

6. Exercise sheet *Compiler Construction 2010*

Due to Wed., 1 December 2010, *before* the exercise course begins.

Hand in your solutions in groups of three or four!

Exercise 6.1:

(6 points)

Implement a recursive-descent parser for the following grammar using flex as the corresponding scanner. The parser should output the leftmost analysis for every input word w or an error message, if no such analysis exists.

```

Program   → var id Init Ids ; StmList
Ids       → , id Init Ids | ε
Init      → := AExpr | ε
StmList   → Statement StmList | ε
AExpr     → id | number | (AExpr arop AExpr )
BExpr     → AExpr relop AExpr | not BExpr
Statement → id := AExpr; | begin Statement StmList end
            | if BExpr then Statement | while BExpr do Statement
  
```

Let $\mathbf{id} \in A(A \cup N)^*$, $\mathbf{number} \in NN^*$, $\mathbf{relop} \in \{=, <, >\}$ and $\mathbf{arop} \in \{+, -, *, /\}$ with $A = \{a, \dots, z, A, \dots Z\}$ and $N = \{0, \dots, 9\}$.

Please send your source code with at least two nontrivial example runs to `christina.jansen@cs.rwth-aachen.de`. Include your names and matriculation numbers in the subject!

Exercise 6.2:

(3 points)

A language $L \in \Sigma^*$ is called prefix-free, if $L \cap L\Sigma^+ = \emptyset$, i.e. if no proper prefix of a word in L is in L , too.

Show that the following holds for all non prefix-free languages L : $L \notin \mathcal{L}(LR(0))$.

Exercise 6.3:

(1.5+1.5+2 points)

Consider the grammar G given by:

```

S' → S
S  → A | b
A  → Aa | Sb
  
```

- Construct the $SLR(1)$ sets for G and give the corresponding NFA.
- Construct the $LR(1)$ sets for G and give the corresponding NFA.
- Provide the analysis tables for both $SLR(1)$ and $LR(1)$ analysis of G .