
Compiler Construction

Lecture 24: Code Optimization I
(Introduction to Dataflow Analysis)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Outline

1 Code Optimization

2 Preliminaries on Dataflow Analysis

3 Example: Available Expressions Analysis

4 Example: Live Variables Analysis

Compiler Construction Winter semester 2009/10 2

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Source code optimization

Generation of intermediate code

Intermediate code optimization

Generation of machine code

Target code
Compiler Construction Winter semester 2009/10 3

Code Optimization

Goal: Make generated code faster and/or more compact

Common procedure:

Gather information about program by performing some kind of
analysis

Exploit information to optimize code

Here: dataflow analysis
=⇒ attach properties to program statements

that hold every time when statement is executed

Compiler Construction Winter semester 2009/10 4

Outline

1 Code Optimization

2 Preliminaries on Dataflow Analysis

3 Example: Available Expressions Analysis

4 Example: Live Variables Analysis

Compiler Construction Winter semester 2009/10 5

Dataflow Analysis: the Approach

Traditional form of program analysis

Idea: describe how analysis information flows through program

Distinctions:

direction of flow: forward vs. backward analyses
procedures: interprocedural vs. intraprocedural analyses
quantification over paths: may (union) vs. must (intersection)

analyses
dependence on statement order: flow-sensitive vs. flow-insensitive

analyses
distinction of procedure calls: context-sensitive vs.

context-insensitive analyses

Compiler Construction Winter semester 2009/10 6

Labelled Programs

Goal: localization of analysis information

Dataflow information will be associated with
assignments
tests in conditionals (if) and loops (while)

These constructs will be called blocks (denotation: Blk).

Assume set of labels Lab with meta variable l ∈ Lab

(usually Lab = N)

Definition 24.1 (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context-free grammar:

A ::= z | I | A1 + A2 ∈ AExp
B ::= A1 < A2 | not B | B1 and B2 ∈ BExp

C ::= [I := A]l | C1;C2 |
if [B]l then C1 else C2 | while [B]l do C ∈ Cmd

Here all labels in a statement C ∈ Cmd are assumed to be distinct.

Compiler Construction Winter semester 2009/10 7

A WHILE Program with Labels

Example 24.2

x := 6;

y := 7;

z := 0;

while x > 0 do

x := x - 1;

v := y;

while v > 0 do

v := v - 1;

z := z + 1;

Compiler Construction Winter semester 2009/10 8

Representing Control Flow I

Every (labelled) statement has a single entry (given by the initial
label) and generally multiple exits (given by the final labels):

Definition 24.3 (Initial and final labels)

The mapping init : Cmd → Lab returns the initial label of a statement:
init([I := A]l) := l

init(C1;C2) := init(C1)
init(if [B]l then C1 else C2) := l

init(while [b]l do C) := l

The mapping final : Cmd → 2Lab returns the set of final labels of a
statement:

final([I := A]l) := {l}
final(C1;C2) := final(C2)

final(if [B]l then C1 else C2) := final(C1) ∪ final(C2)
final(while [B]l do C) := {l}

Compiler Construction Winter semester 2009/10 9

Representing Control Flow II

Definition 24.4 (Flow relation)

Given a statement C ∈ Cmd , the (control) flow relation
flow(C) ⊆ Lab × Lab is defined by

flow([I := A]l) := ∅
flow(C1;C2) := flow(C1) ∪ flow(C2) ∪

{(l, init(C2)) | l ∈ final(C1)}
flow(if [B]l then C1 else C2) := flow(C1) ∪ flow(C2) ∪

{(l, init(C1)), (l, init(C2))}
flow(while [B]l do C) := flow(C) ∪ {(l, init(C))} ∪

{(l′, l) | l′ ∈ final(C)}

Compiler Construction Winter semester 2009/10 10

Representing Control Flow III

Example 24.5

C = [z := 1]1;
while [x > 0]2 do

[z := z*y]3;
[x := x-1]4

init(C) = 1
final(C) = {2}
flow(C) = {(1, 2), (2, 3), (3, 4), (4, 2)}

Visualization by flow graph:

[z := 1]1

[x > 0]2

[z := z*y]3

[x := x-1]4

true

false

Compiler Construction Winter semester 2009/10 11

Representing Control Flow IV

To simplify the presentation we will often assume that the program
C ∈ Cmd under consideration has an isolated entry, meaning that

{l ∈ Lab | (l, init(C)) ∈ flow(C)} = ∅

(which is the case when C does not start with a while loop)
Similarly: C ∈ Cmd has isolated exits if

{l′ ∈ Lab | (l, l′) ∈ flow(C) for some l ∈ final(C)} = ∅

Example 24.6

[z := 1]1

[x > 0]2

[z := z*y]3

[x := x-1]4

has an isolated entry but not isolated exits

Compiler Construction Winter semester 2009/10 12

Outline

1 Code Optimization

2 Preliminaries on Dataflow Analysis

3 Example: Available Expressions Analysis

4 Example: Live Variables Analysis

Compiler Construction Winter semester 2009/10 13

Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

can be used to avoid recomputations of expressions

only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example 24.7 (Available Expressions Analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do

Compiler Construction Winter semester 2009/10 14

Formalizing Available Expressions Analysis I

Given C ∈ Cmd , LabC/BlkC/AExpC denote the sets of all
labels/blocks/complex arithmetic expressions occurring in C,
respectively

An expression A is killed in a block β if any of the variables in A
is modified in β

Formally: killAE : BlkC → 2AExpC is defined by
killAE ([I := A]l) := {A′ ∈ AExpC | I ∈ FV(A′)}

killAE ([B]l) := ∅

An expression A is generated in a block β if it is evaluated in and
none of its variables are modified by β

Formally: genAE : BlkC → 2AExpC is defined by
genAE ([I := A]l) := {A | I /∈ FV(A)}

genAE ([B]l) := AExpB

Compiler Construction Winter semester 2009/10 15

Formalizing Available Expressions Analysis II

Example 24.8 (killAE/genAE functions)

C = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

AExpC = {a+b, a*b, a+1}

LabC killAE (βl) genAE (βl)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Compiler Construction Winter semester 2009/10 16

The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ LabC , AE l ⊆ AExpC represents the set of available
expressions at the entry of block βl

Formally, for C ∈ Cmd with isolated entry:

AE l =

{

∅ if l = init(C)
⋂

{ϕl′(AE l′) | (l′, l) ∈ flow(C)} otherwise

where ϕl′ : 2AExpC → 2AExpC denotes the transfer function of block
βl′ , given by

ϕl′(A) := (A \ killAE (βl′)) ∪ genAE (βl′)

Characterization of analysis:

forward: starts in init(C) and proceeds downwards
must:

⋂

in equation for AE l

flow-sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose greatest one

Compiler Construction Winter semester 2009/10 17

The Equation System II

Reminder: AE l =

{

∅ if l = init(C)
⋂

{ϕl′(AE l′) | (l′, l) ∈ flow(C)} otherwise

ϕl′ (E) = (E \ killAE (βl
′

)) ∪ genAE (βl
′

)

Example 24.9 (AE equation system)

C = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

l ∈ LabC killAE (βl) genAE (βl)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE 2 ∪ {a*b}) ∩ (AE 5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}

Solution: AE1 = ∅
AE2 = {a+b}
AE3 = {a+b}
AE4 = {a+b}
AE5 = ∅

Compiler Construction Winter semester 2009/10 18

Outline

1 Code Optimization

2 Preliminaries on Dataflow Analysis

3 Example: Available Expressions Analysis

4 Example: Live Variables Analysis

Compiler Construction Winter semester 2009/10 19

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not re-define
the variable

All variables considered to be live at the end of the program
(alternative: restriction to output variables)

Can be used for Dead Code Elimination:
remove assignments to non-live variables

Compiler Construction Winter semester 2009/10 20

An Example

Example 24.10 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3

z live at exits from 5 and 6

possible optimization: remove [x := 2]1

Compiler Construction Winter semester 2009/10 21

Formalizing Live Variables Analysis I

A variable on the left-hand side of an assignment is killed by the
assignment; tests do not kill

Formally: killLV : BlkC → 2VarC is defined by
killLV ([I := A]l) := {I}

killLV ([B]l) := ∅

Every reading access generates a live variable

Formally: genLV : BlkC → 2VarC is defined by
genLV ([I := A]l) := FV(A)

genLV ([B]l) := FV(B)

Compiler Construction Winter semester 2009/10 22

Formalizing Live Variables Analysis II

Example 24.11 (killLV /genLV functions)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Var c = {x, y, z}

l ∈ Labc killLV (βl) genLV (βl)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

Compiler Construction Winter semester 2009/10 23

The Equation System I

For each l ∈ LabC , LV l ⊆ Var c represents the set of live variables
at the exit of block βl

Formally, for a program C ∈ Cmd with isolated exits:

LV l =

{

VarC if l ∈ final(C)
⋃

{ϕl′(LV l′) | (l, l′) ∈ flow(C)} otherwise

where ϕl′ : 2VarC → 2VarC denotes the transfer function of block
βl′ , given by

ϕl′(V) := (V \ killLV (βl′)) ∪ genLV (βl′)

Characterization of analysis:

backward: starts in final(C) and proceeds upwards
may:

⋃

in equation for LV l

flow-sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose least one

Compiler Construction Winter semester 2009/10 24

The Equation System II

Reminder: LV l =

{

VarC if l ∈ final(C)
⋃

{ϕl′(LV l′) | (l, l′) ∈ flow(C)} otherwise

ϕl′ (V) = (V \ killLV (βl
′

)) ∪ genLV (βl
′

)

Example 24.12 (LV equation system)

C = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

l ∈ Labc killLV (βl) genLV (βl)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

LV 1 = ϕ2(LV 2) = LV 2 \ {y}
LV 2 = ϕ3(LV 3) = LV 3 \ {x}
LV 3 = ϕ4(LV 4) = LV 4 ∪ {y}
LV 4 = ϕ5(LV 5) ∪ ϕ6(LV 6)

= ((LV 5 \ {z}) ∪ {x}) ∪
((LV 6 \ {z}) ∪ {y})

LV 5 = ϕ7(LV 7) = (LV 7 \ {x}) ∪ {z}
LV 6 = ϕ7(LV 7) = (LV 7 \ {x}) ∪ {z}
LV 7 = {x, y, z}

Solution: LV 1 = ∅
LV 2 = {y}
LV 3 = {x, y}
LV 4 = {x, y}
LV 5 = {y, z}
LV 6 = {y, z}
LV 7 = {x, y, z}

Compiler Construction Winter semester 2009/10 25

	Code Optimization
	Preliminaries on Dataflow Analysis
	Example: Available Expressions Analysis
	Example: Live Variables Analysis

