
Compiler Construction

Lecture 20: Code Generation IV
(Jumping Code & Static Data Structures)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Outline

1 Repetition: Translation of Boolean Expressions

2 Boolean Expressions with Sequential Semantics

3 Intermediate Code for Data Structures

4 Static Data Structures

5 Modifying the Abstract Machine

6 Translation of Static Data Structures into AM Programs

Compiler Construction Winter semester 2009/10 2

The Abstract Machine AM

Definition (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space

S := PC × DS × PS

with

the program counter PC := N,

the data stack DS := Z
∗ (top of stack to the right), and

the procedure stack (or: runtime stack) PS := Z
∗

(top of stack to the left).

Thus a state s = (l, d, p) ∈ S is given by

a program label l ∈ PC ,

a data stack d = d.r : . . . : d.1 ∈ DS , and

a procedure stack p = p.1 : . . . : p.t ∈ PS .

Compiler Construction Winter semester 2009/10 3

AM Instructions

Definition (AM instructions)

The set of AM instructions is divided into

arithmetic instructions: ADD, MULT, ...

Boolean instructions: NOT, AND, OR, LT, ...

jumping instructions: JMP(ca), JFALSE(ca) (ca ∈ PC)

procedure instructions: CALL(ca,dif ,loc) (ca ∈ PC , dif , loc ∈ N), RET

transfer instructions: LOAD(dif ,off), STORE(dif ,off) (dif , off ∈ N),
LIT(z) (z ∈ Z)

Compiler Construction Winter semester 2009/10 4

Semantics of Instructions

Definition (Semantics of AM instructions (1st part))

The semantics of an AM instruction O

JOK : S 99K S

is defined as follows:

JADDK(l, d : z1 : z2, p) := (l + 1, d : z1 + z2, p)
JNOTK(l, d : b, p) := (l + 1, d : ¬b, p) if b ∈ {0, 1}

JANDK(l, d : b1 : b2, p) := (l + 1, d : b1 ∧ b2, p) if b1, b2 ∈ {0, 1}
JORK(l, d : b1 : b2, p) := (l + 1, d : b1 ∨ b2, p) if b1, b2 ∈ {0, 1}

JLTK(l, d : z1 : z2, p) :=

{
(l + 1, d : 1, p) if z1 < z2

(l + 1, d : 0, p) if z1 ≥ z2

JJMP(ca)K(l, d, p) := (ca, d, p)

JJFALSE(ca)K(l, d : b, p) :=

{
(ca, d, p) if b = 0
(l + 1, d, p) if b = 1

Compiler Construction Winter semester 2009/10 5

Translation of Boolean Expressions

Definition (Translation of Boolean expressions)

The mapping
bt : BExp × Tab × PC × Lev 99K AM

(“Boolean expression translation”) is defined by

bt(A1 < A2, st, a, l) := at(A1, st, a, l)
at(A2, st, a

′, l)
a′′ : LT;

bt(not B, st, a, l) := bt(B, st, a, l)
a′ : NOT;

bt(B1 and B2, st, a, l) := bt(B1, st, a, l)
bt(B2, st, a

′, l)
a′′ : AND;

bt(B1 or B2, st, a, l) := bt(B1, st, a, l)
bt(B2, st, a

′, l)
a′′ : OR;

Compiler Construction Winter semester 2009/10 6

Outline

1 Repetition: Translation of Boolean Expressions

2 Boolean Expressions with Sequential Semantics

3 Intermediate Code for Data Structures

4 Static Data Structures

5 Modifying the Abstract Machine

6 Translation of Static Data Structures into AM Programs

Compiler Construction Winter semester 2009/10 7

Boolean Expressions with Sequential Semantics

So far: Boolean expressions with strict semantics

b1
∧
∨ ⊥ = ⊥

⊥ ∧
∨ b2 = ⊥

Now: Boolean expressions with sequential semantics

false ∧ ⊥ = false

true ∨ ⊥ = true

⊥ ∧
∨ b = ⊥

Idea:

employ jump rather than Boolean instructions (“jumping code”)

equip bt and ct with two additional address parameters:

at: target address for true

af : target address for false

Compiler Construction Winter semester 2009/10 8

Jumping Code for Boolean Expressions

Definition 20.1 (Jumping code for Boolean expressions)

The mapping
sbt : BExp × Tab × PC 3 × Lev 99K AM

(“sequential Boolean expression translation”) is defined by

sbt(A1 < A2, st, a, at, af , l) := at(A1, st, a, l)
at(A2, st, a

′, l)
a′′ : LT;
a′′ + 1 : JFALSE(af);
a′′ + 2 : JMP(at);

sbt(not B, st, a, at, af , l) := sbt(B, st, a, af , at, l)

sbt(B1 and B2, st, a, at, af , l) := sbt(B1, st, a, a′, af , l)
sbt(B2, st, a

′, at, af , l)

sbt(B1 or B2, st, a, at, af , l) := sbt(B1, st, a, at, a
′, l)

sbt(B2, st, a
′, at, af , l)

Compiler Construction Winter semester 2009/10 9

Jumping Code for Commands

Definition 20.2 (Jumping code for commands)

The mapping
sct : Cmd × Tab × PC × Lev 99K AM

(“sequential command translation”) is defined by

sct(if B then C1 else C2, st, a, l) := sbt(B, st, a, at, af , l)
sct(C1, st, at, l)
af − 1 : JMP(a′);
sct(C2, st, af , l)
a′ :

sct(while B do C, st, a, l) := sbt(B, st, a, at, af , l)
sct(C, st, at, l)
af − 1 : JMP(a);
af :

(remaining cases analogously)

Compiler Construction Winter semester 2009/10 10

Example: Jumping Code

Example 20.3

Translation of while not (x < 1) and (x < y) do C:

Strict:

1 : LOAD(x);
LIT(1);
LT;
NOT;
LOAD(x);
LOAD(y);
LT;
AND;
JFALSE(a);
ct(C, . . .)
JMP(1);

a : . . .

If x = 0:
9 instructions executed

Sequential:

1 : LOAD(x);
LIT(1);
LT;
JFALSE(6);
JMP(a);

6 : LOAD(x);
LOAD(y);
LT;
JFALSE(a);
JMP(11);

11 : sct(C, . . .)
JMP(1);

a : . . .

If x = 0:
5 instructions executed

=⇒ generally: longer code, but shorter executions

Compiler Construction Winter semester 2009/10 11

Outline

1 Repetition: Translation of Boolean Expressions

2 Boolean Expressions with Sequential Semantics

3 Intermediate Code for Data Structures

4 Static Data Structures

5 Modifying the Abstract Machine

6 Translation of Static Data Structures into AM Programs

Compiler Construction Winter semester 2009/10 12

Translation of Data Structures

Source code: data structures = arrays, records, lists, trees, ...
=⇒ structured state space, variables with components

Abstract machine: linear memory structure, cells for storing atomic
data

Translation: mapping of structured state space to linear memory
(= address computation)

static data structures: memory reqirements known at
compile time
dynamic data structures: memory reqirements
runtime dependent
=⇒ heap, pointers, garbage collection, ...

First step:

static data structures (arrays and records)

inductive type definitions

no procedures (for simplification; “orthogonal” extension)

Compiler Construction Winter semester 2009/10 13

Outline

1 Repetition: Translation of Boolean Expressions

2 Boolean Expressions with Sequential Semantics

3 Intermediate Code for Data Structures

4 Static Data Structures

5 Modifying the Abstract Machine

6 Translation of Static Data Structures into AM Programs

Compiler Construction Winter semester 2009/10 14

Modified Syntax of EPL

Definition 20.4 (Modified syntax of EPL)

The modified syntax of EPL is defined as follows (where n ≥ 1):
Z : z (* z is an integer *)
B : b ::= true | false (* b is a Boolean *)
R : r (* r is a real number *)
Con : c ::= z | b | r (* c is a constant *)
Ide : I (* I is an identifier *)
Type : T ::= bool | int | real | I | array[z1..z2] of T |

record I1:T1; . . . ;In:Tn end
Var : V ::= I | V [E] | V .I
Exp : E ::= c | V | E1 + E2 | E1 < E2 | E1 and E2 | . . .
Cmd : C ::= V :=E | C1;C2 |

if E then C1 else C2 | while E do C
Dcl : D ::= DC DT DV

DC ::= ε | const I1 := c1; . . . ;In := cn;
DT ::= ε | type I1 := T1; . . . ;In := Tn;
DV ::= ε | var I1 : T1; . . . ;In : Tn;

Pgm : P ::= D C

Compiler Construction Winter semester 2009/10 15

Static Semantics I

All identifiers in a declaration D have to be different.

In T = record I1:T1; . . . ;In:Tn end, all selectors Ij must be
different.

In T = array[z1..z2] of T , z1 ≤ z2.

Type definitions must not be recursive:
if DT = type I1 := T1; . . . ;In := Tn; and identifier I occurs in Tj,
then I ∈ {I1, . . . , Ij−1}.

The type identifiers used in in a variable declaration DV must be
declared.

Every identifier used in a command C must be declared in D (as a
constant or variable).

Variables in expressions and assignments have a base type
(bool/int/real; possibly via type identifiers).

Compiler Construction Winter semester 2009/10 16

Static Semantics II

Array indices must have type int.

Execution conditions (while) and branching expressions (if) must
have type bool.

The types of the left-hand side and of the right-hand side types of
an assignment must be compatible.

Type compatibility: Z ⊆ R in mathematics, but not on computers
(different representation)
=⇒ type casts

weak typing: implicit casting by compiler (2.5 + 1, 1 + "42")
=⇒ risc of undetected “real” errors;

for programming-in-the-small (script languages)
strong typing: explicit casting by programmer

=⇒ enhanced software reliability;
for programming-in-the-large

Instantiation of operators/functions/procedures/... for different
parameter types: polymorphism or overloading

+ : int× int → int + : real× real → real

Compiler Construction Winter semester 2009/10 17

Outline

1 Repetition: Translation of Boolean Expressions

2 Boolean Expressions with Sequential Semantics

3 Intermediate Code for Data Structures

4 Static Data Structures

5 Modifying the Abstract Machine

6 Translation of Static Data Structures into AM Programs

Compiler Construction Winter semester 2009/10 18

The Modified Abstract Machine AM

Since (recursive) procedures are no longer supported, a procedure stack
is not required anymore.

Definition 20.5 (Modified abstract machine for EPL)

The modified abstract machine for EPL (AM) is defined by the state
space

S := PC ×DS × MS

with

the program counter PC := N,
the data stack DS := R

∗, and
the main storage MS := {σ | σ : N → R}.

Compiler Construction Winter semester 2009/10 19

New AM Instructions

Definition 20.6 (New AM instructions)

Procedure instructions are no longer needed.

Transfer instructions (LOAD(dif ,off), STORE(dif ,off)) are replaced by
the following instructions with the respective semantics JOK : S 99K S:

JLOADK(a, d : n, σ) := (a + 1, d : σ(n), σ)
if n ∈ N

JSTOREK(a, d : n : r, σ) := (a + 1, d, σ[n 7→ r])
if n ∈ N

Moreover the following instruction for checking array bounds is
introduced:

JCAB(z1,z2)K(a, d : z, σ) :=

{
(a + 1, d : z, σ) if z ∈ {z1, . . . , z2}
(0, d : RTE

︸︷︷︸

runtime error

, σ) otherwise

Compiler Construction Winter semester 2009/10 20

Outline

1 Repetition: Translation of Boolean Expressions

2 Boolean Expressions with Sequential Semantics

3 Intermediate Code for Data Structures

4 Static Data Structures

5 Modifying the Abstract Machine

6 Translation of Static Data Structures into AM Programs

Compiler Construction Winter semester 2009/10 21

Modifying the Symbol Table

Tab := {st | st : Ide 99K ({const} × (B ∪ Z ∪ R))
∪ ({var} × Ide × N)
∪ ({type} × {bool, int, real} × {1})
∪ ({type} × {array} × Z

2 × Ide × N)
∪ ({type} × {record} × (Ide2 × N)∗ × N)}

Remarks:

Variable descriptor (var, I, n): type I, memory address n

Last component of type entry: memory requirement
(base types: 1 “cell”)

Array descriptor (type, array, z1, z2, I, n):
bounds z1, z2, component type I

Record descriptor (type, record, I1, J1, o1, . . . , Il, Jl, ol, n):
selector Ik, component type Jk, memory offset ok

“Indexed” table lookup: st(I.Ik) := (Jk, ok)
if st(I) = (type, record, . . . , Ik, Jk, ok, . . . , n)

Compiler Construction Winter semester 2009/10 22

Maintaining the Symbol Table I

The symbol table is again maintained by the function update(D, st)
which specifies the update of symbol table st according to declaration
D.

For the sake of simplificity we assume that D = DC DT DV ∈ Dcl is
flattened, i.e., that every subtype is named by an identifier:

If DT = type I1 := T1; . . . ;In := Tn;, then for every k ∈ [n]

Tk ∈ {bool, int, real} or
Tk ∈ {I1, . . . , Ik−1} or
Tk = array[z1..z2] of Ij where j ∈ [k − 1] or
Tk = record J1:Ij1; . . .;Jl:Ijl

end where j1, . . . , jl ∈ [k − 1]

For DT as above, DV must be of the form
DV = var J1:Ij1; . . . ;Jk:Ijk

; where j1, . . . , jk ∈ [n]

Compiler Construction Winter semester 2009/10 23

Maintaining the Symbol Table II

Definition 20.1 (Modified update function)

update : Dcl × Tab 99K Tab is defined by
update(DC DT DV , st) := update(DV , update(DT , update(DC , st)))

update(ε, st) := st
update(const I1:=c1;. . .;In:=cn;, st)

:= st[I1 7→ (const, c1), . . . , In 7→ (const, cn)]
update(type I:=bool;D′

T , st) := update(type D′

T , st[I 7→ (type, bool, 1)])
update(type I:=int;D′

T , st) := update(type D′

T , st[I 7→ (type, int, 1)])
update(type I:=real;D′

T , st) := update(type D′

T , st[I 7→ (type, real, 1)])
update(type I:=J;D′

T , st) := update(type D′

T , st[I 7→ st(J)])
update(type I:=array[z1..z2] of J;D′

T , st)
:= update(type D′

T ,
st[I 7→ (type, array, z1, z2, J, k · n)])
if st(J) = (type, . . . , n) and k = z2 − z1 + 1

update(type I:=record I1:J1;. . .;Il:Jl end;D′

T , st)
:= update(type D′

T , st[I 7→

(type, record, I1, J1, 0, I2, J2, n1, . . . ,

Il, Jl,
P

l−1
i=1 ni,

P

l

i=1 ni)])
if st(Ji) = (type, . . . , ni) for i ∈ [l]

update(var I1:J1;. . .;In:Jn;, st) := st[I1 7→ (var, J1, 0), I2 7→ (var, J2, n1), . . . ,
In 7→ (var, Jn,

P

n−1
i=1 ni)]

if st(Ji) = (type, . . . , ni) for i ∈ [l]

Compiler Construction Winter semester 2009/10 24

Maintaining the Symbol Table III

Example 20.2 (Modified update function)

Let D := type Bool=bool; Int=int;
Array=array[1..20] of Bool;
Record=record S:Array; T:Int end;

var x:Int; y:Array; z:Record;

Then
update(D, st) = st[Bool 7→ (type, bool, 1),

Int 7→ (type, int, 1),
Array 7→ (type, array, 1, 20, Bool, 20),

Record 7→ (type, record, S, Array, 0, T, Int, 20, 21),
x 7→ (var, Int, 0),
y 7→ (var, Array, 1),
z 7→ (var, Record, 21)]

Compiler Construction Winter semester 2009/10 25

	Repetition: Translation of Boolean Expressions
	Boolean Expressions with Sequential Semantics
	Intermediate Code for Data Structures
	Static Data Structures
	Modifying the Abstract Machine
	Translation of Static Data Structures into AM Programs

