
Software-Modellierung und Verifikation

Informatik 2

Prof. J.-P. Katoen

RWTH Aachen

Priv.-Doz. T. Noll noll@cs.rwth-aachen.de
Ch. Jansen christina.jansen@cs.rwth-aachen.de

8. Exercise sheet Compiler Construction 2010
Due to Wed., 22th December 2010, before the exercise course begins.

Hand in your solutions in groups of three or four!

Exercise 8.1: (4 points)

Consider the language L = {a2n |n ∈ n}. Notice that L is not context-free! Provide an attributed grammar for
the language given by {a}∗. This grammar should determine – via a synthesized boolean attribute at the starting
symbol – whether a derived word is contained in L. For this purpose do only use plain functions like addition,
multiplication or equality testing, but not testing if a function is a power of two etc.
Generate the corresponding equality system for the input word a4 and solve it.

Exercise 8.2: (3+1 points)

Consider the following grammar:

S → A i1.1 = 1
i2.1 = 2
s1.0 = s2.1

A → a s1.0 = 0
s2.0 = i1.0

A → Aa i1.1 = s1.1
i2.1 = i1.0
s1.0 = s2.1
s2.0 = 0

A → b s1.0 = i2.0
s2.0 = 0

a) Show that the grammar is not circular using the method from the lecture.

b) Modify the attribution in a way that it violates the non-circularity of the grammar.

Exercise 8.3: (4 points)

Consider the following grammar for a simple programming language:

Program → var Decl ; Statement
Decl → id , Decl | id
Statement → id := AExpr | begin StmList end | if BExpr then Statement | while BExpr do Statement
StmList → Statement ; StmList | Statement
AExpr → id | number | (AExpr arop AExpr)
BExpr → AExpr relop AExpr

Extend the grammar by providing attributes generating a symbol table containing every declared variable. Test
whether variables are declared multiple times! Start by allocating to every terminal symbol id its variable name by
means of synthesized attributes. The symbol table should contain at least the address of the variable. For simplicity
you may assume, that every variable needs one storing unit, i.e. n variables obtain addresses 1 to n.
Your attributed grammar should test whether all variable names occuring in a program are declared. Furthermore
it should collect the addresses of all variables occuring in the statement part of the program in a synthesized
attribute of Program , which maintains their order of appearance.

