

4. Exercise sheet *Compiler Construction 2010*

Due Wed., 17 November 2010, *before* the exercise course begins.

Exercise 4.1:

(3 points)

To conclude the lecture and exercise part about lexical analysis, answer the following questions:

- (a) Briefly sketch the structure of a compiler! Describe the functionality of each component. Where does the lexical analysis fit in here?
- (b) Describe the meaning and differences between lexemes, symbols, symbol classes and tokens!
- (c) Which problem does the simple matching problem solve?
- (d) What is the output of the FLM approach handling the extended matching problem as presented in the lecture? Is the result unique? If yes, why?
- (e) Where and why do we need to partition the final states? How does the partitioning work, argue why this partitioning is suitable!

Exercise 4.2:

(3 points)

Consider the following grammar G :

$$\begin{array}{lcl} S & \rightarrow & aBSS \mid bBS \mid cSB \mid dLe \mid f \\ L & \rightarrow & SaL \mid \epsilon \\ B & \rightarrow & aC \mid bC \\ C & \rightarrow & eB \mid \epsilon \end{array}$$

Give the corresponding NTA \mathfrak{A} of G . Provide the complete NTA run of \mathfrak{A} for the input *dbaabffae*.

Exercise 4.3:

(1+2 points)

- a) Show that the following grammar is ambiguous:

$$S \rightarrow (S) \mid S \vee S \mid S \wedge S \mid \neg S \mid \text{true}$$

- b) Devise a method that chooses a reasonable derivation out of the set of all leftmost derivations for a given word $w \in \Sigma^*$ by investigating the leftmost analysis information. Reasonable in this context means that
 - \neg binds stronger than \vee and \wedge ,
 - \wedge binds stronger than \vee .

Exercise 4.4:

(1+3+1 points)

In the lecture two characterizations of $LL(1)$ have been given:

- $G \in LL(1)$ iff for all leftmost derivations of the form

$$S \Rightarrow_l^* wA\alpha \left\{ \begin{array}{l} \Rightarrow_l w\beta\alpha \\ \Rightarrow_l w\gamma\alpha \end{array} \right.$$

such that $\beta \neq \gamma$, it follows that $\text{fi}(\beta\alpha) \cap \text{fi}(\gamma\alpha) = \emptyset$.

- $G \in LL(1)$ iff for all pairs of rules $A \rightarrow \beta \mid \gamma \in P$ (where $\beta \neq \gamma$):

$$\text{la}(A \rightarrow \beta) \cap \text{la}(A \rightarrow \gamma) = \emptyset$$

- Lift the second definition to $LL(k)$ for $k \in \mathbb{N}^+$. (The first definition was given for $k \in \mathbb{N}^+$ in the lecture.)
- Show that the definitions are not equivalent by showing that the following grammar is in $LL(2)$ according to the first definition but not according to the second definition (also referred to as *strong LL(2)* property).

$$\begin{array}{lcl} S & \rightarrow & aAab \mid bAbb \\ A & \rightarrow & a \mid \varepsilon \end{array}$$

- Explain (in a few words) why the definitions are not equivalent.