Compiler Construction

Lecture 10: Syntactic Analysis V (LR(k) Grammars)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

@ Recursive-Descent Parsing

Rm Compiler Construction nter semester 2010/11

Recursive-Descent Parsing I

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime
stack)

Rm Compiler Construction Winter semester 2010/11 3

Recursive-Descent Parsing I

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime
stack)

Advantage: simple implementation

Rm Compiler Construction Winter semester 2010/11 3

Recursive-Descent Parsing I

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime
stack)

Advantage: simple implementation

Ingredients: @ variable token for current token
@ function next () for invoking the scanner
o procedure print (i) for displaying the leftmost
analysis (or errors)

Rm Compiler Construction Winter semester 2010/11

Recursive-Descent Parsing I

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime
stack)

Advantage: simple implementation

Ingredients: @ variable token for current token
@ function next () for invoking the scanner
o procedure print (i) for displaying the leftmost
analysis (or errors)

Method: to every A € N we assign a procedure A() which
o tests token with regard to the lookahead sets of the
A-productions,

@ prints the corresponding rule number and
@ evaluates the corresponding right-hand side as
follows:

e for a € ¥: match token; call next ()
e for A€ N: call AQ)

m' Compiler Construction Winter semester 2010/11 3

Recursive-Descent Parsing 11

Example 10.1 (Arithmetic expressions; cf. Example 77?)

proc main();
token := next(); EQ
proc EQ); (x E — T E %
if token in {’(’,’a’,’b’} then print(1); T(O); E’Q
else print(error); stop fi
proc E2°Q0; (+ B — + T E' | € %)
if token = ’+’ then print(2); token := next(); T(O; E’Q
elsif token in {EOF, ’)’} then print(3)
else print(error); stop fi
proc TQ); xT — F T %
if token in {’(’,’a’,’b’} then print(4); FO; T’Q
else print(error); stop fi
proc T'Q; T/ — * F T | %)
if token = ’*’ then print(5); token := mnext(); F(O; T’(Q)
elsif token in {’+’,EQOF,’)’} then print(6)
else print(error); stop fi
proc FO; G F — (E) | a | b=*)
if token = ’(’ then print(7); token := next(); EQ;
if token = ’)’ then token := next() else print(error); stop fi
elsif token = ’a’ then print(8); token := next()
elsif token = ’b’ then print(9); token := next()
else print(error); stop fi

m Compiler Construction Winter semester 2010/11

© Bottom-Up Parsing

Rm Compiler Construction nter semester 2010/11

Repetition: Top-Down Parsing
Example 10.2

Grammar for
arithmetic expressions:
Gag: E— E+T|T (1,2)
T - T*F | F (3,4)
F— (B]alb (567

Compiler Construction Winter semester 2010/11 6

Repetition: Top-Down Parsing
Example 10.2

E

Grammar for
arithmetic expressions:
Gag: E— E+T|T (1,2)
T - T*F | F (3,4)
F— (B]alb (567

Leftmost analysis of (a) *b:

Compiler Construction Winter semester 2010/11 6

Repetition: Top-Down Parsing
Example 10.2

E

Grammar for T

arithmetic expressions:

Gag: E— E+T|T (1,2)
T - T*F | F (3,4)
F— (B)|alb (56,7)

Leftmost analysis of (a) *b:

2

Compiler Construction Winter semester 2010/11 6

Repetition: Top-Down Parsing
Example 10.2

7
Grammar for i $

arithmetic expressions: 7 i \F

Gag: E— E+T|T (1,2) §

T - T*F | F (3,4)

F— (B]alb (567 s

Leftmost analysis of (a) *b:

23 |
(a) * b

Compiler Construction Winter semester 2010/11 6

Repetition: Top-Down Parsing
Example 10.2

B
Grammar for i $

arithmetic expressions: 7 i \F

Gag: E— E+T|T (1,2) i §

T —-T*F|F (3,4) F

F— (@ |alb (567 |

Leftmost analysis of (a) *b:

234 i
(a) * b

Compiler Construction Winter semester 2010/11 6

Repetition: Top-Down Parsing
Example 10.2

E
Grammar for ,$

arithmetic expressions: T i \F

Gag: E— E+T|T (1,2 i ;

T T+F|F (3,4) r i

Fo(®al> G671 A |

B i

Leftmost analysis of (a)*b:

2345 A |
(a) * b

6

Winter semester 2010/11

Compiler Construction

Repetition: Top-Down Parsing
Example 10.2

E
Grammar for ,$

arithmetic expressions: T i \F

Gag: E— E+T|T (1,2 i ;

T T+F|F (3,4) r i

Fo(®al> G671 A |

A i

Leftmost analysis of (a)*b: T

23452 f g
(a) * b

Winter semester 2010/11 6

Compiler Construction

Repetition: Top-Down Parsing
Example 10.2

E
Grammar for ,$
arithmetic expressions: T i \F
Gag: E— E+T|T (1,2 i ;
T T+F|F (3,4) r i
Fo(®al> G671 A |
A i
Leftmost analysis of (a)*b: T
234524 A
"’: F \“‘ i
(a) * b

Winter semester 2010/11 6

Compiler Construction

Repetition: Top-Down Parsing
Example 10.2

E
Grammar for ’$
arithmetic expressions: T i \F
Gag: E— E+T|T (1,2) i §
T TxF|F (3,4) r i
F— (B)|a|b (56,7) |
A i
Leftmost analysis of (a)*b: T
2345246 fTy
"’: }:7 \“‘ i
¢ a) * b

Winter semester 2010/11 6

Compiler Construction

Repetition: Top-Down Parsing
Example 10.2

7

Grammar for ,$
arithmetic expressions: T i \F
Gag: E— E+T|T (1,2) i o
T - T*F | F (3,4) E |
F— (B) |a‘b (576?7) Ak} i |
"tlE\“ i E
Leftmost analysis of (a)*b: T
23452467 A .
"’: }:7 \“‘ i E
a0y 4

Winter semester 2010/11 6

Compiler Construction

Bottom-Up Parsing 1

Grammar for
arithmetic expressions:
Gag: E— E+T|T (1,2)
T —-T*F | F (3,4)
F— (B]alb (567

Compiler Construction Winter semester 2010/11

Bottom-Up Parsing 1

Grammar for
arithmetic expressions:
Gag: E— E+T|T (1,2)
T —-T*F | F (3,4)
F— (B]alb (567
Reversed rightmost analysis
of (a)x*b:

Compiler Construction

Bottom-Up Parsing 1

Grammar for

arithmetic expressions:

Gag: E— E+T|T (1,2)
T —-T*F | F (3,4)
F— (B]alb (567

Reversed rightmost analysis

of (a)x*b:

6

Compiler Construction

Bottom-Up Parsing 1

Grammar for

arithmetic expressions:

Gag: E— E+T|T (1,2)
T —-T*F | F (3,4)
F— (B]alb (567

Reversed rightmost analysis

of (a)x*b:

6 4

Compiler Construction

Bottom-Up Parsing 1

Grammar for
arithmetic expressions:
Gag: E— E+T|T (1,2)
T —-T*F | F (3,4)
F— (B]alb (567

Reversed rightmost analysis
of (a)x*b:
642

e e R

Compiler Construction

Bottom-Up Parsing 1

Grammar for
arithmetic expressions:

Gup: E— BE+T|T (1,2)
T S T«F|F (3,4) -,
F o (B)|alb (5,6,7)
l"E‘\\
Reversed rightmost analysis
of (a)x*b: £
6425 gl
{F
(a) * b

Compiler Construction

Bottom-Up Parsing 1

Grammar for

arithmetic expressions:
T —-T*F | F (3,
F— (E)|alb (5

Reversed rightmost analysis

of (a)x*b:
64254

Compiler Construction

Bottom-Up Parsing 1

Grammar for
arithmetic expressions:
Gap: E— E+T|T (1,2 T i
T —T+F|F (3,4) i |
F— (E)|a|b (56,7)
,"E“‘ i
Reversed rightmost analysis ;
of (a)x*b: fT
642547 S ;
Y
(&) = b

Compiler Construction

Bottom-Up Parsing 1

Grammar for T,

arithmetic expressions: a o
Gup: E— E+T|T (1,2) T i
T —TxF|F (3,4 Ja .

F— (E)|a|b (56,7 P

,"E“‘ i i

Reversed rightmost analysis |
of (a)*b: gy P
6425473 g0 o
"l FI! |“‘ i i
S

Winter semester 2010/11

Compiler Construction

Bottom-Up Parsing 1

K
Grammar for T
arithmetic expressions: i

Gup: E— BE+T|T (1,2) T LA
T —T*F|F (3,4 I3 P
F— (B)|a|b (5,6,7) o
,"E“‘ i i
Reversed rightmost analysis P | ;
of (a)x*b: ;T i :
64254732 foA E i
"I F l“ i i
a0y

Winter semester 2010/11

Compiler Construction

Bottom-Up Parsing 11

Approach:

@ Given G € CFGy, construct a nondeterministic bottom-up parsing
automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: X

pushdown alphabet: X

output alphabet: [p] (where p := |P|)

state set: omitted

transitions:

¢ © ¢ ¢ ¢

shift: shifting input symbols onto the pushdown
reduce: replacing the right-hand side of a production by its
left-hand side (= inverse expansion steps)

m' Compiler Construction Winter semester 2010/11

Bottom-Up Parsing 11

Approach:

@ Given G € CFGy, construct a nondeterministic bottom-up parsing
automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: X

pushdown alphabet: X

output alphabet: [p] (where p := |P|)

state set: omitted

transitions:

¢ © ¢ ¢ ¢

shift: shifting input symbols onto the pushdown
reduce: replacing the right-hand side of a production by its
left-hand side (= inverse expansion steps)
© Remove nondeterminism by allowing lookahead on the input:
G € LR(k) iff L(G) recognizable by deterministic bottom-up
parsing automaton with lookahead of k symbols

m' Compiler Construction Winter semester 2010/11

© Nondeterministic Bottom-Up Parsing

Rm Compiler Construction nter semester 2010/11

Nondeterministic Bottom-Up Automaton I

Definition 10.4 (Nondeterministic bottom-up parsing automaton)

Let G = (N,X, P,S) € CFGy. The nondeterministic bottom-up
parsing automaton of G, NBA(G), is defined by the following
components.

o Input alphabet: ¥

Pushdown alphabet: X

Output alphabet: [p]

Configurations: ¥* x X* x [p]* (top of pushdown to the right)
Transitions for w € ¥*, a € X*, and z € [p]*:

shifting steps: (aw,a, 2) - (w, aa,z) if a € X

reduction steps: (w,af,2) F (w,ad,zi) if m;,=A—

¢ © ¢ ¢

@ Initial configuration for w € ¥*: (w,¢,¢)

@ Final configurations: {e} x {S} x [p]*

m Compiler Construction Winter semester 2010/11 10

Nondeterministic Bottom-Up Automaton 11

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):
Gag: E— E+T|T (1,2)
T — T*F | F (3,4)
F— (E)|a|b (56,7)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton 11

Example 10.5
Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 7.3):
Gugp:E— E+T|T (1,2)
T > T+F|F (3,4)
F— (E)|a|b (56,7)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton 11

Example 10.5

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 7.3): F(a)b, (e)

Gap: E— E+T|T (1,2)
T —T+F|F (3,4)
F— (E)|a|b (56,7)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton 11

Example 10.5

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 7.3): F(a)*b, (e)

F()b, (a ¢)

Gap: E— E+T|T (1,2)
T —T+F|F (3,4)
F—(E)|a|b (56,7)

Winter semester 2010/11 11

Compiler Construction

Nondeterministic Bottom-Up Automaton 11

Example 10.5

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 7.3): F(a)*b, (¢)
) F()b, (a ,¢)
Gup: E— E+T|T (1, C(e 6 |

1,2)
T —TxF|F (3,4)
F— (E)|a|b (56,7)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton 11

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 7.3): F(a)*b, (¢)
Gap:E — E+T|T (1,2) = ()b, (a e)
- ()b, (F ,6)
T= I | (84 - ()b, (T, 64)

F— (E)|a|b (56,7) ’ ’

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton 11

Example 10.5

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 7.3): F(a)*b, (¢)
Gap: E— E+T|T (1,2) =()b, (a e)
F(J)*b, (F ,6)

T —T*xF|F (3,4)
F—(E)|a|b (56,7 7 (b (164)
0 - ()b, (E , 642)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton 11

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 7.3): F(a)*b, (¢)
Gap: E— E+T|T (1,2) =()b, (a e)
F(J)*b, (F ,6)

T —T*xF|F (3,4)
F— (BE)|a|b (56,7 7 (b (64)
>0 F()b, (E ,642)
F(*b, (E), 642)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton 11

Example 10.5

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 7.3): F(a)*b, (¢)
Gap:E— E+T|T (1,2) (), @ e)
F(J)*b, (F ,6)

T —T*xF|F (3,4)
F—(BE)|a|b (56,7 7 (b (64)
0 ()b, (E , 642)
F(*b, (E), 642)
(b, F 6425)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton 11

Example 10.5

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 7.3): F(a)*b, (¢)
Gap: E— E+T|T (1,2) =()b, (a e)
F(J)*b, (F ,6)

T —T*xF|F (3,4)
F—(E)|a|b (56,7 7 (b (64)
>0 F()b, (E ,642)
F(*b, (E), 642)
-(b, F ,6425)
(b, T 64254)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton 11

Example 10.5

Grammar for Bottom-up parsing of (a)x*b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 7.3): F(axb, (¢)
Gap: E— E+T|T (1,2) =()b, (a e)
F(J)*b, (F ,6)

T —T*xF|F (3,4)
F—(E)|alb (56,7) 7 (b (64)
0 ()b, (E , 642)
F(*b, (E), 642)
-(b, F ,6425)
(b, T 64254)
F(b, T* ,64254)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton 11

Example 10.5

Grammar for Bottom-up parsing of (a)x*b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 7.3): F(a)*b, (e)
Gap:E— E+T|T (1,2) = ()b, (a e)
T - T+F | F (3.4) F()b, (F ,6)

F— (E)]|alb (56,7) F()b, (T ,64)

A ()b, (B, 642)

F(*b, (E), 642)

F(b, F ,6425)

F(b, T 64254)

F(b, Tx ,64254)

(e Txb, 64254)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton 11

Example 10.5

Grammar for Bottom-up parsing of (a)x*b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 7.3): F(a)*b, (e)
Gap:E— E+T|T (1,2) = ()b, (a e)
T - TF | F (3.4) F()b, (F ,6)

F— (E)]|alb (56,7) F()b, (T ,64)

A ()b, (B, 642)

F(*b, (E), 642)

F(b, F ,6425)

F(b, T 64254)

F(b, Tx ,64254)

(e Txb, 64254)

(e, TxF, 642547)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton 11

Example 10.5

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 7.3): F(a)*b, (e)
Gap:E — E+T|T (1,2) i()*b, (a €)

T—>T*F|F (3’4) ()*b, (F ,6)

F— (E)]|alb (56,7) F()b, (T ,64)

T F()*b, (E |, 642)

F(*b, (E), 642)

F(*b, FF 6425)

F(*b, T 64254)

Fo(b, T* 642564)

Fo(g, Txb, 64254)

Fo(g, TxF, 642547)

F(e, T" 6425473)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton 11

Example 10.5

Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 7.3): F(a)*b, (e)
Gap:E — E+T|T (1,2) i()*b, (a €)
T—>T*F|F (3’4) ()*b, (F ,6)

F— (E)]|alb (56,7) F()b, (T ,64)

T F()*b, (E |, 642)

F(*b, (E), 642)

F(*b, FF 6425)

F(*b, T 64254)

Fo(b, T* 642564)

Fo(g, Txb, 64254)

Fo(g, TxF, 642547)

F(e, T 6425473)

F(g, B, 64254732)

Compiler Construction Winter semester 2010/11 11

Correctness of NBA(G)

Theorem 10.6 (Correctness of NBA(G))

Let G = (N, X, P,S) € CFGyx, and NBA(G) as before. Then, for every
w € X* and z € [p|*,

(w,e,e) F* (¢,8,2) iff Z is a rightmost analysis of w

m' Compiler Construction Winter semester 2010/11 12

Correctness of NBA(G)

Theorem 10.6 (Correctness of NBA(G))

Let G = (N, X, P,S) € CFGyx, and NBA(G) as before. Then, for every
w € X* and z € [p|*,

(w,e,e) F* (¢,8,2) iff Z is a rightmost analysis of w

similar to the top-down case (Theorem 7.7)

m Compiler Construction Winter semester 2010/11 12

Nondeterminisn in NBA(G)

Remark: NBA(G) is generally nondeterministic
o Shift or reduce? Example:

w,aab,z) .
(bw, aa, z) F {Ebw,aA, z)z) ifm=A—a

Rm Compiler Construction Winter semester 2010/11 13

Nondeterminisn in NBA(G)

Remark: NBA(G) is generally nondeterministic
o Shift or reduce? Example:

w,aab,z) .
(bw, aa, z) F {Ebw,aA, z)z) ifm=A—a

o If reduce: which “handle” 57 Example:

(w, @A, zi)
(w,aaB, zj

(w,aab,z)l—{) ifmi=A—aband m; =B —b

Rm Compiler Construction Winter semester 2010/11

Nondeterminisn in NBA(G)

Remark: NBA(G) is generally nondeterministic
o Shift or reduce? Example:

w,aab,z) .
(bw, aa, z) F {Ebw,aA, z)z) fm=A—a

o If reduce: which “handle” 57 Example:

(w, aab, z) + { (w, oA, zi)

(w,OZ(IB,zj) ifﬂi:A—)abandﬂ‘j:B_,b

o If reduce B: which left-hand side A7 Example:

(w,aa, z) - {Egggélj)) ifi=A—aandmj=B—a

Rm Compiler Construction Winter semester 2010/11

Nondeterminisn in NBA(G)

Remark: NBA(G) is generally nondeterministic
o Shift or reduce? Example:

w,aab,z) .
(bw, aa, z) F {Ebw,aA, z)z) fm=A—a

o If reduce: which “handle” 57 Example:

(w, aab, z) + { (w, oA, zi)

(w,OZ(IB,zj) ifﬂi:A—)abandﬂ‘j:B_,b

o If reduce B: which left-hand side A7 Example:

(w,aa, z) - {Egggélj)) ifi=A—aandmj=B—a

® When to terminate parsing? Example:
(e,8,2)F (e,A,zi) if ; =A— S
——

final

Rm Compiler Construction Winter semester 2010/11

Resolving Termination Nondeterminism I

General assumption to avoid nondeterminism of last type:
every grammar is start separated

Definition 10.7 (Start separation)

A grammar G = (N, X, P,S) € CFGy is called start separated if S only
occurs in productions of the form S — A where A # S.

m' Compiler Construction Winter semester 2010/11 14

Resolving Termination Nondeterminism I

General assumption to avoid nondeterminism of last type:
every grammar is start separated

Definition 10.7 (Start separation)

A grammar G = (N, X, P,S) € CFGy is called start separated if S only
occurs in productions of the form S — A where A # S.

Remarks:
@ Start separation always possible by adding S’ — S with new start
symbol S’

@ From now on consider only reduced grammars of this form
(71‘ 0= Sl — S)

m' Compiler Construction Winter semester 2010/11 14

Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to
terminate parsing?):

If G € CFGy is start separated, then no successor of a final
configuration (g,S',z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

m' Compiler Construction Winter semester 2010/11

Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to
terminate parsing?):

Lemma 10.8

If G € CFGy, is start separated, then no successor of a final
configuration (g,5’,z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Proof.

e To (&,5',2), only reductions by e-productions can be applied:
(6,8 ,2)F (g,8A,z1) ifm=A—¢

m Compiler Construction Winter semester 2010/11 15

Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to
terminate parsing?):

Lemma 10.8

If G € CFGy, is start separated, then no successor of a final
configuration (g,5’,z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Proof.

e To (&,95, 2), only reductions by e-productions can be applied:
(€,8,2)F (e,5A,zi) ifm=A—¢
o Thereafter, only reductions by productions of the form
Ay — Ai... Ay (n>0) can be applied

m Compiler Construction Winter semester 2010/11 15

Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to
terminate parsing?):

Lemma 10.8

If G € CFGy, is start separated, then no successor of a final
configuration (g,5’,z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Proof.

e To (&,95, 2), only reductions by e-productions can be applied:
(€,8,2)F (e,5A,zi) ifm=A—¢
o Thereafter, only reductions by productions of the form
Ay — Ai... Ay (n>0) can be applied

o Every resulting configuration is of the (non-final) form
(,58'By...Bg,z) where k >1

m Compiler Construction Winter semester 2010/11

Q LR(k) Grammars

Rm Compiler Construction ter semester 2010/11 16

LR(k) Grammars I

Goal: resolve remaining nondeterminism of NBA(G) by supporting

lookahead of & € N symbols on the input

= LR(k): reading of input from left to right with k-lookahead,
computing a rightmost analysis

Rm Compiler Construction Winter semester 2010/11

LR(k) Grammars I

Goal: resolve remaining nondeterminism of NBA(G) by supporting

lookahead of & € N symbols on the input

= LR(k): reading of input from left to right with k-lookahead,
computing a rightmost analysis

Definition 10.9 (LR(k) grammar)

Let G = (N,X, P,S) € CFGyx, be start separated and k € N. Then G
has the LR(k) property (notation: G € LR(k)) if for all rightmost
derivations of the form

g =7 cdAw =, afw
= vBr =, afy

such that firsty(w) = firstg(y), it follows that « =y, A = B, and = = y.

4

m Compiler Construction Winter semester 2010/11 17

LR(k) Grammars II

Remarks:
e If G € LR(k), then the reduction of afw to aAw is already
determined by firsty (w).

@ Therefore NBA(G) in configuration (w, a3, z) can decide to reduce
and how to reduce.

m' Compiler Construction Winter semester 2010/11 18

LR(k) Grammars II

Remarks:

e If G € LR(k), then the reduction of afw to aAw is already
determined by firsty (w).

@ Therefore NBA(G) in configuration (w, a3, z) can decide to reduce
and how to reduce.

e Computation of NBA(G) for § =} aAw =, afw:

red ¢
(Ww,e,e) F* (w,aB,2) F (w,ad, zi) k...
where m; = A —

m' Compiler Construction Winter semester 2010/11 18

LR(k) Grammars II

Remarks:

]

If G € LR(k), then the reduction of afw to aAw is already
determined by firsty (w).

Therefore NBA(G) in configuration (w, a3, z) can decide to reduce
and how to reduce.

Computation of NBA(G) for S =} aAw =, afw:

red i
(Ww,e,e) F* (w,aB,2) F (w,ad, zi) k...
where m; = A —
Computation of NBA(G) for S =7 yBx =, afy:

o with direct reduction (y = z, af =4, m; = B — J):
red j
(Y'y,e.e) B (y,08,2") = (z,76,2") + (z,vB,2'j) ...

m' Compiler Construction Winter semester 2010/11

LR(k) Grammars II

Remarks:

]

If G € LR(k), then the reduction of afw to aAw is already
determined by firsty (w).

Therefore NBA(G) in configuration (w, a3, z) can decide to reduce
and how to reduce.

Computation of NBA(G) for S =} aAw =, afw:

red i
(Ww,e,e) F* (w,aB,2) F (w,ad, zi) k...
where m; = A —
Computation of NBA(G) for S =7 yBx =, afy:

o with direct reduction (y = z, af =4, m; = B — J):
red j
(Y'y,e,e) F* (y,a8,2") = (2,76,2") + (2,9B,z"j) ...
o with previous shifts (y = z'z, afz’ =+, mj = B — 0):
(Y'y,e,6) F* (y,aB,2") = (22,08, 2")

shift™

o (7, aB2,2") = (z,76,2)

red j

F(x,vB,2'j)F ...

m' Compiler Construction Winter semester 2010/11

	Recursive-Descent Parsing
	Bottom-Up Parsing
	Nondeterministic Bottom-Up Parsing
	LR(k) Grammars

