Compiler Construction

Lecture 24: Code Optimization I
(Introduction to Dataflow Analysis)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/

@ Code Optimization

Rm Compiler Construction nter semester 2009/10

Conceptual Structure of a Compiler

Source code

@exical analysis (Scanner)

@yntactic analysis (Parser)

Semantic analysis)

(S()urcc code optimizatio@

y
(Generation of intermediate code)

y
(ntermediate code optimization)

Y
(Generation of machine code)

Target code

m' Compiler Construction Winter semester 2009/10

Code Optimization

Goal: Make generated code faster and/or more compact

Common procedure:
@ Gather information about program by performing some kind of
analysis

o Exploit information to optimize code

Here: dataflow analysis

= attach properties to program statements
that hold every time when statement is executed

Rm Compiler Construction Winter semester 2009/10

© Preliminaries on Dataflow Analysis

Rm Compiler Construction nter semester 2009/10

Dataflow Analysis: the Approach

o Traditional form of program analysis
@ Idea: describe how analysis information flows through program
@ Distinctions:

direction of flow: forward vs. backward analyses

procedures: interprocedural vs. intraprocedural analyses

quantification over paths: may (union) vs. must (intersection)
analyses

dependence on statement order: flow-sensitive vs. flow-insensitive
analyses

distinction of procedure calls: context-sensitive vs.
context-insensitive analyses

Rm Compiler Construction Winter semester 2009/10 6

Labelled Programs

o Goal: localization of analysis information
o Dataflow information will be associated with

@ assignments
o tests in conditionals (if) and loops (while)

These constructs will be called blocks (denotation: BIk).
@ Assume set of labels Lab with meta variable [€ Lab
(usually Lab = N)

Definition 24.1 (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context-free grammar:
Au=z|I|A + Ay € AExp
B ::= A; < Ay | not B | By and By € BEzp
C == [I := Al'| Cy;:Cs5 |
if [B]' then C; else (5 | while [B]' do C € Cmd
Here all labels in a statement C' € Cmd are assumed to be distinct.

m Compiler Construction Winter semester 2009/10 7

A WHILE Program with Labels

Example 24.2

X := 6;
W 88 (8
z := 0;

while x > O do
X :=x - 1;

vV o=y,
while v > 0 do
v v 1;

z =z + 1;

m' Compiler Construction Winter semester 2009/10

Representing Control Flow I

Every (labelled) statement has a single entry (given by the initial
label) and generally multiple exits (given by the final labels):

Definition 24.3 (Initial and final labels)

The mapping init : Cmd — Lab returns the initial label of a statement:
init([I := A)") :=1
init(Cl;Cg) = init(Cl)
init(if [B]' then C else Cy) := 1
init(while [b]! do C) := 1
The mapping final : Cmd — 2% returns the set of final labels of a
statement:

final([I := AJ') := {1}
ﬁnal(Cl,Cg) := final(Cy)
final(if [B]' then C; else Cy) := final(C;) U final(Cs)
final(while [B]! do C) := {I}

m Compiler Construction Winter semester 2009/10 9

Representing Control Flow II

Definition 24.4 (Flow relation)

Given a statement C € Cmd, the (control) flow relation
flow(C') C Lab x Lab is defined by

flow ([:= A]') :
ﬂOW(Ol ,02) 5

0
flow(C1) U flow(Cs) U
{(1,init(Cs)) | I € final(Cy)}
flow(if [B]' then C; else Cy) := flow(C;) U flow(Cy) U
{(1,1nit(C1)), (1, init(C2))}
flow(while [B]! do C) := flow(C) U {(I,init(C))} U
{(,1) |V € final(C)}

m' Compiler Construction Winter semester 2009/10 10

Representing Control Flow III

Example 24.5

Visualization by flow graph:

Compiler Construction Winter semester 2009/10 11

Representing Control Flow IV

o To simplify the presentation we will often assume that the program
C € Umd under consideration has an isolated entry, meaning that

{l € Lab | (1,init(C)) € flow(C)} =0

(which is the case when C' does not start with a while loop)
o Similarly: C € Cmd has isolated exits if

{l' € Lab | (1,I") € flow(C) for some [€ final(C)} = ()

Example 24.6

has an isolated entry but not isolated exits

Compiler Construction Winter semester 2009/10 12

© Example: Available Expressions Analysis

Rm Compiler Construction nter semester 2009/10 13

Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example 24.7 (Available Expressions Analysis)

F{ : ZIE}; @ a+b available at label 3
wﬁnle [y > a+b]3 do @ atb not available at label 5
[a := a*1]*; @ possible optimization:
[x := a+b]® while [y > x? do

m Compiler Construction Winter semester 2009/10 14

Formalizing Available Expressions Analysis I

e Given C € Cmd, Labc/Blkc/AEzp . denote the sets of all
labels/blocks/complex arithmetic expressions occurring in C,
respectively

@ An expression A is killed in a block § if any of the variables in A
is modified in 3
o Formally: killap : Blkc — 24Lmp¢ g defined by
killag([I := A]') := {A’ € AEzp. | I € FV(A')}
killag([B]") := 0
o An expression A is generated in a block § if it is evaluated in and
none of its variables are modified by 3
o Formally: gen ,p : Blkc — 247%P¢ is defined by
genap ([:= Al') == {A| I ¢ FV(A)}
gen,p([B]') := AEapg

Rm Compiler Construction Winter semester 2009/10 15

Formalizing Available Expressions Analysis I1

Example 24.8 (kill4p/gen 45 functions)

c . o AExp- = {atb,a*b,a+1}
= = +b 5 .
{; - Z*b}& o Labo Kkillap(8) genyp(8)
while [y > a+b]® do ! [(el
[a := a+1]4' 2 0 {axb}
[x := a+b]5’ ;) {are}
4 {a+b,axb,a+1} 0
5 {a+b}

m' Compiler Construction Winter semester 2009/10 16

The Equation System I

o Analysis itself defined by setting up an equation system

@ For each | € Labc, AE; C AEzp represents the set of available
expressions at the entry of block g
@ Formally, for C' € C'md with isolated entry:
AB, = {@ if = init(C)
N{ev(AEy) | (I',1) € low(C)} otherwise
where @y : 2487c — 24Fmc denotes the transfer function of block
,Bl', given by
r(A) = (A\Killap(8")) Ugenyp(5")
@ Characterization of analysis:
forward: starts in init(C') and proceeds downwards
must: () in equation for AFE;
flow-sensitive: results depending on order of assignments
o Later: solution not necessarily unique
—> choose greatest one

Rm Compiler Construction Winter semester 2009/10

The Equation System II

{ if 1 = init(C)
e (AEy) | (I',1) € flow(C)} otherwise

Reminder: AE, = |
v (E) = (B \ killag(8")) Ugen,5(8")

Example 24.9 (AFE equation system)

C =[x := a+b]!; Equations:
[y := a*b]?; ﬁg1 =0) U s
hil > a+b|® d 2 = ¢1 1) = 1 a
’ [la ; £ya+1?l4+ e AB;3 = p3(AE3) N p5(AEs)
[x := a+b]5, = (AE; U {axb}) N (AE5 U {a+b})

AE4 = p3(AE3) = AE3 U {a+b}
AEs = 04(AE,) = AE, \ {a+b,a*b,a+1}
l € Labe killag(8) gen,p(8)

1 D {a*b} Solution: AE; = 0
5 0 {axb] olution: AE; ~ fast)
3 0 {a+b} AE; = {a+b}
4 {a+b,axb,a+1} 0 AE, = {a+b}
5 0 {a+b} AEs = ()

m Compiler Construction Winter semester 2009/10 18

@ Example: Live Variables Analysis

Rm Compiler Construction nter semester 2009/10 19

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

o A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not re-define
the variable

o All variables considered to be live at the end of the program
(alternative: restriction to output variables)

@ Can be used for Dead Code Elimination:
remove assignments to non-live variables

m' Compiler Construction Winter semester 2009/10 20

An Example

Example 24.10 (Live Variables Analysis)

[y := 4]3, @ x not live at exit from label 1
[le [y_ >1]O] 1 then @ y live at exit from 2
[z := x° @ x live at exit from 3
else .] @ z live at exits from 5 and 6
[x [Z= ;]7Y*Y] ’ @ possible optimization: remove [x := 2!

m' Compiler Construction Winter semester 2009/10 21

Formalizing Live Variables Analysis I

©

A variable on the left-hand side of an assignment is killed by the
assignment; tests do not kill
Formally: kill;y : Blkc — 2V%¢ is defined by
killy ([I := A)) = {1}
kill,y ([B]') :== 0
Every reading access generates a live variable

©

(2

Formally: gen; : Blkc — 2V%¢ is defined by
geny (I := A') := FV(A)
genpy ([B]') == FV(B)

Rm Compiler Construction Winter semester 2009/10

Formalizing Live Variables Analysis II

Example 24.11 (kill,y /gen;, functions)

C:[X = 2]1; 9 Varc:{X7Y7Z}

[y := 4% o | € Lab, killpy (8 geny (6Y)

[x := 1]3; 1 {x} 0

if [y > 0]* then 2 {y} 0

[z := x]° 3 {x} 0

else 4 0 {v}

[z = y*yl°; 5 {z} {x}

[x = 2] 6 {z} {y}

7 {x} {z}

m Compiler Construction Winter semester 2009/10 23

The Equation System I

@ For each [€ Labg, LV C Var, represents the set of live variables
at the exit of block 3
@ Formally, for a program C € Cmd with isolated exits:
LV, = { Varc if | € ﬁpal(C’)
U{er (LVy) | (1,1) € low(C)} otherwise
where ¢y : 2Vere — 2Vere denotes the transfer function of block
B, given by
o (V) := (V \ killpy (")) U genyy (87)
@ Characterization of analysis:
backward: starts in final(C') and proceeds upwards
may: J in equation for LV
flow-sensitive: results depending on order of assignments
o Later: solution not necessarily unique
= choose least one

m' Compiler Construction Winter semester 2009/10

The Equation System II

Varc if [€ final(C)

Reminder: LV, = {U{(Pl’(LVl’) | (1,I') € flow(C)} otherwise

or (V) = (V\ killy (")) Ugenpy, (8°)

Example 24.12 (LV equation system)

LVe = o7(LV7)
l € Lab, killLy (8) gen,y (8Y) LV ={x,y,2}

1 {x} 0 Solution: LV =0

2 v} 0 LV, = {y}

3 {x} 0 LVs = {x,v}
4 0 {v} LV, = {x,v}

5 {z} {x} LVs = {y,z}

6 {z} {v} LVe = {y,z}

7 {X} {Z} LV7 = {X7 Y?Z}

m Compiler Construction Winter semester 2009/10 25

	Code Optimization
	Preliminaries on Dataflow Analysis
	Example: Available Expressions Analysis
	Example: Live Variables Analysis

