

Compiler Construction

Lecture 11: Syntactic Analysis VI ($LR(0)$ Parsing)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/cc10/>

Winter semester 2010/11

- 1 Repetition: Nondeterministic Bottom-Up Parsing
- 2 $LR(0)$ Grammars
- 3 $LR(0)$ Parsing

Definition (Nondeterministic bottom-up parsing automaton)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_\Sigma$. The **nondeterministic bottom-up parsing automaton** of G , $NBA(G)$, is defined by the following components.

- **Input alphabet:** Σ
- **Pushdown alphabet:** X
- **Output alphabet:** $[p]$
- **Configurations:** $\Sigma^* \times X^* \times [p]^*$ (top of pushdown to the right)
- **Transitions** for $w \in \Sigma^*$, $\alpha \in X^*$, and $z \in [p]^*$:
 - shifting steps: $(aw, \alpha, z) \vdash (w, \alpha a, z)$ if $a \in \Sigma$
 - reduction steps: $(w, \alpha\beta, z) \vdash (w, \alpha A, zi)$ if $\pi_i = A \rightarrow \beta$
- **Initial configuration** for $w \in \Sigma^*$: $(w, \varepsilon, \varepsilon)$
- **Final configurations**: $\{\varepsilon\} \times \{S\} \times [p]^*$

Remark: NBA(G) is generally **nondeterministic**

- Shift or reduce? Example:

$$(bw, \alpha a, z) \vdash \begin{cases} (w, \alpha ab, z) \\ (bw, \alpha A, zi) \end{cases} \text{ if } \pi_i = A \rightarrow a$$

- If reduce: **which “handle” β ?** Example:

$$(w, \alpha ab, z) \vdash \begin{cases} (w, \alpha A, zi) \\ (w, \alpha aB, zj) \end{cases} \text{ if } \pi_i = A \rightarrow ab \text{ and } \pi_j = B \rightarrow b$$

- If reduce β : **which left-hand side A ?** Example:

$$(w, \alpha a, z) \vdash \begin{cases} (w, \alpha A, zi) \\ (w, \alpha B, zj) \end{cases} \text{ if } \pi_i = A \rightarrow a \text{ and } \pi_j = B \rightarrow a$$

- When to terminate parsing? Example:

$$\underbrace{(\varepsilon, S, z)}_{\text{final}} \vdash (\varepsilon, A, zi) \text{ if } \pi_i = A \rightarrow S$$

- 1 Repetition: Nondeterministic Bottom-Up Parsing
- 2 $LR(0)$ Grammars
- 3 $LR(0)$ Parsing

The case $k = 0$ is relevant (in contrast to $LL(0)$): here the decision is just based on the contents of the pushdown, **without any lookahead**.

Corollary 11.1 ($LR(0)$ grammar)

$G \in CFG_{\Sigma}$ has the **$LR(0)$ property** if for all rightmost derivations of the form

$$S \left\{ \begin{array}{l} \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha \beta w \\ \Rightarrow_r^* \gamma Bx \Rightarrow_r \alpha \beta y \end{array} \right.$$

it follows that $\alpha = \gamma$, $A = B$, and $x = y$.

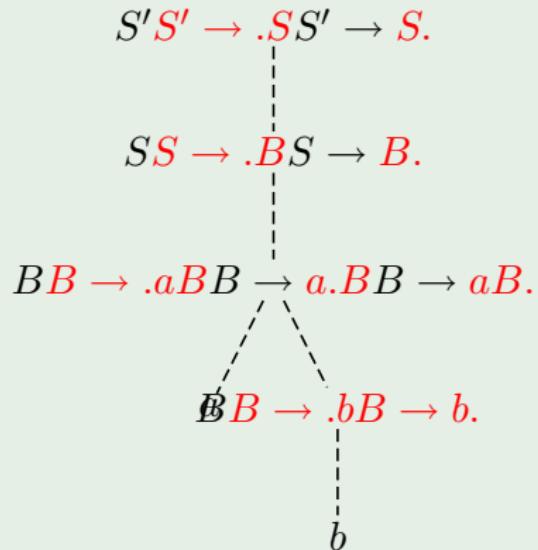
Goal: derive a **finite information** from the pushdown which suffices to resolve the nondeterminism (similar to abstraction of right context in LL parsing by fo-sets)

Example 11.2

$$\begin{array}{ll}
 G : & S' \rightarrow S \quad (1) \\
 & S \rightarrow B \mid C \quad (2, 3) \\
 & B \rightarrow aB \mid b \quad (4, 5) \\
 & C \rightarrow aC \mid c \quad (6, 7)
 \end{array}$$

NBA(G):

- $(ab, \varepsilon, \varepsilon)$
- $\vdash (b, a, \varepsilon)$
- $\vdash (\varepsilon, ab, \varepsilon)$
- $\vdash (\varepsilon, aB, 5)$
- $\vdash (\varepsilon, B, 54)$
- $\vdash (\varepsilon, S, 542)$
- $\vdash (\varepsilon, S', 5421)$



Definition 11.3 (LR(0) items and sets)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_\Sigma$ be start separated by $S' \rightarrow S$ and $S' \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha\beta_1\beta_2 w$ (i.e., $A \rightarrow \beta_1\beta_2 \in P$).

- $[A \rightarrow \beta_1 \cdot \beta_2]$ is called an **LR(0) item** for $\alpha\beta_1$.
- Given $\gamma \in X^*$, $LR(0)(\gamma)$ denotes the set of all $LR(0)$ items for γ , called the **LR(0) set** (or: **LR(0) information**) of γ .
- $LR(0)(G) := \{LR(0)(\gamma) \mid \gamma \in X^*\}$.

Corollary 11.4

- ① For every $\gamma \in X^*$, $LR(0)(\gamma)$ is finite.
- ② $LR(0)(G)$ is finite.
- ③ The item $[A \rightarrow \beta \cdot] \in LR(0)(\gamma)$ indicates the possible **reduction** $(w, \alpha\beta, z) \vdash (w, \alpha A, zi)$ where $\pi_i = A \rightarrow \beta$ and $\gamma = \alpha\beta$.
- ④ The item $[A \rightarrow \beta_1 \cdot Y\beta_2] \in LR(0)(\gamma)$ indicates an incomplete handle β_1 (to be completed by **shift** operations or ε -reductions).

Definition 11.5 (LR(0) conflicts)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_\Sigma$ and $I \in LR(0)(G)$.

- I has a **shift/reduce conflict** if there exist $A \rightarrow \alpha_1 a \alpha_2, B \rightarrow \beta \in P$ such that

$$[A \rightarrow \alpha_1 \cdot a \alpha_2], [B \rightarrow \beta \cdot] \in I.$$

- I has a **reduce/reduce conflict** if there exist $A \rightarrow \alpha, B \rightarrow \beta \in P$ with $A \neq B$ or $\alpha \neq \beta$ such that

$$[A \rightarrow \alpha \cdot], [B \rightarrow \beta \cdot] \in I.$$

Lemma 11.6

$G \in LR(0)$ iff no $I \in LR(0)(G)$ contains conflicting items.

Proof.

omitted

Theorem 11.7 (Computing $LR(0)$ sets)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_\Sigma$ be start separated by $S' \rightarrow S$ and reduced.

- ① $LR(0)(\varepsilon)$ is the least set such that
 - $[S' \rightarrow \cdot S] \in LR(0)(\varepsilon)$ and
 - if $[A \rightarrow \cdot B\gamma] \in LR(0)(\varepsilon)$ and $B \rightarrow \beta \in P$,
then $[B \rightarrow \cdot \beta] \in LR(0)(\varepsilon)$.
- ② $LR(0)(\alpha Y)$ ($\alpha \in X^*$, $Y \in X$) is the least set such that
 - if $[A \rightarrow \gamma_1 \cdot Y\gamma_2] \in LR(0)(\alpha)$,
then $[A \rightarrow \gamma_1 Y \cdot \gamma_2] \in LR(0)(\alpha Y)$ and
 - if $[A \rightarrow \gamma_1 \cdot B\gamma_2] \in LR(0)(\alpha Y)$ and $B \rightarrow \beta \in P$,
then $[B \rightarrow \cdot \beta] \in LR(0)(\alpha Y)$.

Computing $LR(0)$ Sets II

Example 11.8 (cf. Example 11.2)

$$\begin{array}{ll} G : & S' \rightarrow S \\ & S \rightarrow B \mid C \\ & B \rightarrow aB \mid b \\ & C \rightarrow aC \mid c \end{array} \quad [S' \rightarrow \cdot S] \in$$

$$LR(0)(\varepsilon) \quad [A \rightarrow \cdot B\gamma] \in LR(0)(\varepsilon), B \rightarrow \beta \in P \quad [A \rightarrow \gamma_1 \cdot Y\gamma_2] \in LR(0)(\alpha) \\ \implies [B \rightarrow \cdot \beta] \in LR(0)(\varepsilon) \quad \implies [A \rightarrow \gamma_1 Y \cdot \gamma_2] \in LR(0)(\alpha Y)$$

$$I_0 := LR(0)(\varepsilon) : \quad [S' \rightarrow \cdot S] \quad [S \rightarrow \cdot B] \quad [S \rightarrow \cdot C] \quad [B \rightarrow \cdot aB]$$
$$\quad [B \rightarrow \cdot b] \quad [C \rightarrow \cdot aC] \quad [C \rightarrow \cdot c]$$

$$I_1 := LR(0)(S) : \quad [S' \rightarrow S \cdot]$$

$$I_2 := LR(0)(B) : \quad [S \rightarrow B \cdot]$$

$$I_3 := LR(0)(C) : \quad [S \rightarrow C \cdot]$$

$$I_4 := LR(0)(a) : \quad [B \rightarrow a \cdot B] \quad [C \rightarrow a \cdot C] \quad [B \rightarrow \cdot aB] \quad [B \rightarrow \cdot b]$$
$$\quad [C \rightarrow \cdot aC] \quad [C \rightarrow \cdot c]$$

$$I_5 := LR(0)(b) : \quad [B \rightarrow b \cdot]$$

$$I_6 := LR(0)(c) : \quad [C \rightarrow c \cdot]$$

$$I_7 := LR(0)(aB) : \quad [B \rightarrow aB \cdot]$$

$$I_8 := LR(0)(aC) : \quad [C \rightarrow aC \cdot]$$

$$(LR(0)(aa) = LR(0)(a) = I_4, LR(0)(ab) = LR(0)(b) = I_5,$$

$$LR(0)(ac) = LR(0)(c) = I_6, I_0 := LR(0)(\gamma) = \emptyset \text{ in all remaining cases})$$

- 1 Repetition: Nondeterministic Bottom-Up Parsing
- 2 $LR(0)$ Grammars
- 3 $LR(0)$ Parsing

Observation: if $G \in LR(0)$, then $LR(0)(\gamma)$ yields **deterministic shift/reduce decision** for $NBA(G)$ in a configuration with pushdown γ
 \implies new pushdown alphabet: $LR(0)(G)$ in place of X

Moreover $LR(0)(\gamma Y)$ is determined by $LR(0)(\gamma)$ and Y but **independent from γ** in the following sense:

$$LR(0)(\gamma) = LR(0)(\gamma') \implies LR(0)(\gamma Y) = LR(0)(\gamma' Y)$$

Definition 11.9 ($LR(0)$ goto function)

The function $\text{goto} : LR(0)(G) \times X \rightarrow LR(0)(G)$ is determined by

$$\text{goto}(I, Y) = I' \quad \text{iff} \quad \begin{array}{l} \text{there exists } \gamma \in X^* \text{ such that} \\ I = LR(0)(\gamma) \text{ and } I' = LR(0)(\gamma Y). \end{array}$$

The goto Function II

Example 11.10 (cf. Example 11.8)

$I_0 := LR(0)(\varepsilon) :$	$[S' \rightarrow \cdot S]$						
	$[S \rightarrow \cdot B]$	$[S \rightarrow \cdot C]$					
	$[B \rightarrow \cdot aB]$	$[B \rightarrow \cdot b]$					
	$[C \rightarrow \cdot aC]$	$[C \rightarrow \cdot c]$					
$I_1 := LR(0)(S) :$	$[S' \rightarrow S \cdot]$						
$I_2 := LR(0)(B) :$	$[S \rightarrow B \cdot]$						
$I_3 := LR(0)(C) :$	$[S \rightarrow C \cdot]$						
$I_4 := LR(0)(a) :$	$[B \rightarrow a \cdot B]$	$[C \rightarrow a \cdot C]$					
	$[B \rightarrow \cdot aB]$	$[B \rightarrow \cdot b]$					
	$[C \rightarrow \cdot aC]$	$[C \rightarrow \cdot c]$					
$I_5 := LR(0)(b) :$	$[B \rightarrow b \cdot]$						
$I_6 := LR(0)(c) :$	$[C \rightarrow c \cdot]$						
$I_7 := LR(0)(aB) :$	$[B \rightarrow aB \cdot]$						
$I_8 := LR(0)(aC) :$	$[C \rightarrow aC \cdot]$						
$I_9 := \emptyset$							

goto	S	B	C	a	b	c
I_0	I_1	I_2	I_3	I_4	I_5	I_6
I_1						
I_2						
I_3						
I_4				I_7	I_8	I_4
I_5				I_5	I_6	I_6
I_6						
I_7						
I_8						
I_9						

(empty = I_9)

The goto Function III

Example 11.10 (continued)

Representation of goto function as finite automaton:

