Compiler Construction

Lecture 20: Code Generation IV
(Jumping Code & Static Data Structures)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/

@ Repetition: Translation of Boolean Expressions

Rm Compiler Construction nter semester 2009/10

The Abstract Machine AM

Definition (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space
S:=PC x DS x PS

with
@ the program counter PC' := N,
o the data stack DS := Z* (top of stack to the right), and

@ the procedure stack (or: runtime stack) PS := Z*
(top of stack to the left).

Thus a state s = (I,d,p) € S is given by
@ a program label [€ PC,
o adatastack d=d.r:...:d.1 € DS, and
@ a procedure stack p=p.1:...:pt € PS.

m Compiler Construction Winter semester 2009/10 3

AM Instructions

Definition (AM instructions)

The set of AM instructions is divided into

arithmetic instructions: ADD, MULT, ...

Boolean instructions: NOT, AND, OR, LT, ...

jumping instructions: JMP(ca), JFALSE(ca) (ca € PC)

procedure instructions: CALL(ca, dif ,loc) (ca € PC, dif,loc € N), RET

transfer instructions: LOAD(dif , off), STORE(dif , off) (dif, off € N),
LIT(2) (z € Z)

m Compiler Construction Winter semester 2009/10 4

Semantics of Instructions

Definition (Semantics of AM instructions (1st part))

The semantics of an AM instruction O
[O]:S--»S
is defined as follows:
[ADD[(l,d : 21 : z2,p) := (I 4+ 1,d: 21 + 22,p)
[NOT](l,d : b,p) := (I 4+ 1,d : =b,p) if b e {0,1}
[[AND]](Z d: by : bs,) = (l +1,d:b1 A bg,p) if b1,b9 € {0,1}
[[OR]](l,delibg, p):=(l+1,d:byVby,p) ifbl,bQE{O,l}
o _J+1,d:1,p) ifz1 < 29
[LT](l,d : 21 : 22,D) _{(l+1,d 0,p) if 21 > 2
[3MP(cad (1, d,p) = (ca,d,p)
_ J(ea,d,p) ifb=
[JFALSE(ca)](l,d : b,p) := {(+1’d’p) Fb—1

m Compiler Construction Winter semester 2009/10

Translation of Boolean Expressions

Definition (Translation of Boolean expressions)

The mapping
bt : BExzp x Tab x PC x Lev --» AM
(“Boolean expression translation”) is defined by
bt(A; < Ag,st,a,l) = at(Ay,st,a,l)
at(Asg,st,d’,1)
a” : LT;
bt(not B,st,a,l) := bt(B,st,a,l)
a’ : NOT;
bt(B; and Ba,st,a,l) := bt(Bi,st, a,l)
bt(Ba,st,a’, 1)
a” : AND;
bt(B; or Bg,st,a,l) := bt(By,st,a,l)
bt(Ba,st,a’, 1)
a” : OR;

m Compiler Construction Winter semester 2009/10 6

© Boolean Expressions with Sequential Semantics

Rm Compiler Construction nter semester 2009/10

Boolean Expressions with Sequential Semantics

So far: Boolean expressions with strict semantics

b) L=1
LOb=1

Now: Boolean expressions with sequential semantics

false A L = false
true V L = true

Ap—
LOb=1

Idea:
@ employ jump rather than Boolean instructions (“jumping code”)
@ equip bt and ct with two additional address parameters:

ay: target address for true
ay: target address for false

Rm Compiler Construction Winter semester 2009/10 8

Jumping Code for Boolean Expressions

Definition 20.1 (Jumping code for Boolean expressions)

The mapping
sbt : BEzp x Tab x PC? x Lev —-» AM
(“sequential Boolean expression translation”) is defined by

sbt(A; < Ag,st,a,as,ar,l) = at(Ai,st, a,l)
at(Asg,st, a’,l)
a” : LT;
a” +1: JFALSE(ay) ;
a” +2: JMP(ay) ;

sbt(not B,st,a,as,ar,l) = sbt(B,st,a,af,al)
sbt(B1 and Bo,st,a,a¢,af,l) = sbt(Bi,st,a,d’,ar,l)
sbt(Ba,st, d’, a,ar,1)

sbt(B1 or Ba,st,a,at,af,l) = sbt(Bi,st,a,a:,ad,l)
sbt(Ba,st, d’, a,ar,1)

m Compiler Construction Winter semester 2009/10 9

Jumping Code for Commands

Definition 20.2 (Jumping code for commands)

The mapping
sct : Cmd x Tab x PC x Lev --» AM
(“sequential command translation”) is defined by

sct(if B then C else Cy,st,a,l) := sbt(B,st,a,as,ar,l)
sct(Cy, st, ay, 1)
af—1:JMP(d);
sct(Cy,st, afr,l)
a :
sct(while B do C,st,a,l) := sbt(B,st,a,a af,1)
sct(C, st, ag, 1)
ar—1:JMP(a);

af :

(remaining cases analogously)

m Compiler Construction Winter semester 2009/10 10

Example: Jumping Code

Example 20.3

Translation of while not (x < 1) and (x < y) do C:
Strict: Sequential:
1: LOAD(x); 1 : LOAD(x);
LIT(1); LIT(1);
LT; LT;
NOT; JFALSE(6) ;
LOAD(x) ; JMP (a) ;
LOAD(y) ; 6 : LOAD(x);
T LOAD(y) ;
AND; LT;
JFALSE(a) ; JFALSE(a) ;
ct(C,...) JMP(11);
JMP(1); 11 : sct(C, .. .)
a:... JMP (1) ;
a:...
If x =0:
9 instructions executed If x = 0:
5 instructions executed
—> generally: longer code, but shorter executions

m Compiler Construction Winter semester 2009/10 11

© Intermediate Code for Data Structures

Rm Compiler Construction ter semester 2009/10 12

Translation of Data Structures

Source code: data structures = arrays, records, lists, trees, ...
= structured state space, variables with components
Abstract machine: linear memory structure, cells for storing atomic
data
Translation: mapping of structured state space to linear memory
(= address computation)
o static data structures: memory reqirements known at
compile time
@ dynamic data structures: memory reqirements
runtime dependent
—> heap, pointers, garbage collection, ...

First step:
@ static data structures (arrays and records)

@ inductive type definitions

@ no procedures (for simplification; “orthogonal” extension)

m' Compiler Construction Winter semester 2009/10 13

@ Static Data Structures

Rm Compiler nstruction nter semester 2009/10 14

Modified Syntax of EPL

Definition 20.4 (Modified syntax of EPL)

The modified syntax of EPL is defined as follows (where n>1):

if F then C] else (5 | while F do C
Dc Dy Dy
elconst Iy :=cy;...51, 1= cp;
Dr w=c¢|type I} :=T1;...;1, :=T,;
Dy i=c¢c|var @y : Tv;...;1, : Ty;
Pgm : P:=DC

m Compiler Construction Winter semester 2009/10 15

Z: z (* z is an integer *)
B : b ::= true | false (* bis a Boolean *)
R: 7 (* r is a real number *)
Con cu=z|b|r (* c is a constant *)
Ide : 1 (* I is an identifier *)
Type T ::=Dbool | int |real | I | array[z;..22] of T |
record [1:T11; ... ;1,:T, end

Var: Vu=I|VIE]|V.I

Euxp : E:=c|V|Ei+Ey|Ey<FEy|FEand Ey | ...
Cmd: Cu=V:=E|C;;Cs|

D

Static Semantics 1

(2

All identifiers in a declaration D have to be different.

In T =record I:Ti; ... ;I,:T;, end, all selectors I; must be
different.

InT = arrayl[z;..29] of T, 21 < 2o.

Type definitions must not be recursive:

it Dr =type Iy :=1T1;...;1, :=1T,; and identifier I occurs in T},
then I € {Il, S 7Ij—1}-

The type identifiers used in in a variable declaration Dy must be
declared.

Every identifier used in a command C must be declared in D (as a
constant or variable).

Variables in expressions and assignments have a base type
(bool/int/real; possibly via type identifiers).

m' Compiler Construction Winter semester 2009/10 16

Static Semantics 11

o Array indices must have type int.
o Execution conditions (while) and branching expressions (if) must
have type bool.
@ The types of the left-hand side and of the right-hand side types of
an assignment must be compatible.
@ Type compatibility: Z C R in mathematics, but not on computers
(different representation)
= type casts
weak typing: implicit casting by compiler (2.5 + 1,1 + "42")
— risc of undetected “real” errors;
for programming-in-the-small (script languages)
strong typing: explicit casting by programmer
—> enhanced software reliability;
for programming-in-the-large
o Instantiation of operators/functions/procedures/... for different
parameter types: polymorphism or overloading
+:int X int — int +:real X real — real

Rm Compiler Construction Winter semester 2009/10 17

© Modifying the Abstract Machine

Rm Compiler Construction ter semester 2009/10 18

The Modified Abstract Machine AM

Since (recursive) procedures are no longer supported, a procedure stack
is not required anymore.

Definition 20.5 (Modified abstract machine for EPL)

The modified abstract machine for EPL (AM) is defined by the state

space
S := PC x DS x MS

with

@ the program counter PC := N,
o the data stack DS := R*, and
@ the main storage MS := {o | o : N — R}.

m Compiler Construction Winter semester 2009/10 19

New AM Instructions

Definition 20.6 (New AM instructions)

@ Procedure instructions are no longer needed.

@ Transfer instructions (LOAD (dif , off), STORE(dif , off)) are replaced by
the following instructions with the respective semantics [O] : S --» S:

[LoAD](a,d : n,0) := (a+1,d: o(n),o)
ifneN

[STORE](a,d : n:1,0) := (a+ 1,d,0[n > r])
ifneN

® Moreover the following instruction for checking array bounds is
introduced:

(a+1,d: z,0) if z€{z1,...,22}
[CAB(z1,22)](a,d : z,0) := {(O,d: RTE ,0) otherwise

runtime error

m Compiler Construction Winter semester 2009/10 20

@ Translation of Static Data Structures into AM Programs

Rm Compiler Construction ter semester 2009/10 21

Modifying the Symbol Table

({const} x (BUZ UR))

({var} x Ide x N)

({type} x {bool,int,real} x {1})
({type} x {array} x Z? x Ide x N)
({type} x {record} x (Ide? x N)* x N)}

Remarks:

@ Variable descriptor (var, I,n): type I, memory address n

o Last component of type entry: memory requirement
(base types: 1 “cell”)

o Array descriptor (type, array, 21, 22, [, n):
bounds 21, 2z, component type [

@ Record descriptor (type,record, Iy, Ji,01,...,1;, J;, 01,n):
selector I, component type J, memory offset o

o “Indexed” table lookup: st(I.Iy) := (Jk, o)
if st(/) = (type,record,..., Iy, Ji, 0, ..., n)

Rm Compiler Construction Winter semester 2009/10

Maintaining the Symbol Table I

The symbol table is again maintained by the function update(D, st)
which specifies the update of symbol table st according to declaration
D.

For the sake of simplificity we assume that D = Do Dy Dy € Dcl is
flattened, i.e., that every subtype is named by an identifier:
o If Dp=type I} :=Ty;...;I, :=T,;, then for every k € [n]
o T}, € {bool,int,real} or
o T} € {Il,...,kal} or
o T}, = arraylz;..22] of I, where j € [k —1] or
o Ty =record Ji:1; ; ...;J;:1;, end where ji,...,5 € [k —1]
@ For Dr as above, Dy must be of the form
Dy =var Jy:1j ;... ;J,: 1, ; where ji,...,J% € [n]

m' Compiler Construction Winter semester 2009/10

Maintaining the Symbol Table 11

Definition 20.1 (Modified update function)

update : Dcl x Tab --» Tab is defined by
update(D¢c Dr Dy, st) := update(Dy, update(Dr, update(Dc, st)))
update(e, st) := st
update(const Ir:=ci;...;In:=Cpnj;,st)
:= st[[1 — (comst,ci1),...,In — (const,cy)]
update(type [:=bool; D/, st) := update(type D7 ,st[l — (type,bool,1)])
update(type I:=int;D7,st) := update(type D, st[l — (type,int,1)])
update(type [:=real;D,st) := update(type D7,st[l — (type,real,l)])
update(type I:=J;D7,st) := update(type D7,st[I — st(J)])
update(type [:=arraylzi..22] of J;D7,st)
:= update(type D7,
st[I — (type, array, z1, 22, J, k - n)])
if st(J) = (type,...,n) and k = 20 — 21 + 1
update(type I:=record Ir:Ji;...;I;:J; end; D7, st)
:= update(type D7, st[I —
(type,record, I1, J1,0, Iz, J2,n1, . ..,
Ila Jl7 Zi;} i, Zi’:l n'b)])
if st(J;) = (type,...,n;) for i € [{]
update(var Ii:Ji;...;In:Jn;,st) := st[l1 — (var, J1,0), I — (var, Jo,n1),. ..,
I, — (var, Jy, Z@_ll ng)]

i=

if st(J;) = (type, ..., n;) for i € [I]

m Compiler Construction Winter semester 2009/10 24

Maintaining the Symbol Table II1

Example 20.2 (Modified update function)

Let D := type Bool=bool; Int=int;
Array=array[1..20] of Bool;
Record=record S:Array; T:Int end;

var x:Int; y:Array; z:Record;

Then
update(D,st) = st[Bool — (type,bool, 1),
Int — (type, int, 1)
Array — (type, array,l 20, Bool, 20),
Recordr—a(type record, S Array,O T, Int, 20,21),
— (var, Int,0),
yr—»(var Array,l%
— (var,Record, 21)]

m Compiler Construction Winter semester 2009/10 25

	Repetition: Translation of Boolean Expressions
	Boolean Expressions with Sequential Semantics
	Intermediate Code for Data Structures
	Static Data Structures
	Modifying the Abstract Machine
	Translation of Static Data Structures into AM Programs

