
Compiler Construction

Lecture 17: Semantic Analysis V (Attribute Evaluation)/
Code Generation I (Foundations)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Outline

1 Repetition: Attribute Evaluation

2 Why Strong Noncircularity?

3 Simultaneous Parsing and Attribute Evaluation

4 Generation of Intermediate Code

5 The Example Programming Language EPL

Compiler Construction Winter semester 2009/10 2

Attribute Evaluation Methods

Given: (strongly) noncircular attribute grammar
A = 〈G,E ,V 〉 ∈ AG

syntax tree t of G

valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1 Topological sorting of Dt:
1 start with attribute variables which depend at most

on synthesized attributes of terminals (SynΣ)
2 proceed by successive substitution

2 Recursive functions (for strongly noncircular AGs):
1 for every A ∈ N and α ∈ syn(A), define evaluation

function gA,α with the following parameters:
the node of t where α has to be evaluated and
all inherited attributes of A on which α (potentially)

depends

2 for every α ∈ syn(S), evaluate gS,α(k0) where k0

denotes the root of t
3 Special cases: S-attributed grammars (yacc), L-attributed

grammars
Compiler Construction Winter semester 2009/10 3

Attribute Evaluation by Recursive Functions

Restriction: only for strongly noncircular attribute grammars

Principle: 1 for every A ∈ N and α ∈ syn(A), define evaluation
function gA,α with the following parameters:

the node of t where α has to be evaluated (which is
labelled by A) and
all inherited attributes of A on which α (potentially)
depends (that is, {β ∈ inh(A) | (β, α) ∈ IS ′(A)})

2 given a syntax tree t with root k0, evaluate gS,α(k0) for
every α ∈ syn(S)

Result: evaluates synthesized attribute variables at root of t and all
attribute variables on which they actually depend (according to
Et)

Compiler Construction Winter semester 2009/10 4

Definition of Evaluation Functions I

For every A ∈ N and α ∈ syn(A), let

IS ′(A) ⊆ inh(A) × syn(A) as computed by strong circularity test
(Algorithm 16.2)

inh(A, α) := {β ∈ inh(A) | (β, α) ∈ IS ′(A)}

A → δ1 | . . . | δm all A-productions in P

Then gA,α is given by
gA,α(k0, inh(A, α)) := case production applied at k0 of

...
A → δj : eval(α.0)

...
end

with

eval(γ.i) :=



























γ if γ ∈ Inh, i = 0
f(eval(γ1.i1), . . . , eval(γn.in)) if γ.i ∈ InA→δj

, γ.i =
f(γ1.i1, . . . , γn.in) ∈ EA→δj

gYi,γ(ki, eval(β1.i), . . . , eval(βl.i)) if γ ∈ Syn, i > 0, Yi ∈ N,
inh(Yi, γ) = {β1, . . . , βl}

v(γ.i) if γ ∈ Syn, i > 0, Yi ∈ Σ
where δj = Y1 . . . Yr, and where ki denotes the ith successor of k0

Compiler Construction Winter semester 2009/10 5

Definition of Evaluation Functions II

Example (cf. Example 14.1)

G′

B :

S → L v.0 = v.1
p.1 = 0

S → L.L v.0 = v.1 + v.3
p.1 = 0
p.3 = −l.3

L → B v.0 = v.1
l.0 = 1
p.1 = p.0

L → LB v.0 = v.1 + v.2
l.0 = l.1 + 1
p.1 = p.0 + 1
p.2 = p.0

B → 0 v.0 = 0
B → 1 v.0 = 2p.0

A ∈ N S L B
IS ′(A) ∅ {(p, v)} {(p, v)}

gS,v(k0) = case production(k0) of
S → L : gL,v(k1, 0)
S → L.L : gL,v(k1, 0) +

gL,v(k3,−gL,l(k3))
end

gL,v(k0, p) = case production(k0) of
L → B : gB,v(k1, p)
L → LB : gL,v(k1, p + 1)

+ gB,v(k2, p)
end

gL,l(k0) = case production(k0) of
L → B : 1
L → LB : gL,l(k1) + 1

end
gB,v(k0, p) = case production(k0) of

B → 0 : 0
B → 1 : 2p

end
Compiler Construction Winter semester 2009/10 6

Example Evaluation

Example (continued)

gS,v(k0) = case production(k0) of
S → L : gL,v(k1, 0)
S → L.L : gL,v(k1, 0) +

gL,v(k3,−gL,l(k3))
end

gL,v(k0, p) = case production(k0) of
L → B : gB,v(k1, p)
L → LB : gL,v(k1, p + 1)

+ gB,v(k2, p)
end

gL,l(k0) = case production(k0) of
L → B : 1
L → LB : gL,l(k1) + 1

end
gB,v(k0, p) = case production(k0) of

B → 0 : 0
B → 1 : 2p

end

Syntax tree t:

k0 : S

k1 : L k2 : . k3 : L

k4 : B k6 : B

k5 : 0 k7 : 1

gS,v(k0)
= gL,v(k1, 0) + gL,v(k3,−gL,l(k3))
= gB,v(k4, 0) + gL,v(k3,−gL,l(k3))
= 0 + gL,v(k3,−gL,l(k3))
= 0 + gB,v(k6,−gL,l(k3))
= 0 + 2−gL,l(k3)

= 0 + 2−1

= 0.5
Compiler Construction Winter semester 2009/10 7

Outline

1 Repetition: Attribute Evaluation

2 Why Strong Noncircularity?

3 Simultaneous Parsing and Attribute Evaluation

4 Generation of Intermediate Code

5 The Example Programming Language EPL

Compiler Construction Winter semester 2009/10 8

Why Strong Noncircularity?

If the attribute grammar is not strongly noncircular, then the
construction of the evaluation functions fails.

Example 17.1 (cf. Example 16.3)

S → A α.0 = α2.1
β1.1 = α1.1
β2.1 = α2.1

A → a α1.0 = β2.0
α2.0 = 2

A → b α1.0 = 1
α2.0 = β1.0

From Example 16.3:
IS ′(A) = {(β2, α1), (β1, α2)}

Definition of gS,α:

gS,α(k0)
= eval(α.0)
= eval(α2.1)
= gA,α2(k1, eval(β1.1))
= gA,α2(k1, eval(α1.1))
= gA,α2(k1, gA,α1(k1, eval(β2.1)))
= gA,α2(k1, gA,α1(k1, eval(α2.1))

=⇒ does not terminate!

Compiler Construction Winter semester 2009/10 9

Outline

1 Repetition: Attribute Evaluation

2 Why Strong Noncircularity?

3 Simultaneous Parsing and Attribute Evaluation

4 Generation of Intermediate Code

5 The Example Programming Language EPL

Compiler Construction Winter semester 2009/10 10

L-Attributed Grammars I

In an L-attributed grammar, attribute dependencies on the right-hand
sides of productions are only allowed to run from left to right.

Definition 17.2 (L-attributed grammar)

Let A = 〈G,E ,V 〉 ∈ AG such that, for every π ∈ P and
β.i = f(. . . , α.j, . . .) ∈ Eπ with β ∈ Inh and α ∈ Syn, j < i. Then A is
called an L-attributed grammar (notation: A ∈ LAG).

Corollary 17.3

Every A ∈ LAG is noncircular.

Compiler Construction Winter semester 2009/10 11

L-Attributed Grammars II

Example 17.4

L-attributed grammar:

S → AB i.1 = 0
i.2 = s.1 + 1
s.0 = s.2 + 1

A → aA i.2 = i.0 + 1
s.0 = s.2 + 1

A → c s.0 = i.0 + 1
B → b s.0 = i.0 + 1

S

A B

a A

c

b

0

1 2

3 4 5

6

Compiler Construction Winter semester 2009/10 12

Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be
attributed by a depth-first, left-to-right tree traversal with two visits to
each node

1 top-down: evaluation of inherited attributes

2 bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing

1 top-down: expansion steps

2 bottom-up: reduction steps

Idea: extend LL parsing to support reduction steps, and integrate
attribute evaluation =⇒

use recursive-descent parser

add variables and operations for attribute evaluation

Compiler Construction Winter semester 2009/10 13

Recursive-Descent Parsing and Evaluation I

Ingredients: variable token for current token
function next() for invoking the scanner
procedure print(i) for displaying the leftmost
analysis (or errors)

Method: to every A ∈ N we assign a procedure

A(in: inh(A), out: syn(A))

which

declares local variables for synthesized attributes on
right-hand sides,
tests token with regard to the lookahead sets of the
A-productions,
prints the corresponding rule number and
evaluates the corresponding right-hand side as
follows:

for a ∈ Σ: check token; call next()
for A ∈ N : call A with appropriate parameters

Compiler Construction Winter semester 2009/10 14

Recursive- Parsing II

Example 17.5 (Arithmetic expressions; cf. Example 8.10)

proc main();
token := next(); S()

proc S(); (* S → A B *)
if token in {’a’,’c’} then

print(1); A(); B()
else print(error); stop fi

proc A(); (* A → a A | c *)
if token = ’a’ then

print(2); token := next(); A()
elsif token = ’c’ then

print(3); token := next()
else print(error); stop fi

proc B(); (* B → b *)
if token = ’b’ then

print(4); token := next()
else print(error); stop fi

Compiler Construction Winter semester 2009/10 15

Recursive-Descent Parsing and Evaluation II

Example 17.6 (Arithmetic expressions; cf. Example 17.4)

proc main(); var s;
token := next(); S(s); print(s)

proc S(out s0); var s1,s2; (* S → A B *)
if token in {’a’,’c’} then

print(1); A(0,s1); B(s1 + 1,s2); s0 := s2 + 1
else print(error); stop fi

proc A(in i0,out s0); var s2; (* A → a A | c *)
if token = ’a’ then

print(2); token := next(); A(i0 + 1,s2); s0 := s2 + 1
elsif token = ’c’ then

print(3); token := next(); s0 := i0 + 1
else print(error); stop fi

proc B(in i0,out s0); (* B → b *)
if token = ’b’ then

print(4); token := next(); s0 := i0 + 1
else print(error); stop fi

Compiler Construction Winter semester 2009/10 16

Outline

1 Repetition: Attribute Evaluation

2 Why Strong Noncircularity?

3 Simultaneous Parsing and Attribute Evaluation

4 Generation of Intermediate Code

5 The Example Programming Language EPL

Compiler Construction Winter semester 2009/10 17

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
Compiler Construction Winter semester 2009/10 18

Modularization of Code Generation I

Splitting of code generation for programming language PL:

PL
trans
−→ IC

code
−→ MC

Frontend: trans generates machine-independent intermediate code
(IC) for abstract (stack) machine

Backend: code generates actual machine code (MC)

Advantages: IC machine independent =⇒

Portability: much easier to write IC compiler/interpreter for a new
machine (as opposed to rewriting the whole compiler)

Fast compiler implementation: generating IC much easier than
generating MC

Code size: IC programs usually smaller than corresponding MC
programs

Code optimization: division into machine-independent and
machine-dependent parts

Compiler Construction Winter semester 2009/10 19

Modularization of Code Generation II

Example 17.7

1 UNiversal Computer-Oriented Language (UNCOL; ≈ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL1

...

PLn

UNCOL

MC1

...

MCm

only n + m translations
(in place of n · m)

2 Pascal’s pseudocode (P-code; ≈ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

3 The Amsterdam Compiler Kit (TACK; since 1980;
http://tack.sourceforge.net/)

4 Java Virtual Machine (JVM; Sun;
http://en.wikipedia.org/wiki/Java_Virtual_Machine)

5 Common Intermediate Language (CIL; Microsoft;
http://en.wikipedia.org/wiki/Common_Intermediate_Language)

Compiler Construction Winter semester 2009/10 20

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine
http://tack.sourceforge.net/
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Common_Intermediate_Language

Language Structures I

Structures in imperative programming languages:
(object-oriented, declarative [functional/logic]: see special courses)

Basic data types and basic operations

Static and dynamic data structures

Expressions and assignments

Control structures (sequences, branching statements, loops, ...)

Procedures and functions

Modularity: blocks, modules, and classes

Use of procedures and blocks:

FORTRAN: non-recursive and non-nested procedures
=⇒ static memory management (memory requirement determined at
compile time)

C: recursive and non-nested procedures
=⇒ dynamic memory management using runtime stack (memory
requirement only known at runtime), no static links

Algol-like languages (Pascal, Modula): recursive and nested procedures
=⇒ dynamic memory management using runtime stack with static links

Compiler Construction Winter semester 2009/10 21

Language Structures II

Structures in machine code: (von Neumann/SISD)

Memory hierarchy: accumulators, registers, cache, main memory,
background storage

Instruction types: arithmetic/Boolean/... operation, test/jump
instruction, transfer instruction, I/O instruction, ...

Address modes: direct/indirect, absolute/relative, ...

Architectures: RISC (few [fast but simple] instructions, many
registers), CISC (many [complex but slow] instructions,
few registers)

Structures in intermediate code:

Data types and operations like PL

Data stack with basic operations

Jumping instructions for control structures

Runtime stack for blocks, procedures, and static data structures

Heap for dynamic data structures

Compiler Construction Winter semester 2009/10 22

Outline

1 Repetition: Attribute Evaluation

2 Why Strong Noncircularity?

3 Simultaneous Parsing and Attribute Evaluation

4 Generation of Intermediate Code

5 The Example Programming Language EPL

Compiler Construction Winter semester 2009/10 23

The Example Programming Language EPL

Structures of EPL:

Only integer and Boolean values

Arithmetic and Boolean expressions with strict and non-strict
semantics

Control structures: sequence, branching, iteration

Nested blocks and recursive procedures with local and global
variables
(=⇒ dynamic memory management using runtime stack with
static links)

Procedure parameters and data structures later

Compiler Construction Winter semester 2009/10 24

Syntax of EPL

Definition 17.8 (Syntax of EPL)

The syntax of EPL is defined as follows:

Z : z (* z is an integer *)

Ide : I (* I is an identifier *)

AExp : A ::= z | I | A1 + A2 | . . .

BExp : B ::= A1 < A2 | not B | B1 and B2 | B1 or B2

Cmd : C ::= I := A | C1;C2 | if B then C1 else C2 |
while B do C | I()

Dcl : D ::= DC DV DP

DC ::= ε | const I1 := z1, . . . ,In := zn;
DV ::= ε | var I1, . . . ,In;
DP ::= ε | proc I1;K1; . . . ;In;Kn;

Block : K ::= D C

Pgm : P ::= in/out I1, . . . ,In;K.

Compiler Construction Winter semester 2009/10 25

	Repetition: Attribute Evaluation
	Why Strong Noncircularity?
	Simultaneous Parsing and Attribute Evaluation
	Generation of Intermediate Code
	The Example Programming Language EPL

