0
elsif token = ’c’ then
print(3); token := next(); sO := i0 + 1
else print(error); stop fi
proc B(in i0,out s0); (x B — Db %)
if token = ’b’ then
print(4); token := next(); sO := i0 + 1
else print(error); stop fi

=82 + 1

Compiler Construction

Winter semester 2009/10

16

@ Generation of Intermediate Code

Rm Compiler Construction nter semester 2009/10

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

Y
Syntactic analysis (Parser))

y
Semantic analysis)

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Winter semester 2009/10 18

Modularization of Code Generation 1

Splitting of code generation for programming language PL:

trans code
— —_—

PL IC MC

Frontend: trans generates machine-independent intermediate code
(IC) for abstract (stack) machine

Backend: code generates actual machine code (MC)

Advantages: 1C machine independent —-

Portability: much easier to write IC compiler/interpreter for a new
machine (as opposed to rewriting the whole compiler)

Fast compiler implementation: generating IC much easier than
generating MC

Code size: 1C programs usually smaller than corresponding MC

programs

Code optimization: division into machine-independent and
machine-dependent parts

m' Compiler Construction Winter semester 2009/10

Modularization of Code Generation 11
Example 17.7

© UNiversal Computer-Oriented Language (UNCOL; & 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL; MCy
T~ 7 only n + m translations
UNCOL (in place of n - m)
- ~
PL, MC,,

@ Pascal’s pseudocode (P-code; ~ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

© The Amsterdam Compiler Kit (TACK; since 1980;
http://tack.sourceforge.net/)

@ Java Virtual Machine (JVM; Sun;
http://en.wikipedia.org/wiki/Java_Virtual_Machine)

© Common Intermediate Language (CIL; Microsoft;
http://en.wikipedia.org/wiki/Common_Intermediate_Language)

RWTH Compiler Construction Winter semester 2009/10

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine
http://tack.sourceforge.net/
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Common_Intermediate_Language

Language Structures I

Structures in imperative programming languages:

(object-oriented, declarative [functional/logic]: see special courses)
@ Basic data types and basic operations

Static and dynamic data structures

Expressions and assignments

Control structures (sequences, branching statements, loops, ...)

Procedures and functions

e 6 © ¢ ¢

Modularity: blocks, modules, and classes

Use of procedures and blocks:

@ FORTRAN: non-recursive and non-nested procedures
— static memory management (memory requirement determined at
compile time)

@ C: recursive and non-nested procedures
—> dynamic memory management using runtime stack (memory
requirement only known at runtime), no static links

@ Algol-like languages (Pascal, Modula): recursive and nested procedures
= dynamic memory management using runtime stack with static links

m' Compiler Construction Winter semester 2009/10 21

Language Structures I1

Structures in machine code: (von Neumann/SISD)

Memory hierarchy: accumulators, registers, cache, main memory,
background storage

Instruction types: arithmetic/Boolean/... operation, test/jump
instruction, transfer instruction, I/O instruction, ...

Address modes: direct/indirect, absolute/relative, ...

Architectures: RISC (few [fast but simple] instructions, many
registers), CISC (many [complex but slow] instructions,
few registers)

Structures in intermediate code:

Data types and operations like PL
Data stack with basic operations
Jumping instructions for control structures

Runtime stack for blocks, procedures, and static data structures

¢ 6 ¢ ¢

Heap for dynamic data structures

m' Compiler Construction Winter semester 2009/10

© The Example Programming Language EPL

Rm Compiler Construction ter semester 2009/10

The Example Programming Language EPL

Structures of EPL:
@ Only integer and Boolean values

@ Arithmetic and Boolean expressions with strict and non-strict
semantics

o Control structures: sequence, branching, iteration

@ Nested blocks and recursive procedures with local and global
variables
(= dynamic memory management using runtime stack with
static links)

® Procedure parameters and data structures later

Rm Compiler Construction Winter semester 2009/10

Syntax of EPL

Definition 17.8 (Syntax of EPL)

The syntax of EPL is defined as follows:
Z: z (* z is an integer *)
Ide : I (* I is an identifier *)
AEzp: Au=z|I|A+As|...
BEzp: B :u= A; <Ay|not B|Bj and By | B; or By
Cmd : C:u=1:=A]|C1;Cy|if B then C] else (s |
while Bdo C | I(Q)
Dcl : D ::= Do Dy Dp
Do ::=¢|const Iy :=21,...,I, := z;
Dy :=c¢|var I, ... ,I,;
Dp ::=¢|proc [1;Ky; ... ;1 Ky
Block: K ::=DC
Pgm : P = in/out I, ...,1,; K.

m Compiler Construction Winter semester 2009/10 25

	Repetition: Attribute Evaluation
	Why Strong Noncircularity?
	Simultaneous Parsing and Attribute Evaluation
	Generation of Intermediate Code
	The Example Programming Language EPL

