Compiler Construction

Lecture 25: Code Optimization II
(The Dataflow Analysis Framework)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc09/

Winter semester 2009/10

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc09/

@ Repetition: Available Expression and Live Variables Analysis

Rm Compiler Construction ter semester 2009/10

Formalizing Available Expressions Analysis

e Given C € Cmd, Labc/Blkc/AEzp . denote the sets of all
labels/blocks/complex arithmetic expressions occurring in C,
respectively

@ An expression A is killed in a block § if any of the variables in A
is modified in 3
o Formally: killap : Blkc — 24Lmp¢ g defined by
killag([I := A]') := {A’ € AEzp. | I € FV(A')}
killag([B]") := 0
o An expression A is generated in a block § if it is evaluated in and
none of its variables are modified by 3
o Formally: gen ,p : Blkc — 247%P¢ is defined by
genap ([:= Al') == {A| I ¢ FV(A)}
gen,p([B]') := AEapg

Rm Compiler Construction Winter semester 2009/10 3

The Available Expressions Equation System

o Analysis itself defined by setting up an equation system

@ For each | € Labc, AE; C AEzp represents the set of available
expressions at the entry of block g
@ Formally, for C' € C'md with isolated entry:
AB, = {@ if = init(C)
N{ev(AEy) | (I',1) € low(C)} otherwise
where @y : 2487c — 24Fmc denotes the transfer function of block
,Bl', given by
r(A) = (A\Killap(8")) Ugenyp(5")
@ Characterization of analysis:
forward: starts in init(C') and proceeds downwards
must: () in equation for AFE;
flow—sensitive: results depending on order of assignments
o Later: solution not necessarily unique
—> choose greatest one

Rm Compiler Construction Winter semester 2009/10

Formalizing Live Variables Analysis

©

A variable on the left-hand side of an assignment is killed by the
assignment; tests do not kill
Formally: kill;y : Blkc — 2V%¢ is defined by
killy ([I := A)) = {1}
kill,y ([B]') :== 0
Every reading access generates a live variable

©

(2

Formally: gen; : Blkc — 2V%¢ is defined by
geny (I := A') := FV(A)
genpy ([B]') == FV(B)

Rm Compiler Construction Winter semester 2009/10

The Live Variables Equation System

@ For each [€ Labg, LV C Var, represents the set of live variables
at the exit of block 3
@ Formally, for a program C € Cmd with isolated exits:
LV, = { Varc if | € ﬁpal(C’)
U{er (LVy) | (1,1) € low(C)} otherwise
where ¢y : 2Vere — 2Vere denotes the transfer function of block
B, given by
o (V) := (V \ killpy (")) U genyy (87)
@ Characterization of analysis:
backward: starts in final(C') and proceeds upwards
may: J in equation for LV
flow-sensitive: results depending on order of assignments
o Later: solution not necessarily unique
= choose least one

Rm Compiler Construction Winter semester 2009/10

© The Dataflow Analysis Framework

Rm Compiler Construction nter semester 2009/10

Similarities between Analysis Problems

@ Observation: the analyses presented so far have some similarities
— Look for underlying framework
@ Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

o Overall pattern: for C € C'md and | € Labc, the analysis
information (A[) is described by equations of the form

Al — {L ifleE
PZ Y@ {er(AIy) | (I')1) € F} otherwise
where
o ¢ specifies the initial analysis information
o E is {init(C)} or final(C)
s PisNorlY
e ¢ denotes the transfer function of block B
o Fis flow(C) or flow™(C) (:= {(I',1) | (I,1') € flow(C)})

m' Compiler Construction Winter semester 2009/10

Characterization of Analyses

@ Direction of information flow:

o forward:
o FE = {init(C)}
@ c has isolated entry
o F =flow(C)
@ AI; concerns entry of ek

@ backward:
o E = final(C)
@ c has isolated exits
o F =flow™(0)
@ AI; concerns exit of 8!

o Quantification over paths:

e may:
o ®=U
@ property satisfied by some path
@ interested in least solution (later)

9 must:
e d=0N
@ property satisfied by all paths
@ interested in greatest solution (later)

m' Compiler Construction Winter semester 2009/10

© Solving Dataflow Equation Systems

Rm Compiler Construction nter semester 2009/10 10

Fixpoint Iteration I

Idea: use fixpoint iteration to solve dataflow equation system

@ For C' € Omd and | € Labc, start with “initial” information Al
(AE, = AExps, LV, = 0)

Q Iteratively evaluate dataflow equations until fixpoint reached

Theoretical foundations:

o Analysis information D forms complete lattice
(Dap = 245c, Dy = 2Vere)
o every subset of D has a least upper/greatest lower bound
= well-definedness of €

@ ... that satisfies the ascending chain condition
o di 2do2 ... = Inidy=dpy1=...

@ Combination operator and all transfer functions monotonic
o di 2dy = p(d) 2 pl(do)

— Fixpoint effectively computable by iteration

m' Compiler Construction Winter semester 2009/10

Fixpoint Iteration II

Example 25.1 (Available Expressions; cf. Example 24.9)

Program: Equation system:
C =[x := a+b]}; AE; =0
[y .= a*b]2; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) N (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]’ AE5 = AE4\ {a+b,axb,a+1}

Fixpoint iteration:

1 2 3 4)
AFExp, AExp. AFEzp, AFExp. AEzp,
0 AEzp, AFExp, AEap, 0
0 {a+b} {a+b} AFzp, 0
0 {atb} {atb} {atb} O
0 farb} {atb} {a+b} 0

BN R O,

m Compiler Construction Winter semester 2009/10 12

Fixpoint Iteration III

Example 25.2 (Live Variables; cf. Example 24.12)

Program: Equation system:

[x := 2]}; LVy = LV \{y}

[Y .= 4]2; LVy =LVg \ {X}

[x := 1]3; LV =LV4U{y}

if [y > 0]* then LVy = ((LVs\{z}) U{x}) U((LVe \ {z}) U{y})
[z := X]5 LVs = (LV7\ {x}) U{z}

else LVg = (LV7 \ {X}) U {Z}
[Z .= Y*Y]G; LV7 = {Xuya Z}

E = 2]’

i1 2 3 4 5 6 7
0 0 0 0 0 0
0 b {xyr =z {z {xy.z
y
y

}o{xy} {xy} {v.z} {v.z} {xv,z}
}o{xyr {xy} {v.z} {v.z} {xy.z}

m Compiler Construction Winter semester 2009/10 13

@ Uniqueness of Solutions

Rm Compiler Construction nter semester 2009/10 14

Uniqueness of Solutions 1

Example 25.3 (Available Expressions)

Consider
2 =]l s AB =0
while [true]? do AEy = (AE1 U {x+y}) N AE3
[z := z]3; AE3 = AEs
— AFE; = 0
AE, = {X+y} NAFE;3
AE3 = AEs

— Solutions: AE; = AEy = AE3 =0 or
AFE, = (Z), AFEy = AE3 = {X+y}

Here: greatest solution {x+y} (maximal potential for optimization)
—> start fixpoint iteration with greatest element AFExpo

m Compiler Construction Winter semester 2009/10

Uniqueness of Solutions 11

Example 25.4 (Live Variables)

Consider
while [x>1]! do = LVi= (LV2U{x})U(LV3U {x})
[x := x]?%; LVy =LV U{x}
[x := x+1]3; LVs = LV4\ {y}
[y = 0o LVy = {xy}
— LV3= {X}
= LV; =LVyU{x}
=LV, U {X}

= Solutions: LV = LVy = {x} or {x,y}, LVs =LV, =10

Here: least solution {x} (maximal potential for optimization)
— start fixpoint iteration with least element ()

m Compiler Construction Winter semester 2009/10 16

	Repetition: Available Expression and Live Variables Analysis
	The Dataflow Analysis Framework
	Solving Dataflow Equation Systems
	Uniqueness of Solutions

