Compiler Construction

Lecture 19: Code Generation II1
(Translation to Intermediate Code)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/

@ Repetition: Source and Intermediate Code

Rm Compiler Construction ter semester 2009/10

Syntax of EPL

Definition (Syntax of EPL)

The syntax of EPL is defined as follows:
Z: z (* z is an integer *)
Ide : I (* I is an identifier *)
AEzp: Au=z|I|A+As|...
BEzp: B :u= A; <Ay|not B|Bj and By | B; or By
Cmd : C:u=1:=A]|C1;Cy|if B then C] else (s |
while Bdo C | I(Q)
Dcl : D ::= Do Dy Dp
Do ::=¢|const Iy :=21,...,I, := z;
Dy :=c¢|var I, ... ,I,;
Dp ::=¢|proc [1;Ky; ... ;1 Ky
Block: K ::=DC
Pgm : P = in/out I, ...,1,; K.

m Compiler Construction Winter semester 2009/10 3

Static Semantics of EPL

in/out x;
const ¢ = 10;
var y; . .
e o “Innermost” principle
var y, z; @ Static scoping: body of P can
proc Q; refer to x, y, z
var x, z; o Later declaration: call of R in
[... z :=1; PO ..] P followed by declaration (in
[... PO ... RO ..] Pascal: forward declarations
proc R; for one-pass compilation)
[... PO ..]
[... x :=0; PO ..] .

Compiler Construction Winter semester 2009/10

Dynamic Semantics of EPL

(omitting the details)

@ To “run” a program, execute the main block in the state which is
given by the input values

@ Consequently, an EPL program P = in/out 1, ...,I,; K. € Pgm
has as semantics a function

M[P]: 2" --» Z"

Rm Compiler Construction Winter semester 2009/10 5

The Abstract Machine AM

Definition (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space
S:=PC x DS x PS

with
@ the program counter PC' := N,
o the data stack DS := Z* (top of stack to the right), and

@ the procedure stack (or: runtime stack) PS := Z*
(top of stack to the left).

Thus a state s = (I,d,p) € S is given by
@ a program label [€ PC,
o adatastack d=d.r:...:d.1 € DS, and
@ a procedure stack p=p.1:...:pt € PS.

m Compiler Construction Winter semester 2009/10 6

AM Instructions

Definition (AM instructions)

The set of AM instructions is divided into

arithmetic instructions: ADD, MULT, ...

Boolean instructions: NOT, AND, OR, LT, ...

jumping instructions: JMP(ca), JFALSE(ca) (ca € PC)

procedure instructions: CALL(ca, dif ,loc) (ca € PC, dif,loc € N), RET

transfer instructions: LOAD(dif , off), STORE(dif , off) (dif, off € N),
LIT(2) (z € Z)

m Compiler Construction Winter semester 2009/10 7

Structure of Procedure Stack 1

The semantics of procedure and transfer instructions requires a
particular structure of the procedure stack p € PS: is must be
composed of frames (or: activation records) of the form

sl:dl:ra:vy:...: v

where

static link s/: points to frame of surrounding declaration environment
= used to access non-local variables

dynamic link dl: points to previous frame (i.e., of calling procedure)

= used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
—> used to continue program execution after
termination of procedure call

local variables v;: values of locally declared variables

m' Compiler Construction Winter semester 2009/10 8

Structure of Procedure Stack II

Example (cf. Example 19.2)

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;
[.. PO ..]
[QO]
proc R;
[. PO]
[.. PO ...

Procedure stack after second call of P:

: Ii :
| L [3 [——
Ls[al [[[s[af [[[s]af [[[als[[[ofofo] |
y z- x z. y z- y:sl dl ra x
PO : QO Z PO . MAIN | 1/0

m Compiler Construction Winter semester 2009/10 9

Semantics of Procedure Instructions

® CALL(ca,dif ,loc) with
@ code address ca € PC
o level difference dif € N
o number of local variables loc € N
creates the new frame and jumps to the given address
(= starting address of procedure)
@ RET removes the topmost frame and returns to the calling site

Definition (Semantics of procedure instructions)

The semantics of a procedure instruction O, [O] : S --+ S, is defined as
follows:

[CALL (ca, dif ,loc)] (I, d, p)

= (ca,d, (base(p, dif) + loc +2) : (loc+2) : (I+1):0:...:0:p
((base(3)(dl)()‘lt.,)
s ra oc times
[RET](l,d,p.1:...: p.t)
= (p3,d,p.(p2 +2):...:p.t) ift >p2+2
~— ~

ra dl
m Compiler Construction Winter semester 2009/10

Semantics of Transfer Instructions

o LOAD(dif , off) and STORE(dif , off) with
o level difference dif € N
o variable offset off € N

respectively load and store variable values between data and
procedure stack, following a chain of dif static links

® LIT(z) loads the literal constant z € Z

Definition (Semantics of transfer instructions)

The semantics of a transfer instruction O, [O] : S --» S, is defined as
follows:

[LOAD (dif , off)] (1, d,p) := (I + 1,d : p.(base(p, dif) + off + 2),p)
[STORE(dif , off)] (1,d : z,p) := (I 4+ 1,d, p[base(p, dif) + off + 2+ z])
[LIT(2)](l,d,p) := (I +1,d: z,p)

m Compiler Construction Winter semester 2009/10 11

AM Programs and Their Semantics

Definition (Semantics of AM programs)

An AM program is a sequence of k > 1 labeled AM instructions:
P=ay:04;...;a5: O,

where a; € PC with a; = a; +i — 1 for every i € [k]. The set of all AM
programs is denoted by AM.

The semantics of AM programs is determined by
[.]: AM xS --» S

with

[P](l, d,p) = {E[P ([0, d,p)) ifl€ {ar,...,ax}

I
l,d,p) otherwise

m Compiler Construction Winter semester 2009/10 12

© Translation of EPL into AM Programs

Rm Compiler Construction ter semester 2009/10 13

Translation of EPL into AM Programs

Goal: define translation mapping
trans : Pgm --» AM
The translation employs a symbol table:

Tab := {st | st : Ide --+ ({const} X Z)
U ({var} x Lev x Off)
U ({proc} x PC x Lev x Size)}

whose entries are created by declarations and are used for translating
commands:
variable declarations: declaration level lev € Lev := N,
offset off € Off :=N
(offset and difference between usage and declaration level
determine procedure stack entry)
procedure declarations: code address ca € PC, declaration level
lev € Lev, number of local variables loc € Size := N

Rm Compiler Construction Winter semester 2009/10 14

Maintaining the Symbol Table

The symbol table is maintained by the function update(D, st,) which
specifies the update of symbol table st according to declaration D (with
respect to current level [):

Definition 19.1 (update function)
update : Decl x Tab X Lev --» Tab

is defined by
update(D¢o Dy Dp,st,l)
:= update(Dp,update(Dy, update(D¢, st, 1),1),1)
if all identifiers in Do Dy Dp different
update(e, st,)

= st
update(const Iy := z1,...,L, := z,;,st,1)
:= st[[; — (comst, z1),..., I, — (const, z,)]

update(var Iy, ..., L,;,st,1)
= sty — (var,l,1),..., I, — (var,l,n)]
update(proc I1; K15 ... ;1 Kpj;,st,l)
.= st[[; — (proc,as,l,size(K1)),. .., I — (proc,an,l,size(K,))]
with “fresh” addresses a1, ...,a,
where size(D¢ var Iy, ...,I,; DpC):=n
m Compiler Construction Winter semester 2009/10 15

The Initial Symbol Table

An EPL program P = in/out I, ...,I,; K. € Pgm has a semantics
of type Z™ --+ 7.

Given (z1,...,2,) € Z"™, we choose the initial state

s:=(1,6,0:0:0:21:...:2,) €S =PC x DS x PS

I/0 frame

Thus the corresponding initial symbol table has n entries:

str/o(lj) == (var,0,) for every j € [n]

Rm Compiler Construction Winter semester 2009/10

Translation of Programs

Translation of in/out I1,...,1,;D C.:
@ Create MAIN frame for executing C'

@ Stop program execution after return

Definition 19.2 (Translation of programs)

The mapping
trans : Pgm --» AM

is defined by
trans(in/out Iy, ... ,[,;K.):=1:CALL(a,0,size(K)) ;

2 : JMP(0);
kt(Kv StI/Ov a, 1)

m Compiler Construction Winter semester 2009/10 17

Translation of Blocks

Translation of D C"
© Update symbol table according to D

@ Create code for procedures declared in D
(using the updated symbol table — recursion!)

@ Create code for C' (using the updated symbol table)

Definition 19.3 (Translation of blocks)

The mapping
kt : Block x Tab x PC x Lev --» AM
(“block translation”) is defined by
kt(D C,st,a,l) := dt(D,update(D,st,1),1)

ct(C, update(D, st, 1), a,l)
a' : RET;

m Compiler Construction Winter semester 2009/10

18

Translation of Declarations

Translation of D:

@ Generate code for the procedures declared in D

Definition 19.4 (Translation of declarations)

The mapping
dt : Decl x Tab x Lev --» AM
(“declaration translation”) is defined by
dt(DC Dy DP,St,l)
= dt(Dp,st,l)
dt(e, st, 1)
= €
dt(proc I1; Ky ... ;I ; Ky s, st, 1)
= kt(Ky,st,a,l+1)

kt(Ky, st, an,l + 1)
where st(I;) = (proc,aj,...,...) for every j € [n]

m Compiler Construction Winter semester 2009/10 19

Translation of Commands

Definition 19.5 (Translation of commands)

The mapping
ct : Cmd x Tab x PC x Lev --» AM
(“command translation”) is defined by
ct(:= A,st,a,l) := at(4,st,a,l)
a' : STORE(I — lev, off) ;
if st(I) = (var, lev, off)
ct(IQ,st,a,l) :== a: CALL(ca,l — lev,loc) ;
if st(I) = (proc, ca, lev, loc)
ct(Cq;Ca,st, a,l) := ct(Ch,st, a,l)
ct(Cs, st, a’,1)
ct(if B then C4 else Cy,st,a,l) := bt(B,st,a,l)
a' : JFALSE(a") ;
ct(C’l,st,a’ +1,10)
=1z JMP @
(Cz,bt a’,l)
/// .

ct(while B do C,st,a,l) := bt(B,bt,a,l)
a' 1 JFALSE(a” +1);
ct(C,st,a’ + 1,1)
. JMP (a) ;

m Compiler Construction Winter semester 2009/10

Translation of Boolean Expressions

Definition 19.6 (Translation of Boolean expressions)

The mapping
bt : BExzp x Tab x PC x Lev --» AM
(“Boolean expression translation”) is defined by
bt(A; < Ag,st,a,l) = at(Ay,st,a,l)
at(Asg,st,d’,1)
a” : LT;
bt(not B,st,a,l) := bt(B,st,a,l)
a’ : NOT;
bt(B; and Ba,st,a,l) := bt(Bi,st, a,l)
bt(Ba,st,a’, 1)
a” : AND;
bt(B; or Bg,st,a,l) := bt(By,st,a,l)
bt(Ba,st,a’, 1)
a” : OR;

m Compiler Construction Winter semester 2009/10 21

Translation of Arithmetic Expressions

Definition 19.7 (Translation of arithmetic expressions)

The mapping
at : AFxp x Tab x PC x Lev --» AM

(“arithmetic expression translation”) is defined by

at(z,st,a,l) := a: LIT(2);
a:LIT(2); if st(I) = (const, 2z
2l) == a: LOAD(l — lev,off); if stEI% = Evar, lev,)oﬁ)
at(A; + Ag,st,a,l) := at(Ay,st,a,l)
at(Asg,st,d’,1)
a” : ADD;

m Compiler Construction Winter semester 2009/10

© A Translation Example

Rm Compiler Construction nter semester 2009/10

Example: Factorial Function I

Example 19.8 (Factorial function)

Source code:

in/out x; trans(in/out x;K.)1:
var y;
proc F;
if x > 1 then 1
y =Y * X 2
X i=x - 1;
FO
y &= ig
FO; ai
X =Yy. 2
trans(in/out I, ..., Ih; K.) =
1: CALL(a,0,size(K)) ; kt(D C,st, a,l) :=
2 : JMP(0); az
kt(K,St[/o,a,l)

dt(D, update(D, st,l),l) update(var I, ...

ct(C,update(D, st, 1), a,l) st[l; — (var,l, 1)

a’ : RET; update(proc [1;K1; ..
st[I1 — (proc, al,l,sme(Kl

In”st l):=

kt(K1,st,a1,l + 1)

Compiler Construction

ct(if B then

Intermediate code:

CALL(ap,0,1);

2 : JMP(0) ;

kt(X, str/0, a0, 1)

: CALL(ap,0,1);
: JMP(0) ;

dt(D, update(D, s
ct(C, update(D, st

: RET;
: CALL(ap,0,1);
: JMP(0) ;

dt(D,st’, 1)
ct(C,st’; ao, 1)

: RET;
1: CALL(Cap,0,1);
2:

s In — (var,l,;n
I'rz;Kn;,Stl

JMP(0) ;

)ﬁ (K, st’, a1, 2
St a(),
oc 6" | size
s’c 0 1) o=

ct(CF,st 01,2)

t

: RET;
Winter semester 2009/10 24

—

T~

Example: Factorial Function I1

Example 19.8 (Factorial function; continued)

Code with symbolic Linearized
addresses: (ap = 17,a1 = 3,a2 = 22,a3 = 16, a4 = 6):
1: CALL(ap,0,1); 1:CALL(17,0,1);
2 : JMP(0) ; 2 : JMP(0) ;

a1 : LOAD(2,1); 3: LOAD(2,1);
LIT(1); 4 :LIT(1);
GT; 5: GT;

a4 : JFALSE(a3) ; 6 : JFALSE(16) ;
LOAD(1,1); 7 : LOAD(1,1);
LOAD(2,1); 8 : LOAD(2,1);
MULT; 9 : MULT;
STORE(1,1); 10 : STORE(1,1);
LOAD(2,1); 11 : LOAD(2,1);
LIT(1); 12 : LIT(1);
SUB; 13 : SUB;
STORE(2,1) ; 14 : STORE(2,1);
CALL(Ca1,1,0); 15 : CALL(3,1,0);

as : RET; 16 : RET;

ao : LIT(1); 17 : LIT(1);
STORE(0,1) ; 18 : STORE(0,1);
CALL(a;,0,0); 19 : CALL(3,0,0);
LOAD(0,1); 20 : LOAD(0,1);
STORE(1,1); 21 : STORE(1,1);

a2 : RET; 22 : RET;

Compiler Construction

Winter semester 2009/10

25

Example: Factorial Function 111

Example 19.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T 0:0:0:2

1: CALL(17,0,1); 17 . 4:3:2:0:0:0:0:2
2: JMP(0); 18 1 4:3:2:0:0:0:0:2
3 :LOAD(2,1); 1g e 3 00 Z:%:Q: :8:8:8:2
. . € 12 :4:3:2:1:0:0:0:2

éé.:]l::.T(l)’ 4 2 3: 20:4:3:2:1:0:0:0:2
“f' B 5 231 FeAo A4 s FecAN 00032
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); g zi %: :28:1:§:2: :8:8:8:2
3 - . :2:20:4:3:2:1:0:0:0:2
SZLOAD_(Q’l)’ 9 1:2 3:2:20:4:3:2:1:0:0:0:2
9 : MULT; S5O0 - A3 010009
. 10 2 3:2:20:4:3:2:1:0:0:0:2

10 : STORE(1,1); 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB: %4 1 3:2:28:1:§:2:2:8:8:8:?
: > . 5 ¢ 3:2:20:4:3:2:2:0:0:0:

14 : STORE(2,1) ; 3 € 6:2:16:3:2:20:4:3:2:2:0:0:0:
15 : CALL(3,1,0); 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:
16 : RET; g (1):1 g%%gg%%gig%%ggg%
17 : LIT(1); :2:16:3:2:20:4:3:2:2:0:0:0:
7. (1) . 16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:
18 : STORE(0,1) ; = B racrro s B TR
16 ¢ 3:2:20:4:3:2:2:0:0:0:

19 : CALL(3,0,0); 20 € 4:3:2:2:0:0:0:
20 : LOAD(0,1); 21 2 4:3:2:2:0:0:0:
21 : STORE(1,1); 2% € 4:3:2:2:8:8:8:%
99 . . e :0:0:
P18 BIaR 0 ¢ 0:0:0:2

m Compiler Construction Winter semester 2009/10

@ Correctness of the Translation

Rm Compiler Construction nter semester 2009/10

Correctness of the Translation

Theorem 19.9 (Correctness of translation)

For every P € Pgm, n € N, and (z1,...,2),(21,...,2),) € Z":

M[P)(z1,. - 2n) = (#4,...,2})
<= [trans(P)](1,6,0:0:0:21:...:2,) =(0,6,0:0:0: 2] :...:2])

see M. Mohnen: A Compiler Correctness Proof for the Static Link
Technique by means of Evolving Algebras, Fundamenta Informaticae
29(3), 1997, pp. 257-303 O

m Compiler Construction Winter semester 2009/10 28

	Repetition: Source and Intermediate Code
	Translation of EPL into AM Programs
	A Translation Example
	Correctness of the Translation

