

5. Exercise sheet *Compiler Construction 2010*

Due to Wed., 24 November 2010, *before* the exercise course begins.
 Hand in your solutions in groups of three or four!

Exercise 5.1: (3 points)

Show that every regular language can be generated by a $LL(1)$ -grammar.

Exercise 5.2: (1+1+1 points)

- Eliminate left-recursion in the following grammar:

$$\begin{array}{l} S \rightarrow a \mid (T) \\ T \rightarrow T, S \mid S \end{array}$$

- Apply left factorisation to the following grammar:

$$\begin{array}{l} S \rightarrow a \mid (T') \\ T' \rightarrow S, T' \mid S \end{array}$$

- Are the resulting grammars $LL(1)$? Prove your answer?

Exercise 5.3: (2 points)

Consider again the ambiguous grammar G from Ex. 4.3

$$S \rightarrow (S) \mid S \vee S \mid S \wedge S \mid \neg S \mid \text{true}$$

as well as the priorities

- \neg binds stronger than \vee and \wedge ,
- \wedge binds stronger than \vee .

While in Ex. 4.3 you should have given a method to choose a suitable analysis from the set of resulting ones, now modify the grammar in a way, that the binding priorities are implicitly given. Of course the modified grammar should induce the same language as G (cf. Ex. 9.1 from lecture).

Exercise 5.4: (1+3+1 points)

Consider the grammar G given by:

$$\begin{array}{l} S' \rightarrow S \\ S \rightarrow MR \\ M \rightarrow LM \mid m \\ L \rightarrow LL' \mid l \\ L' \rightarrow LL' \mid l' \\ R \rightarrow RR' \mid r \\ R' \rightarrow RR' \mid r' \end{array}$$

- Show that $G \notin LR(0)$.

b) Give a grammar $G' \in LR(0)$ (and show that $G' \in LR(0)$) such that for $w \in \Sigma^*$, $a \in \Sigma$:

$$wa \in \mathcal{L}(G) \Leftrightarrow wm \in \mathcal{L}(G')$$

c) Compute an accepting run of $NBA(G')$ for input $lll'mrm$