SOFTWARE-MODELLIERUNG UND VERIFIKATION Priv.-Doz. T. Noll _ .. noll@cs.rwth-aachen.de
h. Jansen christina.jansen@cs.rwth-aachen.de
INFORMATIK 2

PrROF. J.-P. KATOEN
RWTH Aachen

3. Exercise sheet Compiler Construction 2010

Due Wed., 10 November 2010, before the exercise course begins.

Exercise 3.1: (3 points)

Prove the correctness of the top down analysis automaton NTA(G) for a grammar G = (N, X, P, S), i.e. show that
for all w € ¥* and all z € {1,...,|P|}*:

(w,S,e) F* (e,e,2) implies S:?w

Exercise 3.2: (342414242 points)

Consider the propositional logic given by:

tt| ff| words over the alphabet ¥ = {a,..., 2}

Formulae are then inductively defined by: If ®, ¥ propositional formulae, then so are
(=), (PAY), (PVE), (P —)

(a) Write a (£)1lex-program, that scans such propositional formulae.

The main-function should output pairs of tokens and attributes. The attribute should hold the label of the
proposition or — in all other cases. Any whitespace in the input should be ignored.

Please use the following token definition:
enum token OPEN=1, CLOSE, ATOM, NOT, AND, OR, IFTHEN
Your program should compile to an executable by means of the command:

flex progName.l && cc lex.yy.c -1fl
(b) Provide four example runs of your scanner.

(¢) Modify your (£)1lex-program in a way such that it additionally counts (and outputs) the number of opening
and closing brackets.

(d) Have a look into the generated file 1lex.yy.c. Which lines correspond to the DFA (f)lex generated according
to your specification? Which lines (or program labels) correspond to the different modes of the backtracking
DFA introduced in the lecture?

(e) (£)1lex offers the possibility to output the generated DFA (and NFA) by setting the option -T. Try to picture
the generated DFA, then compare it to the one you generated manually for a slightly modified propositional
logic in Ex. 1.

Please send your (compilable) source code and example runs to christina.jansen@cs.rwth-aachen.de. Include
your matriculation numbers in the subject!

