
Compiler Construction

Lecture 10: Syntactic Analysis V (LR(k) Grammars)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Outline

1 Recursive-Descent Parsing

2 Bottom-Up Parsing

3 Nondeterministic Bottom-Up Parsing

4 LR(k) Grammars

Compiler Construction Winter semester 2010/11 2

Recursive-Descent Parsing I

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime
stack)

Compiler Construction Winter semester 2010/11 3

Recursive-Descent Parsing I

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime
stack)

Advantage: simple implementation

Compiler Construction Winter semester 2010/11 3

Recursive-Descent Parsing I

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime
stack)

Advantage: simple implementation

Ingredients: variable token for current token
function next() for invoking the scanner
procedure print(i) for displaying the leftmost
analysis (or errors)

Compiler Construction Winter semester 2010/11 3

Recursive-Descent Parsing I

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime
stack)

Advantage: simple implementation

Ingredients: variable token for current token
function next() for invoking the scanner
procedure print(i) for displaying the leftmost
analysis (or errors)

Method: to every A ∈ N we assign a procedure A() which

tests token with regard to the lookahead sets of the
A-productions,
prints the corresponding rule number and
evaluates the corresponding right-hand side as
follows:

for a ∈ Σ: match token; call next()
for A ∈ N : call A()

Compiler Construction Winter semester 2010/11 3

Recursive-Descent Parsing II

Example 10.1 (Arithmetic expressions; cf. Example ??)

proc main();
token := next(); E()

proc E(); (* E → T E
′ *)

if token in {’(’,’a’,’b’} then print(1); T(); E’()
else print(error); stop fi

proc E’(); (* E
′ → + T E

′ | ε *)
if token = ’+’ then print(2); token := next(); T(); E’()
elsif token in {EOF, ’)’} then print(3)
else print(error); stop fi

proc T(); (* T → F T
′ *)

if token in {’(’,’a’,’b’} then print(4); F(); T’()
else print(error); stop fi

proc T’(); (* T
′ → * F T

′ | ε *)
if token = ’*’ then print(5); token := next(); F(); T’()
elsif token in {’+’,EOF,’)’} then print(6)
else print(error); stop fi

proc F(); (* F → (E) | a | b *)
if token = ’(’ then print(7); token := next(); E();

if token = ’)’ then token := next() else print(error); stop fi
elsif token = ’a’ then print(8); token := next()
elsif token = ’b’ then print(9); token := next()
else print(error); stop fi

Compiler Construction Winter semester 2010/11 4

Outline

1 Recursive-Descent Parsing

2 Bottom-Up Parsing

3 Nondeterministic Bottom-Up Parsing

4 LR(k) Grammars

Compiler Construction Winter semester 2010/11 5

Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Compiler Construction Winter semester 2010/11 6

Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

E

(a) * b

Compiler Construction Winter semester 2010/11 6

Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:
2

E

(a) * b

T

Compiler Construction Winter semester 2010/11 6

Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:
2 3

E

(a) * b

T

T F

Compiler Construction Winter semester 2010/11 6

Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:
2 3 4

E

(a) * b

T

T F

F

Compiler Construction Winter semester 2010/11 6

Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:
2 3 4 5

E

(a) * b

T

T F

F

E

Compiler Construction Winter semester 2010/11 6

Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:
2 3 4 5 2

E

(a) * b

T

T F

F

E

T

Compiler Construction Winter semester 2010/11 6

Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:
2 3 4 5 2 4

E

(a) * b

T

T F

F

E

T

F

Compiler Construction Winter semester 2010/11 6

Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:
2 3 4 5 2 4 6

E

(a) * b

T

T F

F

E

T

F

Compiler Construction Winter semester 2010/11 6

Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:
2 3 4 5 2 4 6 7

E

(a) * b

T

T F

F

E

T

F

Compiler Construction Winter semester 2010/11 6

Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Compiler Construction Winter semester 2010/11 7

Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:

(a) * b

Compiler Construction Winter semester 2010/11 7

Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:
6

(a) * b

F

Compiler Construction Winter semester 2010/11 7

Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:
6 4

(a) * b

F

T

Compiler Construction Winter semester 2010/11 7

Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:
6 4 2

(a) * b

F

T

E

Compiler Construction Winter semester 2010/11 7

Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:
6 4 2 5

(a) * b

F

T

E

F

Compiler Construction Winter semester 2010/11 7

Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:
6 4 2 5 4

(a) * b

F

T

E

F

T

Compiler Construction Winter semester 2010/11 7

Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:
6 4 2 5 4 7

(a) * b

F

T

E

F

T F

Compiler Construction Winter semester 2010/11 7

Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:
6 4 2 5 4 7 3

(a) * b

F

T

E

F

T F

T

Compiler Construction Winter semester 2010/11 7

Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:
6 4 2 5 4 7 3 2

(a) * b

F

T

E

F

T F

T

E

Compiler Construction Winter semester 2010/11 7

Bottom-Up Parsing II

Approach:
1 Given G ∈ CFGΣ, construct a nondeterministic bottom-up parsing

automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: Σ
pushdown alphabet: X

output alphabet: [p] (where p := |P |)
state set: omitted
transitions:

shift: shifting input symbols onto the pushdown
reduce: replacing the right-hand side of a production by its

left-hand side (= inverse expansion steps)

Compiler Construction Winter semester 2010/11 8

Bottom-Up Parsing II

Approach:
1 Given G ∈ CFGΣ, construct a nondeterministic bottom-up parsing

automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: Σ
pushdown alphabet: X

output alphabet: [p] (where p := |P |)
state set: omitted
transitions:

shift: shifting input symbols onto the pushdown
reduce: replacing the right-hand side of a production by its

left-hand side (= inverse expansion steps)

2 Remove nondeterminism by allowing lookahead on the input:
G ∈ LR(k) iff L(G) recognizable by deterministic bottom-up
parsing automaton with lookahead of k symbols

Compiler Construction Winter semester 2010/11 8

Outline

1 Recursive-Descent Parsing

2 Bottom-Up Parsing

3 Nondeterministic Bottom-Up Parsing

4 LR(k) Grammars

Compiler Construction Winter semester 2010/11 9

Nondeterministic Bottom-Up Automaton I

Definition 10.4 (Nondeterministic bottom-up parsing automaton)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ. The nondeterministic bottom-up
parsing automaton of G, NBA(G), is defined by the following
components.

Input alphabet: Σ

Pushdown alphabet: X

Output alphabet: [p]

Configurations: Σ∗ ×X∗ × [p]∗ (top of pushdown to the right)

Transitions for w ∈ Σ∗, α ∈ X∗, and z ∈ [p]∗:

shifting steps: (aw,α, z) ` (w,αa, z) if a ∈ Σ
reduction steps: (w,αβ, z) ` (w,αA, zi) if πi = A→ β

Initial configuration for w ∈ Σ∗: (w, ε, ε)

Final configurations: {ε} × {S} × [p]∗

Compiler Construction Winter semester 2010/11 10

Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε)
` (a)*b, (, ε)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε)
` (a)*b, (, ε)
` ()*b, (a , ε)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε)
` (a)*b, (, ε)
` ()*b, (a , ε)
` ()*b, (F , 6)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε)
` (a)*b, (, ε)
` ()*b, (a , ε)
` ()*b, (F , 6)
` ()*b, (T , 64)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε)
` (a)*b, (, ε)
` ()*b, (a , ε)
` ()*b, (F , 6)
` ()*b, (T , 64)
` ()*b, (E , 642)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε)
` (a)*b, (, ε)
` ()*b, (a , ε)
` ()*b, (F , 6)
` ()*b, (T , 64)
` ()*b, (E , 642)
` (*b, (E) , 642)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε)
` (a)*b, (, ε)
` ()*b, (a , ε)
` ()*b, (F , 6)
` ()*b, (T , 64)
` ()*b, (E , 642)
` (*b, (E) , 642)
` (*b, F , 6425)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε)
` (a)*b, (, ε)
` ()*b, (a , ε)
` ()*b, (F , 6)
` ()*b, (T , 64)
` ()*b, (E , 642)
` (*b, (E) , 642)
` (*b, F , 6425)
` (*b, T , 64254)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε)
` (a)*b, (, ε)
` ()*b, (a , ε)
` ()*b, (F , 6)
` ()*b, (T , 64)
` ()*b, (E , 642)
` (*b, (E) , 642)
` (*b, F , 6425)
` (*b, T , 64254)
` (b, T* , 64254)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε)
` (a)*b, (, ε)
` ()*b, (a , ε)
` ()*b, (F , 6)
` ()*b, (T , 64)
` ()*b, (E , 642)
` (*b, (E) , 642)
` (*b, F , 6425)
` (*b, T , 64254)
` (b, T* , 64254)
` (ε, T*b , 64254)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε)
` (a)*b, (, ε)
` ()*b, (a , ε)
` ()*b, (F , 6)
` ()*b, (T , 64)
` ()*b, (E , 642)
` (*b, (E) , 642)
` (*b, F , 6425)
` (*b, T , 64254)
` (b, T* , 64254)
` (ε, T*b , 64254)
` (ε, T*F, 642547)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε)
` (a)*b, (, ε)
` ()*b, (a , ε)
` ()*b, (F , 6)
` ()*b, (T , 64)
` ()*b, (E , 642)
` (*b, (E) , 642)
` (*b, F , 6425)
` (*b, T , 64254)
` (b, T* , 64254)
` (ε, T*b , 64254)
` (ε, T*F, 642547)
` (ε, T , 6425473)

Compiler Construction Winter semester 2010/11 11

Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε)
` (a)*b, (, ε)
` ()*b, (a , ε)
` ()*b, (F , 6)
` ()*b, (T , 64)
` ()*b, (E , 642)
` (*b, (E) , 642)
` (*b, F , 6425)
` (*b, T , 64254)
` (b, T* , 64254)
` (ε, T*b , 64254)
` (ε, T*F, 642547)
` (ε, T , 6425473)
` (ε, E , 64254732)

Compiler Construction Winter semester 2010/11 11

Correctness of NBA(G)

Theorem 10.6 (Correctness of NBA(G))

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ and NBA(G) as before. Then, for every
w ∈ Σ∗ and z ∈ [p]∗,

(w, ε, ε) `∗ (ε, S, z) iff ←−z is a rightmost analysis of w

Compiler Construction Winter semester 2010/11 12

Correctness of NBA(G)

Theorem 10.6 (Correctness of NBA(G))

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ and NBA(G) as before. Then, for every
w ∈ Σ∗ and z ∈ [p]∗,

(w, ε, ε) `∗ (ε, S, z) iff ←−z is a rightmost analysis of w

Proof.

similar to the top-down case (Theorem 7.7)

Compiler Construction Winter semester 2010/11 12

Nondeterminisn in NBA(G)

Remark: NBA(G) is generally nondeterministic

Shift or reduce? Example:

(bw, αa, z) `

{
(w,αab, z)
(bw, αA, zi)

if πi = A→ a

Compiler Construction Winter semester 2010/11 13

Nondeterminisn in NBA(G)

Remark: NBA(G) is generally nondeterministic

Shift or reduce? Example:

(bw, αa, z) `

{
(w,αab, z)
(bw, αA, zi)

if πi = A→ a

If reduce: which “handle” β? Example:

(w,αab, z) `

{
(w,αA, zi)
(w,αaB, zj)

if πi = A→ ab and πj = B → b

Compiler Construction Winter semester 2010/11 13

Nondeterminisn in NBA(G)

Remark: NBA(G) is generally nondeterministic

Shift or reduce? Example:

(bw, αa, z) `

{
(w,αab, z)
(bw, αA, zi)

if πi = A→ a

If reduce: which “handle” β? Example:

(w,αab, z) `

{
(w,αA, zi)
(w,αaB, zj)

if πi = A→ ab and πj = B → b

If reduce β: which left-hand side A? Example:

(w,αa, z) `

{
(w,αA, zi)
(w,αB, zj)

if πi = A→ a and πj = B → a

Compiler Construction Winter semester 2010/11 13

Nondeterminisn in NBA(G)

Remark: NBA(G) is generally nondeterministic

Shift or reduce? Example:

(bw, αa, z) `

{
(w,αab, z)
(bw, αA, zi)

if πi = A→ a

If reduce: which “handle” β? Example:

(w,αab, z) `

{
(w,αA, zi)
(w,αaB, zj)

if πi = A→ ab and πj = B → b

If reduce β: which left-hand side A? Example:

(w,αa, z) `

{
(w,αA, zi)
(w,αB, zj)

if πi = A→ a and πj = B → a

When to terminate parsing? Example:

(ε, S, z)
︸ ︷︷ ︸

final

` (ε,A, zi) if πi = A→ S

Compiler Construction Winter semester 2010/11 13

Resolving Termination Nondeterminism I

General assumption to avoid nondeterminism of last type:
every grammar is start separated

Definition 10.7 (Start separation)

A grammar G = 〈N,Σ, P, S〉 ∈ CFGΣ is called start separated if S only
occurs in productions of the form S → A where A 6= S.

Compiler Construction Winter semester 2010/11 14

Resolving Termination Nondeterminism I

General assumption to avoid nondeterminism of last type:
every grammar is start separated

Definition 10.7 (Start separation)

A grammar G = 〈N,Σ, P, S〉 ∈ CFGΣ is called start separated if S only
occurs in productions of the form S → A where A 6= S.

Remarks:

Start separation always possible by adding S′ → S with new start
symbol S′

From now on consider only reduced grammars of this form
(π0 = S′ → S)

Compiler Construction Winter semester 2010/11 14

Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to
terminate parsing?):

Lemma 10.8

If G ∈ CFGΣ is start separated, then no successor of a final
configuration (ε, S′, z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Compiler Construction Winter semester 2010/11 15

Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to
terminate parsing?):

Lemma 10.8

If G ∈ CFGΣ is start separated, then no successor of a final
configuration (ε, S′, z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Proof.

To (ε, S′, z), only reductions by ε-productions can be applied:
(ε, S′, z) ` (ε, S′A, zi) if πi = A→ ε

Compiler Construction Winter semester 2010/11 15

Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to
terminate parsing?):

Lemma 10.8

If G ∈ CFGΣ is start separated, then no successor of a final
configuration (ε, S′, z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Proof.

To (ε, S′, z), only reductions by ε-productions can be applied:
(ε, S′, z) ` (ε, S′A, zi) if πi = A→ ε

Thereafter, only reductions by productions of the form
A0 → A1 . . . An (n ≥ 0) can be applied

Compiler Construction Winter semester 2010/11 15

Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to
terminate parsing?):

Lemma 10.8

If G ∈ CFGΣ is start separated, then no successor of a final
configuration (ε, S′, z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Proof.

To (ε, S′, z), only reductions by ε-productions can be applied:
(ε, S′, z) ` (ε, S′A, zi) if πi = A→ ε

Thereafter, only reductions by productions of the form
A0 → A1 . . . An (n ≥ 0) can be applied

Every resulting configuration is of the (non-final) form
(ε, S′B1 . . . Bk, z) where k ≥ 1

Compiler Construction Winter semester 2010/11 15

Outline

1 Recursive-Descent Parsing

2 Bottom-Up Parsing

3 Nondeterministic Bottom-Up Parsing

4 LR(k) Grammars

Compiler Construction Winter semester 2010/11 16

LR(k) Grammars I

Goal: resolve remaining nondeterminism of NBA(G) by supporting
lookahead of k ∈ N symbols on the input
=⇒ LR(k): reading of input from left to right with k-lookahead,

computing a rightmost analysis

Compiler Construction Winter semester 2010/11 17

LR(k) Grammars I

Goal: resolve remaining nondeterminism of NBA(G) by supporting
lookahead of k ∈ N symbols on the input
=⇒ LR(k): reading of input from left to right with k-lookahead,

computing a rightmost analysis

Definition 10.9 (LR(k) grammar)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ be start separated and k ∈ N. Then G

has the LR(k) property (notation: G ∈ LR(k)) if for all rightmost
derivations of the form

S

{
⇒∗

r αAw ⇒r αβw
⇒∗

r γBx ⇒r αβy

such that firstk(w) = firstk(y), it follows that α = γ, A = B, and x = y.

Compiler Construction Winter semester 2010/11 17

LR(k) Grammars II

Remarks:

If G ∈ LR(k), then the reduction of αβw to αAw is already
determined by firstk(w).

Therefore NBA(G) in configuration (w,αβ, z) can decide to reduce
and how to reduce.

Compiler Construction Winter semester 2010/11 18

LR(k) Grammars II

Remarks:

If G ∈ LR(k), then the reduction of αβw to αAw is already
determined by firstk(w).

Therefore NBA(G) in configuration (w,αβ, z) can decide to reduce
and how to reduce.

Computation of NBA(G) for S ⇒∗

r αAw ⇒r αβw:

(w′w, ε, ε) `∗ (w,αβ, z)
red i

` (w,αA, zi) ` . . .

where πi = A→ β

Compiler Construction Winter semester 2010/11 18

LR(k) Grammars II

Remarks:

If G ∈ LR(k), then the reduction of αβw to αAw is already
determined by firstk(w).

Therefore NBA(G) in configuration (w,αβ, z) can decide to reduce
and how to reduce.

Computation of NBA(G) for S ⇒∗

r αAw ⇒r αβw:

(w′w, ε, ε) `∗ (w,αβ, z)
red i

` (w,αA, zi) ` . . .

where πi = A→ β

Computation of NBA(G) for S ⇒∗

r γBx⇒r αβy:

with direct reduction (y = x, αβ = γδ, πj = B → δ):

(y′y, ε, ε) `∗ (y, αβ, z′) = (x, γδ, z′)
red j

` (x, γB, z′j) ` . . .

Compiler Construction Winter semester 2010/11 18

LR(k) Grammars II

Remarks:

If G ∈ LR(k), then the reduction of αβw to αAw is already
determined by firstk(w).

Therefore NBA(G) in configuration (w,αβ, z) can decide to reduce
and how to reduce.

Computation of NBA(G) for S ⇒∗

r αAw ⇒r αβw:

(w′w, ε, ε) `∗ (w,αβ, z)
red i

` (w,αA, zi) ` . . .

where πi = A→ β

Computation of NBA(G) for S ⇒∗

r γBx⇒r αβy:

with direct reduction (y = x, αβ = γδ, πj = B → δ):

(y′y, ε, ε) `∗ (y, αβ, z′) = (x, γδ, z′)
red j

` (x, γB, z′j) ` . . .

with previous shifts (y = x′x, αβx′ = γδ, πj = B → δ):
(y′y, ε, ε) `∗ (y, αβ, z′) = (x′x, αβ, z′)

shift

`
∗

(x, αβx′, z′) = (x, γδ, z′)
red j

` (x, γB, z′j) ` . . .

Compiler Construction Winter semester 2010/11 18

	Recursive-Descent Parsing
	Bottom-Up Parsing
	Nondeterministic Bottom-Up Parsing
	LR(k) Grammars

