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Recursive-Descent Parsing I

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime
stack)
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function next() for invoking the scanner
procedure print(i) for displaying the leftmost
analysis (or errors)

Compiler Construction Winter semester 2010/11 3



Recursive-Descent Parsing I

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime
stack)

Advantage: simple implementation

Ingredients: variable token for current token
function next() for invoking the scanner
procedure print(i) for displaying the leftmost
analysis (or errors)

Method: to every A ∈ N we assign a procedure A() which

tests token with regard to the lookahead sets of the
A-productions,
prints the corresponding rule number and
evaluates the corresponding right-hand side as
follows:

for a ∈ Σ: match token; call next()
for A ∈ N : call A()
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Recursive-Descent Parsing II

Example 10.1 (Arithmetic expressions; cf. Example ??)

proc main();
token := next(); E()

proc E(); (* E → T E
′ *)

if token in {’(’,’a’,’b’} then print(1); T(); E’()
else print(error); stop fi

proc E’(); (* E
′ → + T E

′ | ε *)
if token = ’+’ then print(2); token := next(); T(); E’()
elsif token in {EOF, ’)’} then print(3)
else print(error); stop fi

proc T(); (* T → F T
′ *)

if token in {’(’,’a’,’b’} then print(4); F(); T’()
else print(error); stop fi

proc T’(); (* T
′ → * F T

′ | ε *)
if token = ’*’ then print(5); token := next(); F(); T’()
elsif token in {’+’,EOF,’)’} then print(6)
else print(error); stop fi

proc F(); (* F → ( E ) | a | b *)
if token = ’(’ then print(7); token := next(); E();

if token = ’)’ then token := next() else print(error); stop fi
elsif token = ’a’ then print(8); token := next()
elsif token = ’b’ then print(9); token := next()
else print(error); stop fi
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Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)
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Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

E

( a ) * b
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Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:
2 3 4

E

( a ) * b

T

T F

F
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Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:
2 3 4 5

E

( a ) * b

T

T F

F

E
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Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:
2 3 4 5 2

E

( a ) * b

T

T F

F

E
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Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:
2 3 4 5 2 4

E

( a ) * b
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Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:
2 3 4 5 2 4 6

E

( a ) * b

T

T F

F

E

T
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Repetition: Top-Down Parsing

Example 10.2

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:
2 3 4 5 2 4 6 7

E

( a ) * b

T

T F

F

E

T

F
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Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)
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Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:

( a ) * b
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Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
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F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
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Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:
6 4 2

( a ) * b

F

T

E
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Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:
6 4 2 5

( a ) * b

F

T

E

F

Compiler Construction Winter semester 2010/11 7



Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:
6 4 2 5 4

( a ) * b

F

T

E

F

T
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Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:
6 4 2 5 4 7

( a ) * b

F

T

E

F

T F
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Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:
6 4 2 5 4 7 3

( a ) * b

F

T

E

F

T F

T
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Bottom-Up Parsing I

Example 10.3

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:
6 4 2 5 4 7 3 2

( a ) * b

F

T

E

F

T F

T

E
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Bottom-Up Parsing II

Approach:
1 Given G ∈ CFGΣ, construct a nondeterministic bottom-up parsing

automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: Σ
pushdown alphabet: X

output alphabet: [p] (where p := |P |)
state set: omitted
transitions:

shift: shifting input symbols onto the pushdown
reduce: replacing the right-hand side of a production by its

left-hand side (= inverse expansion steps)
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Bottom-Up Parsing II

Approach:
1 Given G ∈ CFGΣ, construct a nondeterministic bottom-up parsing

automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: Σ
pushdown alphabet: X

output alphabet: [p] (where p := |P |)
state set: omitted
transitions:

shift: shifting input symbols onto the pushdown
reduce: replacing the right-hand side of a production by its

left-hand side (= inverse expansion steps)

2 Remove nondeterminism by allowing lookahead on the input:
G ∈ LR(k) iff L(G) recognizable by deterministic bottom-up
parsing automaton with lookahead of k symbols
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Nondeterministic Bottom-Up Automaton I

Definition 10.4 (Nondeterministic bottom-up parsing automaton)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ. The nondeterministic bottom-up
parsing automaton of G, NBA(G), is defined by the following
components.

Input alphabet: Σ

Pushdown alphabet: X

Output alphabet: [p]

Configurations: Σ∗ ×X∗ × [p]∗ (top of pushdown to the right)

Transitions for w ∈ Σ∗, α ∈ X∗, and z ∈ [p]∗:

shifting steps: (aw,α, z) ` (w,αa, z) if a ∈ Σ
reduction steps: (w,αβ, z) ` (w,αA, zi) if πi = A→ β

Initial configuration for w ∈ Σ∗: (w, ε, ε)

Final configurations: {ε} × {S} × [p]∗
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Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)
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Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε )
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Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
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Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε )
` ( a)*b, ( , ε )
` ( )*b, (a , ε )
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Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε )
` ( a)*b, ( , ε )
` ( )*b, (a , ε )
` ( )*b, (F , 6 )
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Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε )
` ( a)*b, ( , ε )
` ( )*b, (a , ε )
` ( )*b, (F , 6 )
` ( )*b, (T , 64 )
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Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε )
` ( a)*b, ( , ε )
` ( )*b, (a , ε )
` ( )*b, (F , 6 )
` ( )*b, (T , 64 )
` ( )*b, (E , 642 )
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Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε )
` ( a)*b, ( , ε )
` ( )*b, (a , ε )
` ( )*b, (F , 6 )
` ( )*b, (T , 64 )
` ( )*b, (E , 642 )
` ( *b, (E) , 642 )
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Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε )
` ( a)*b, ( , ε )
` ( )*b, (a , ε )
` ( )*b, (F , 6 )
` ( )*b, (T , 64 )
` ( )*b, (E , 642 )
` ( *b, (E) , 642 )
` ( *b, F , 6425 )
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Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε )
` ( a)*b, ( , ε )
` ( )*b, (a , ε )
` ( )*b, (F , 6 )
` ( )*b, (T , 64 )
` ( )*b, (E , 642 )
` ( *b, (E) , 642 )
` ( *b, F , 6425 )
` ( *b, T , 64254 )
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Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε )
` ( a)*b, ( , ε )
` ( )*b, (a , ε )
` ( )*b, (F , 6 )
` ( )*b, (T , 64 )
` ( )*b, (E , 642 )
` ( *b, (E) , 642 )
` ( *b, F , 6425 )
` ( *b, T , 64254 )
` ( b, T* , 64254 )
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Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε )
` ( a)*b, ( , ε )
` ( )*b, (a , ε )
` ( )*b, (F , 6 )
` ( )*b, (T , 64 )
` ( )*b, (E , 642 )
` ( *b, (E) , 642 )
` ( *b, F , 6425 )
` ( *b, T , 64254 )
` ( b, T* , 64254 )
` ( ε, T*b , 64254 )
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Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε )
` ( a)*b, ( , ε )
` ( )*b, (a , ε )
` ( )*b, (F , 6 )
` ( )*b, (T , 64 )
` ( )*b, (E , 642 )
` ( *b, (E) , 642 )
` ( *b, F , 6425 )
` ( *b, T , 64254 )
` ( b, T* , 64254 )
` ( ε, T*b , 64254 )
` ( ε, T*F, 642547 )
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Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε )
` ( a)*b, ( , ε )
` ( )*b, (a , ε )
` ( )*b, (F , 6 )
` ( )*b, (T , 64 )
` ( )*b, (E , 642 )
` ( *b, (E) , 642 )
` ( *b, F , 6425 )
` ( *b, T , 64254 )
` ( b, T* , 64254 )
` ( ε, T*b , 64254 )
` ( ε, T*F, 642547 )
` ( ε, T , 6425473 )
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Nondeterministic Bottom-Up Automaton II

Example 10.5

Grammar for
arithmetic expressions
(cf. Example 7.3):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε )
` ( a)*b, ( , ε )
` ( )*b, (a , ε )
` ( )*b, (F , 6 )
` ( )*b, (T , 64 )
` ( )*b, (E , 642 )
` ( *b, (E) , 642 )
` ( *b, F , 6425 )
` ( *b, T , 64254 )
` ( b, T* , 64254 )
` ( ε, T*b , 64254 )
` ( ε, T*F, 642547 )
` ( ε, T , 6425473 )
` ( ε, E , 64254732)

Compiler Construction Winter semester 2010/11 11



Correctness of NBA(G)

Theorem 10.6 (Correctness of NBA(G))

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ and NBA(G) as before. Then, for every
w ∈ Σ∗ and z ∈ [p]∗,

(w, ε, ε) `∗ (ε, S, z) iff ←−z is a rightmost analysis of w
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Correctness of NBA(G)

Theorem 10.6 (Correctness of NBA(G))

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ and NBA(G) as before. Then, for every
w ∈ Σ∗ and z ∈ [p]∗,

(w, ε, ε) `∗ (ε, S, z) iff ←−z is a rightmost analysis of w

Proof.

similar to the top-down case (Theorem 7.7)
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Nondeterminisn in NBA(G)

Remark: NBA(G) is generally nondeterministic

Shift or reduce? Example:

(bw, αa, z) `

{
(w,αab, z)
(bw, αA, zi)

if πi = A→ a
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Nondeterminisn in NBA(G)

Remark: NBA(G) is generally nondeterministic

Shift or reduce? Example:

(bw, αa, z) `

{
(w,αab, z)
(bw, αA, zi)

if πi = A→ a

If reduce: which “handle” β? Example:

(w,αab, z) `

{
(w,αA, zi)
(w,αaB, zj)

if πi = A→ ab and πj = B → b
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Nondeterminisn in NBA(G)

Remark: NBA(G) is generally nondeterministic

Shift or reduce? Example:

(bw, αa, z) `

{
(w,αab, z)
(bw, αA, zi)

if πi = A→ a

If reduce: which “handle” β? Example:

(w,αab, z) `

{
(w,αA, zi)
(w,αaB, zj)

if πi = A→ ab and πj = B → b

If reduce β: which left-hand side A? Example:

(w,αa, z) `

{
(w,αA, zi)
(w,αB, zj)

if πi = A→ a and πj = B → a
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Nondeterminisn in NBA(G)

Remark: NBA(G) is generally nondeterministic

Shift or reduce? Example:

(bw, αa, z) `

{
(w,αab, z)
(bw, αA, zi)

if πi = A→ a

If reduce: which “handle” β? Example:

(w,αab, z) `

{
(w,αA, zi)
(w,αaB, zj)

if πi = A→ ab and πj = B → b

If reduce β: which left-hand side A? Example:

(w,αa, z) `

{
(w,αA, zi)
(w,αB, zj)

if πi = A→ a and πj = B → a

When to terminate parsing? Example:

(ε, S, z)
︸ ︷︷ ︸

final

` (ε,A, zi) if πi = A→ S
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Resolving Termination Nondeterminism I

General assumption to avoid nondeterminism of last type:
every grammar is start separated

Definition 10.7 (Start separation)

A grammar G = 〈N,Σ, P, S〉 ∈ CFGΣ is called start separated if S only
occurs in productions of the form S → A where A 6= S.
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Resolving Termination Nondeterminism I

General assumption to avoid nondeterminism of last type:
every grammar is start separated

Definition 10.7 (Start separation)

A grammar G = 〈N,Σ, P, S〉 ∈ CFGΣ is called start separated if S only
occurs in productions of the form S → A where A 6= S.

Remarks:

Start separation always possible by adding S′ → S with new start
symbol S′

From now on consider only reduced grammars of this form
(π0 = S′ → S)
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Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to
terminate parsing?):

Lemma 10.8

If G ∈ CFGΣ is start separated, then no successor of a final
configuration (ε, S′, z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)
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Start separation removes last form of nondeterminism (when to
terminate parsing?):

Lemma 10.8

If G ∈ CFGΣ is start separated, then no successor of a final
configuration (ε, S′, z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Proof.

To (ε, S′, z), only reductions by ε-productions can be applied:
(ε, S′, z) ` (ε, S′A, zi) if πi = A→ ε
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Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (when to
terminate parsing?):

Lemma 10.8

If G ∈ CFGΣ is start separated, then no successor of a final
configuration (ε, S′, z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Proof.

To (ε, S′, z), only reductions by ε-productions can be applied:
(ε, S′, z) ` (ε, S′A, zi) if πi = A→ ε

Thereafter, only reductions by productions of the form
A0 → A1 . . . An (n ≥ 0) can be applied

Every resulting configuration is of the (non-final) form
(ε, S′B1 . . . Bk, z) where k ≥ 1
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Outline

1 Recursive-Descent Parsing

2 Bottom-Up Parsing

3 Nondeterministic Bottom-Up Parsing

4 LR(k) Grammars
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LR(k) Grammars I

Goal: resolve remaining nondeterminism of NBA(G) by supporting
lookahead of k ∈ N symbols on the input
=⇒ LR(k): reading of input from left to right with k-lookahead,

computing a rightmost analysis
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LR(k) Grammars I

Goal: resolve remaining nondeterminism of NBA(G) by supporting
lookahead of k ∈ N symbols on the input
=⇒ LR(k): reading of input from left to right with k-lookahead,

computing a rightmost analysis

Definition 10.9 (LR(k) grammar)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ be start separated and k ∈ N. Then G

has the LR(k) property (notation: G ∈ LR(k)) if for all rightmost
derivations of the form

S

{
⇒∗

r αAw ⇒r αβw
⇒∗

r γBx ⇒r αβy

such that firstk(w) = firstk(y), it follows that α = γ, A = B, and x = y.

Compiler Construction Winter semester 2010/11 17



LR(k) Grammars II

Remarks:

If G ∈ LR(k), then the reduction of αβw to αAw is already
determined by firstk(w).

Therefore NBA(G) in configuration (w,αβ, z) can decide to reduce
and how to reduce.
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LR(k) Grammars II

Remarks:

If G ∈ LR(k), then the reduction of αβw to αAw is already
determined by firstk(w).

Therefore NBA(G) in configuration (w,αβ, z) can decide to reduce
and how to reduce.

Computation of NBA(G) for S ⇒∗

r αAw ⇒r αβw:

(w′w, ε, ε) `∗ (w,αβ, z)
red i

` (w,αA, zi) ` . . .

where πi = A→ β
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LR(k) Grammars II

Remarks:

If G ∈ LR(k), then the reduction of αβw to αAw is already
determined by firstk(w).

Therefore NBA(G) in configuration (w,αβ, z) can decide to reduce
and how to reduce.

Computation of NBA(G) for S ⇒∗

r αAw ⇒r αβw:

(w′w, ε, ε) `∗ (w,αβ, z)
red i

` (w,αA, zi) ` . . .

where πi = A→ β

Computation of NBA(G) for S ⇒∗

r γBx⇒r αβy:

with direct reduction (y = x, αβ = γδ, πj = B → δ):

(y′y, ε, ε) `∗ (y, αβ, z′) = (x, γδ, z′)
red j

` (x, γB, z′j) ` . . .
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LR(k) Grammars II

Remarks:

If G ∈ LR(k), then the reduction of αβw to αAw is already
determined by firstk(w).

Therefore NBA(G) in configuration (w,αβ, z) can decide to reduce
and how to reduce.

Computation of NBA(G) for S ⇒∗

r αAw ⇒r αβw:

(w′w, ε, ε) `∗ (w,αβ, z)
red i

` (w,αA, zi) ` . . .

where πi = A→ β

Computation of NBA(G) for S ⇒∗

r γBx⇒r αβy:

with direct reduction (y = x, αβ = γδ, πj = B → δ):

(y′y, ε, ε) `∗ (y, αβ, z′) = (x, γδ, z′)
red j

` (x, γB, z′j) ` . . .

with previous shifts (y = x′x, αβx′ = γδ, πj = B → δ):
(y′y, ε, ε) `∗ (y, αβ, z′) = (x′x, αβ, z′)

shift

`
∗

(x, αβx′, z′) = (x, γδ, z′)
red j

` (x, γB, z′j) ` . . .
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