
Compiler Construction

Lecture 25: Code Optimization II
(The Dataflow Analysis Framework)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/


Outline

1 Repetition: Available Expression and Live Variables Analysis

2 The Dataflow Analysis Framework

3 Solving Dataflow Equation Systems

4 Uniqueness of Solutions

Compiler Construction Winter semester 2009/10 2



Formalizing Available Expressions Analysis

Given C ∈ Cmd , LabC/BlkC/AExpC denote the sets of all
labels/blocks/complex arithmetic expressions occurring in C,
respectively

An expression A is killed in a block β if any of the variables in A
is modified in β

Formally: killAE : BlkC → 2AExpC is defined by
killAE ([I := A]l) := {A′ ∈ AExpC | I ∈ FV(A′)}

killAE ([B]l) := ∅

An expression A is generated in a block β if it is evaluated in and
none of its variables are modified by β

Formally: genAE : BlkC → 2AExpC is defined by
genAE ([I := A]l) := {A | I /∈ FV(A)}

genAE ([B]l) := AExpB

Compiler Construction Winter semester 2009/10 3



The Available Expressions Equation System

Analysis itself defined by setting up an equation system

For each l ∈ LabC , AE l ⊆ AExpC represents the set of available
expressions at the entry of block βl

Formally, for C ∈ Cmd with isolated entry:

AE l =

{

∅ if l = init(C)
⋂

{ϕl′(AE l′) | (l′, l) ∈ flow(C)} otherwise

where ϕl′ : 2AExpC → 2AExpC denotes the transfer function of block
βl′ , given by

ϕl′(A) := (A \ killAE (βl′)) ∪ genAE (βl′)

Characterization of analysis:

forward: starts in init(C) and proceeds downwards
must:

⋂

in equation for AE l

flow–sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose greatest one

Compiler Construction Winter semester 2009/10 4



Formalizing Live Variables Analysis

A variable on the left-hand side of an assignment is killed by the
assignment; tests do not kill

Formally: killLV : BlkC → 2VarC is defined by
killLV ([I := A]l) := {I}

killLV ([B]l) := ∅

Every reading access generates a live variable

Formally: genLV : BlkC → 2VarC is defined by
genLV ([I := A]l) := FV(A)

genLV ([B]l) := FV(B)

Compiler Construction Winter semester 2009/10 5



The Live Variables Equation System

For each l ∈ LabC , LV l ⊆ Var c represents the set of live variables
at the exit of block βl

Formally, for a program C ∈ Cmd with isolated exits:

LV l =

{

VarC if l ∈ final(C)
⋃

{ϕl′(LV l′) | (l, l′) ∈ flow(C)} otherwise

where ϕl′ : 2VarC → 2VarC denotes the transfer function of block
βl′ , given by

ϕl′(V ) := (V \ killLV (βl′)) ∪ genLV (βl′)

Characterization of analysis:

backward: starts in final(C) and proceeds upwards
may:

⋃

in equation for LV l

flow-sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose least one

Compiler Construction Winter semester 2009/10 6



Outline

1 Repetition: Available Expression and Live Variables Analysis

2 The Dataflow Analysis Framework

3 Solving Dataflow Equation Systems

4 Uniqueness of Solutions

Compiler Construction Winter semester 2009/10 7



Similarities between Analysis Problems

Observation: the analyses presented so far have some similarities

=⇒ Look for underlying framework

Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

Overall pattern: for C ∈ Cmd and l ∈ LabC , the analysis
information (AI ) is described by equations of the form

AI l =

{

ι if l ∈ E
⊕

{ϕl′(AI l′) | (l′, l) ∈ F} otherwise

where

ι specifies the initial analysis information
E is {init(C)} or final(C)
⊕

is
⋂

or
⋃

ϕl′ denotes the transfer function of block βl
′

F is flow(C) or flowR(C) (:= {(l′, l) | (l, l′) ∈ flow(C)})

Compiler Construction Winter semester 2009/10 8



Characterization of Analyses

Direction of information flow:
forward:

E = {init(C)}
c has isolated entry
F = flow(C)
AI l concerns entry of βl

backward:
E = final(C)
c has isolated exits
F = flowR(C)
AI l concerns exit of βl

Quantification over paths:
may:

L

=
S

property satisfied by some path
interested in least solution (later)

must:
L

=
T

property satisfied by all paths
interested in greatest solution (later)

Compiler Construction Winter semester 2009/10 9



Outline

1 Repetition: Available Expression and Live Variables Analysis

2 The Dataflow Analysis Framework

3 Solving Dataflow Equation Systems

4 Uniqueness of Solutions

Compiler Construction Winter semester 2009/10 10



Fixpoint Iteration I

Idea: use fixpoint iteration to solve dataflow equation system

1 For C ∈ Cmd and l ∈ LabC , start with “initial” information AI l

(AE l = AExpC , LV l = ∅)

2 Iteratively evaluate dataflow equations until fixpoint reached

Theoretical foundations:

Analysis information D forms complete lattice
(DAE = 2AExpC , DLV = 2VarC )

every subset of D has a least upper/greatest lower bound
=⇒ well-definedness of

⊕

... that satisfies the ascending chain condition

d1
⊇

⊆
d2

⊇

⊆
. . . =⇒ ∃n : dn = dn+1 = . . .

Combination operator and all transfer functions monotonic

d1
⊇

⊆
d2 =⇒ ϕ(d1)

⊇

⊆
ϕ(d2)

=⇒ Fixpoint effectively computable by iteration

Compiler Construction Winter semester 2009/10 11



Fixpoint Iteration II

Example 25.1 (Available Expressions; cf. Example 24.9)

Program:

C = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE 1 = ∅
AE 2 = AE 1 ∪ {a+b}
AE 3 = (AE 2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE 4 = AE 3 ∪ {a+b}
AE 5 = AE 4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc

1 ∅ AExpc AExpc AExpc ∅
2 ∅ {a+b} {a+b} AExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅

Compiler Construction Winter semester 2009/10 12



Fixpoint Iteration III

Example 25.2 (Live Variables; cf. Example 24.12)

Program:

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV 1 = LV 2 \ {y}
LV 2 = LV 3 \ {x}
LV 3 = LV 4 ∪ {y}
LV 4 = ((LV 5 \ {z}) ∪ {x}) ∪ ((LV 6 \ {z}) ∪ {y})
LV 5 = (LV 7 \ {x}) ∪ {z}
LV 6 = (LV 7 \ {x}) ∪ {z}
LV 7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

Compiler Construction Winter semester 2009/10 13



Outline

1 Repetition: Available Expression and Live Variables Analysis

2 The Dataflow Analysis Framework

3 Solving Dataflow Equation Systems

4 Uniqueness of Solutions

Compiler Construction Winter semester 2009/10 14



Uniqueness of Solutions I

Example 25.3 (Available Expressions)

Consider

[z := x+y]1;
while [true]2 do

[z := z]3;

=⇒ AE1 = ∅
AE2 = (AE1 ∪ {x+y}) ∩ AE3

AE3 = AE2

=⇒ AE1 = ∅
AE2 = {x+y} ∩ AE3

AE3 = AE2

=⇒ Solutions: AE1 = AE2 = AE3 = ∅ or
AE1 = ∅,AE 2 = AE 3 = {x+y}

Here: greatest solution {x+y} (maximal potential for optimization)
=⇒ start fixpoint iteration with greatest element AExpC

Compiler Construction Winter semester 2009/10 15



Uniqueness of Solutions II

Example 25.4 (Live Variables)

Consider

while [x>1]1 do

[x := x]2;
[x := x+1]3;
[y := 0]4

=⇒ LV 1 = (LV 2 ∪ {x}) ∪ (LV 3 ∪ {x})
LV 2 = LV 1 ∪ {x}
LV 3 = LV 4 \ {y}
LV 4 = {x, y}

=⇒ LV 3 = {x}

=⇒ LV 1 = LV 2 ∪ {x}
= LV 1 ∪ {x}

=⇒ Solutions: LV 1 = LV 2 = {x} or {x, y}, LV 3 = LV 4 = ∅

Here: least solution {x} (maximal potential for optimization)
=⇒ start fixpoint iteration with least element ∅

Compiler Construction Winter semester 2009/10 16


	Repetition: Available Expression and Live Variables Analysis
	The Dataflow Analysis Framework
	Solving Dataflow Equation Systems
	Uniqueness of Solutions

