

Compiler Construction

Lecture 25: Code Optimization II

(The Dataflow Analysis Framework)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/cc09/>

Winter semester 2009/10

- ① Repetition: Available Expression and Live Variables Analysis
- ② The Dataflow Analysis Framework
- ③ Solving Dataflow Equation Systems
- ④ Uniqueness of Solutions

- Given $C \in Cmd$, $\text{Lab}_C / \text{Blk}_C / AExp_C$ denote the sets of all labels/blocks/complex arithmetic expressions occurring in C , respectively
- An expression A is **killed** in a block β if any of the variables in A is modified in β
- Formally: $\text{kill}_{AE} : \text{Blk}_C \rightarrow 2^{AExp_C}$ is defined by
$$\text{kill}_{AE}([I := A]^l) := \{A' \in AExp_C \mid I \in \text{FV}(A')\}$$
$$\text{kill}_{AE}([B]^l) := \emptyset$$
- An expression A is **generated** in a block β if it is evaluated in and none of its variables are modified by β
- Formally: $\text{gen}_{AE} : \text{Blk}_C \rightarrow 2^{AExp_C}$ is defined by
$$\text{gen}_{AE}([I := A]^l) := \{A \mid I \notin \text{FV}(A)\}$$
$$\text{gen}_{AE}([B]^l) := AExp_B$$

- Analysis itself defined by setting up an **equation system**
- For each $l \in Lab_C$, $AE_l \subseteq AExp_C$ represents the **set of available expressions at the entry of block β^l**
- Formally, for $C \in Cmd$ with isolated entry:

$$AE_l = \begin{cases} \emptyset & \text{if } l = \text{init}(C) \\ \bigcap \{\varphi_{l'}(AE_{l'}) \mid (l', l) \in \text{flow}(C)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{AExp_C} \rightarrow 2^{AExp_C}$ denotes the **transfer function** of block $\beta^{l'}$, given by

$$\varphi_{l'}(A) := (A \setminus \text{kill}_{AE}(\beta^{l'})) \cup \text{gen}_{AE}(\beta^{l'})$$

- Characterization of analysis:
 - forward: starts in $\text{init}(C)$ and proceeds downwards
 - must: \bigcap in equation for AE_l
 - flow-sensitive: results depending on order of assignments
- Later: solution **not necessarily unique**
⇒ choose **greatest one**

- A variable on the left-hand side of an assignment is **killed** by the assignment; tests do not kill
- Formally: $\text{kill}_{LV} : Blk_C \rightarrow 2^{Var_C}$ is defined by
 $\text{kill}_{LV}([I := A]^l) := \{I\}$
 $\text{kill}_{LV}([B]^l) := \emptyset$
- Every reading access **generates** a live variable
- Formally: $\text{gen}_{LV} : Blk_C \rightarrow 2^{Var_C}$ is defined by
 $\text{gen}_{LV}([I := A]^l) := \text{FV}(A)$
 $\text{gen}_{LV}([B]^l) := \text{FV}(B)$

The Live Variables Equation System

- For each $l \in Lab_C$, $LV_l \subseteq Var_c$ represents the set of **live variables at the exit of block β^l**

- Formally, for a program $C \in Cmd$ with isolated exits:

$$LV_l = \begin{cases} Var_C & \text{if } l \in \text{final}(C) \\ \bigcup \{\varphi_{l'}(LV_{l'}) \mid (l, l') \in \text{flow}(C)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{Var_C} \rightarrow 2^{Var_C}$ denotes the **transfer function** of block $\beta^{l'}$, given by

$$\varphi_{l'}(V) := (V \setminus \text{kill}_{LV}(\beta^{l'})) \cup \text{gen}_{LV}(\beta^{l'})$$

- Characterization of analysis:

backward: starts in $\text{final}(C)$ and proceeds upwards

may: \bigcup in equation for LV_l

flow-sensitive: results depending on order of assignments

- Later: solution **not necessarily unique**

\implies choose **least one**

- 1 Repetition: Available Expression and Live Variables Analysis
- 2 The Dataflow Analysis Framework
- 3 Solving Dataflow Equation Systems
- 4 Uniqueness of Solutions

- **Observation:** the analyses presented so far have some **similarities**
⇒ Look for underlying **framework**
- **Advantage:** possibility for designing (efficient) **generic algorithms** for solving **dataflow equations**
- **Overall pattern:** for $C \in Cmd$ and $l \in Lab_C$, the **analysis information** (AI) is described by **equations** of the form

$$AI_l = \begin{cases} \iota & \text{if } l \in E \\ \bigoplus \{\varphi_{l'}(AI_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

where

- ι specifies the initial analysis information
- E is $\{\text{init}(C)\}$ or $\text{final}(C)$
- \bigoplus is \bigcap or \bigcup
- $\varphi_{l'}$ denotes the transfer function of block $\beta^{l'}$
- F is $\text{flow}(C)$ or $\text{flow}^R(C)$ ($:= \{(l', l) \mid (l, l') \in \text{flow}(C)\}$)

- **Direction of information flow:**

- **forward:**

- $E = \{\text{init}(C)\}$
 - c has isolated entry
 - $F = \text{flow}(C)$
 - AI_l concerns entry of β^l

- **backward:**

- $E = \text{final}(C)$
 - c has isolated exits
 - $F = \text{flow}^R(C)$
 - AI_l concerns exit of β^l

- **Quantification over paths:**

- **may:**

- $\oplus = \bigcup$
 - property satisfied by some path
 - interested in least solution (later)

- **must:**

- $\oplus = \bigcap$
 - property satisfied by all paths
 - interested in greatest solution (later)

- 1 Repetition: Available Expression and Live Variables Analysis
- 2 The Dataflow Analysis Framework
- 3 Solving Dataflow Equation Systems
- 4 Uniqueness of Solutions

Idea: use fixpoint iteration to solve dataflow equation system

- ① For $C \in Cmd$ and $l \in Lab_C$, start with “initial” information AI_l
($AE_l = AExp_C$, $LV_l = \emptyset$)
- ② Iteratively evaluate dataflow equations until fixpoint reached

Theoretical foundations:

- Analysis information D forms **complete lattice**
($D_{AE} = 2^{AExp_C}$, $D_{LV} = 2^{Var_C}$)
 - every subset of D has a least upper/greatest lower bound
 \implies well-definedness of \bigoplus
- ... that satisfies the **ascending chain condition**
 - $d_1 \supseteq d_2 \supseteq \dots \implies \exists n : d_n = d_{n+1} = \dots$
- Combination operator and all transfer functions **monotonic**
 - $d_1 \supseteq d_2 \implies \varphi(d_1) \supseteq \varphi(d_2)$

\implies Fixpoint effectively computable by iteration

Fixpoint Iteration II

Example 25.1 (Available Expressions; cf. Example 24.9)

Program:

```
C = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$
1	\emptyset	$AExp_c$	$AExp_c$	$AExp_c$	\emptyset
2	\emptyset	$\{a+b\}$	$\{a+b\}$	$AExp_c$	\emptyset
3	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset
4	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset

Example 25.2 (Live Variables; cf. Example 24.12)

Program:

```
[x := 2]1;  

[y := 4]2;  

[x := 1]3;  

if [y > 0]4 then  

  [z := x]5  

else  

  [z := y*y]6;  

[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \{x, y, z\} \end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	$\{x, y, z\}$
2	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{y, z\}$	$\{y, z\}$	$\{x, y, z\}$
3	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{y, z\}$	$\{y, z\}$	$\{x, y, z\}$

- 1 Repetition: Available Expression and Live Variables Analysis
- 2 The Dataflow Analysis Framework
- 3 Solving Dataflow Equation Systems
- 4 Uniqueness of Solutions

Example 25.3 (Available Expressions)

Consider

$$\begin{array}{ll} [\mathbf{z} := \mathbf{x+y}]^1; & \Rightarrow AE_1 = \emptyset \\ \mathbf{while} [\mathbf{true}]^2 \mathbf{do} & AE_2 = (AE_1 \cup \{\mathbf{x+y}\}) \cap AE_3 \\ [\mathbf{z} := \mathbf{z}]^3; & AE_3 = AE_2 \\ & \Rightarrow AE_1 = \emptyset \\ & AE_2 = \{\mathbf{x+y}\} \cap AE_3 \\ & AE_3 = AE_2 \end{array}$$

\Rightarrow **Solutions**: $AE_1 = AE_2 = AE_3 = \emptyset$ or
 $AE_1 = \emptyset, AE_2 = AE_3 = \{\mathbf{x+y}\}$

Here: **greatest** solution $\{\mathbf{x+y}\}$ (maximal potential for optimization)

\Rightarrow start fixpoint iteration with **greatest element** $AExp_C$

Example 25.4 (Live Variables)

Consider

$$\begin{array}{ll} \text{while } [x > 1]^1 \text{ do} & \implies LV_1 = (LV_2 \cup \{x\}) \cup (LV_3 \cup \{x\}) \\ \quad [x := x]^2; & \quad LV_2 = LV_1 \cup \{x\} \\ [x := x+1]^3; & \quad LV_3 = LV_4 \setminus \{y\} \\ [y := 0]^4 & \quad LV_4 = \{x, y\} \\ & \implies LV_3 = \{x\} \\ & \implies LV_1 = LV_2 \cup \{x\} \\ & \quad = LV_1 \cup \{x\} \end{array}$$

\implies **Solutions:** $LV_1 = LV_2 = \{x\}$ or $\{x, y\}$, $LV_3 = LV_4 = \emptyset$

Here: **least** solution $\{x\}$ (maximal potential for optimization)

\implies start fixpoint iteration with **least element** \emptyset