Compiler Construction

Lecture 12: Syntactic Analysis VII (SLR(1) Parsing)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

© Repetition: LR(0) Parsing

Rm Compiler Construction ter semester 2010/11

LR(0) Items and Sets

Definition (LR(0) items and sets)

Let G = (N, X, P,S) € CFGsx, be start separated by S” — S and
S' =% aAw =, af1fow (i.e., A — (152 € P).
o [A— (-] is called an LR(0) item for af;.
o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of ~.
o LR(0)(G) :={LR(0)(y) | v € X"}.

Corollary

Q For every v € X*, LR(0)(v) is finite.

Q@ LR(0)(G) is finite.

@Q The item [A — (] € LR(0)(~y) indicates the possible reduction
(w,af,2) F (w,ad, zi) where m; = A — [and v = af.

Q The item [A — (1 - Y B2] € LR(0)(v) indicates an incomplete
handle 1 (to be completed by shift operations or e-reductions).

m Compiler Construction

Winter semester 2010/11

LR(0) Conflicts
Definition (LR(0) conflicts)

Let G = (N,X, P,S) € CFGx, and I € LR(0)(G).

@ [has a shift/reduce conflict if there exist A — ajaae, B — 3 € P
such that
[A — a1 -aas],[B— B] €.

@ [has a reduce/reduce conflict if there exist A > a,B — 3 € P
with A # B or a # (3 such that

[A - a],[B— 3] €l

G € LR(0) iff no I € LR(0)(G) contains conflicting items.

omitted O
RWNTH

Compiler Construction Winter semester 2010/11 4

Computing LR(0) Sets I

Theorem (Computing LR(0) sets)

Let G = (N, X, P,S) € CFGy, be start separated by S" — S and
reduced.
QO LR(0)(e) is the least set such that
o [S" — -S| € LR(0)(¢) and
o if [A— -By] € LR(0)(¢) and B — (3 € P,
then [B — -0] € LR(0)(e).
Q LR(0)(aY) (e € X*,Y € X) is the least set such that
o if [A =71 - Y] € LR(0)(),
then [A — 7Y - y2] € LR(0)(aY) and
o if [A — v - By € LR(0)(aY) and B — € P,
then [B — -f] € LR(0)(aY).

m Compiler Construction Winter semester 2010/11

Computing LR(0) Sets II

Example (cf. Example 11.2)

G: §'—5
S - B|C
B —aB|b
C —aC|c

m Compiler Construction Winter semester 2010/11 6

Computing LR(0) Sets II

Example (cf. Example 11.2)

G: §'—5
S - B|C
B —aB|b
C —aC|c

Io:= LR(0O)(e): [S' — -S]

[S" — -S] € LR(0)(e)

m Compiler Construction Winter semester 2010/11 6

Computing LR(0) Sets II

Example (cf. Example 11.2)

G: §—=S
S —-B|C [A — -By] € LR(0)(¢),B — € P
B —aB|b — [B — 8] € LR(0)(g)
C —aC|c

Io:==LRO)e): [$'—-8] [S— B

Computing LR(0) Sets II

Example (cf. Example 11.2)

G: §—=S
S —-B|C [A — -By] € LR(0)(¢),B — € P
B —aB|b — [B — 8] € LR(0)(g)
C —aC|c

Ip==LRO)e): [S'—-8] [S—-B] [S—C]

Computing LR(0) Sets II

Example (cf. Example 11.2)

G: §—=S
S —-B|C [A — -By] € LR(0)(¢),B — € P
B —aB|b — [B — 0] € LR(0)(¢)
C —aC|c
Iy := LR(0)(e) : [S" — 9] [S — -B] [S—C] [B— -aB]

(B — -b]

Computing LR(0) Sets II

Example (cf. Example 11.2)

G: §—8
S —-B|C [A — -By] € LR(0)(¢),B — € P
B —aB|b — [B — 0] € LR(0)(¢)
C —aC|c
Iy := LR(0)(e) : [— -5] [S — -B] [S—-C] [B— -aB]

[B — -b] [C —-aC] [C—]

Computing LR(0) Sets II

Example (cf. Example 11.2)

G: §—=S
S —-B|C [A— 7 - Yy2] € LR(0)()
B —aB|b = [A— 1Y -] € LR(0)(aY)
C —aC|c
Iy := LR(0)(e): [— 5] [S — -B] [S—-C] [B— -aB]

[B — -b] [C —-aC] [C—]
I :=LR(0)(S): [5" — 5]

Computing LR(0) Sets II

Example (cf. Example 11.2)

G: §—=S
S —-B|C [A— v1 Y] € LR(0)()
B —aB|b = [A— 1Y -] € LR(0)(aY)
C —aC|c

Iy := LR(0)(e) : [— -5] [S — -B] [S—-C] [B— -aB]
[B — -b] [C —-aC] [C—
I == LR(0)(S) : {

I, ;== LR(0)(B) :

S’ — S
S — B

m Compiler Construction Winter semester 2010/11 6

Computing LR(0) Sets II

Example (cf. Example 11.2)

G: §—=S
S —-B|C [A— v1 Y] € LR(0)()
B —aB|b = [A— 1Y -] € LR(0)(aY)
C —aC|c

S' — -S| [S — -B] [S—-C] [B— -aB]
B — -b] [C —-aC] [C—]

Iy := LR(0)(S) :
I :== LR(0)(B) : [S— B]
I = LR(0)(C): [S— C]

m Compiler Construction Winter semester 2010/11 6

Computing LR(0) Sets II

Example (cf. Example 11.2)

G: §—8
S —-B|C [A— v1 Y] € LR(0)()
B —aB|b = [A— 1Y -] € LR(0)(aY)
C —aC|c
Iy := LR(0)(e) [S" — -S] [S — -B] [S—-C] [B— -aB]
[B — -b] [C—-aC] [C—]
I := LR(0)(S): [9'— 5]
I == LR(0)(B): |S — B/]
I3:= LR(0)(C): [S—C']
I, := LR(0)(a) : [B—a-B] [C—a-C]

Computing LR(0) Sets II

Example (cf. Example 11.2)

“B] [C—a-C] [B—-aB] [B—]

Computing LR(0) Sets II

Example (cf. Example 11.2)

I := LR(0)(S) : S’ — S
I == LR(0)(B) : |[S — B/]
I3 := LR(0)(C): [S—C]
I, := LR(0)(a) : B—a-B] [C—a-C] [B—-aB] [B— b

C—-aC] [C—

m Compiler Construction Winter semester 2010/11 6

Computing LR(0) Sets II

Example (cf. Example 11.2)

G: §—=S
S —-B|C [A— v1 Y] € LR(0)()
B —aB|b = [A— 1Y -] € LR(0)(aY)
C —aC|c
= LRO)O): [S'—-5) [S—-B] [$—-C]
B — -b] [C —-aC] [C—]
I := LR(0)(S): [S'— 5]
I == LR(0)(B) : |[S — B/]
I3 := LR(0)(C): [S—C
Iy ;== LR(0)(a) : B—a-B] [C—a-C] [B— -aB]
C—-aC] [C—
I5 := LR(0)(D) : B — b]

Compiler Construction

Winter semester 2010/11

[B — -aB]

[B — -b]

6

Computing LR(0) Sets II

Example (cf. Example 11.2)

S - B|C
B —aB|b
C —aC|c
Iy := LR(0)(e) S’ — 9]
B — -b]
I := LR(0)(S): [S'— 5]
I == LR(0)(B): |[S — B/]
I3 := LR(0)(C): [S—C]
I, := LR(0)(a) : B — a- B]
C — -aC)|
I5 := LR(0)(D) : B — b]
Is := LR(0)(c) : C — c]

[S — -B]
[C — -aC)]

[C—a-C]
[C—]

[A— 71 - Y] € LR(0)(c)
= [A— 1Y -] € LR(0)(aY)

[S — -C]
0= d

[B — -aB]

[B — -aB]

[B — -b]

Computing LR(0) Sets II

Example (cf. Example 11.2)

S - B|C
B —aB|b
C —aC|c
Iy := LR(0)(e) S’ — 9]
B — -b]
I := LR(0)(S): [9'— 5]
I == LR(0)(B) : |[S — B/]
I3 := LR(0)(C): [S— C]
I, := LR(0)(a) : B — a- B]
C — -aC)]
I5 := LR(0)(D) : B — b]
Is := LR(0)(c) : C — ¢
Ir := LR(0)(aB) : [B — aB']

[S — -B]
[C — -aC)]

[C—a-C]
[C—]

[A— 71 - Y] € LR(0)(c)
= [A— 1Y -] € LR(0)(aY)

[S — (]
(e

[B — -aB]

[B — -aB]

[B — -b]

Computing LR(0) Sets II

Example (cf. Example 11.2)

S - B|C
B —aB|b
C —aC|c
Iy := LR(0)(e) S’ — 9]
B — -b]
I := LR(0)(S): [9'— 5]
I == LR(0)(B) : |[S — B/]
I3 := LR(0)(C): [S—C]
I, := LR(0)(a) : B — a- B]
C — -aC)]
I5 := LR(0)(D) : B — b']
Is := LR(0)(c) : C — ¢
I; := LR(0)(aB) : [B — aB]
I := LR(0)(aC) : [C — aC"]

[S — -B]
[C — -aC)]

[C—a-C]
[C—]

[A— 71 - Y] € LR(0)(c)
= [A— 1Y -] € LR(0)(aY)

[S — (]
(e

[B — -aB]

[B — -aB]

[B — -b]

Computing LR(0) Sets II

Example (cf. Example 11.2)

Iy := LR(0)(e) S — -S| [S — -B]
B — -b] [C — -aC]
I := LR(0)(S): [9'— S]]
I == LR(0)(B) : |S — B/]
I3 := LR(0)(C): [S— C]
I, := LR(0)(a) : B—a-B] [C—a-C]
C—-aC] [C—
I := LR(0)(D) : B — b]
Is := LR(0)(c) : C — ¢
I; := LR(0)(aB) : [B — aB]
Is := LR(0)(aC) : [C — aC'"]
(LR(0)(aa) = LR(0)(a) = Is, LR(0)(ab) = LR
LR(0)(ac) = LR(0)(c) = Is, Iy := LR(0)(y) =

[S — (]
€= d

[B — -aB]

(0)(b) = I,
all remaining cases)

0 in

[B — -aB]

[B — -b]

Computing LR(0) Sets II

Example (cf. Example 11.2)

Iy := LR(0)(e) S — -S| [S — -B]
B — -b] [C — -aC]

I := LR(0)(S): [9'— S]]

I == LR(0)(B) : |S — B/]

I3 := LR(0)(C): [S— C]

I, := LR(0)(a) : B—a-B] [C—a-C]
C—-aC] [C—

I := LR(0)(D) : B — b]

Is := LR(0)(c) : C — ¢

I; := LR(0)(aB) : [B — aB]

Is := LR(0)(aC) : [C — aC'"]

(LR(0)(aa) = LE(0)(a) = I, LR(0)(ab) = LR

LR(0)(ac) = LR(0)(c) = Is, Ty := LR(0)(7) =
no conflicts = G € LR(0)

[S — (] [B — -aB]
[C—]

[B— -aB] [B— -b]
(b) = Is,

—_—.—

in all remaining cases)

The goto Function

Example (continued)

Representation of goto funtion as finite automaton:

S = 8|n

[$" — -S]
B[= Blle—1s = 2 5 2 s el
[C — -aC] [C — -]

a
Is|[B — b . v LI o [C—c]|ls

I7 [B — aB]

© Examples of LR(0) Conflicts

Rm Compiler Construction ter semester 2010/11

Reduce/Reduce Conflicts
Example 12.1

G: 8-S
S — Aa| Bb
A —a
B —a

Compiler Construction Winter semester 2010/11 9

Reduce/Reduce Conflicts
Example 12.1

G: =S

S — Aa| Bb

A —a

B —a
LR(0)(e): [S"—-S] [S—-Aad] [S—-Bb] [A—-a] [B— -q
LR(0)(S): [S'— 5
LR(0)(A): [S— A-d]
LR(0)(B): [S— B-d]
LR(0)(a): [A—a] [B — a]
LR(0)(Aa): [S — Aa‘]
LR(0)(Ba): [S — Ba

Compiler Construction Winter semester 2010/11 9

Reduce/Reduce Conflicts
Example 12.1

G: 8-S
S — Aa| Bb
A —a
B —a

e): [9—-S] [S—-Ad] [S— -Bb] [A—-a] [B— -q]
S): [§— 9]

A): [S— A-d

B): [S— B-d]

a): [A—a] [B — a]

Aa): [S — Aa‘]

Ba) : [S — Ba]

Note: G is unambiguous

Compiler Construction Winter semester 2010/11 9

Shift /Reduce Conflicts

Example 12.2

G: -8
S —aS|a

Compiler Construction Winter semester 2010/11 10

Shift /Reduce Conflicts

Example 12.2

G: -8

S —aS|a
LR(O)(e&): [—-S] [S—-aS] [S—
LR(0)(S): [§' — S
LR(0)(a): [S—a-S] [S—-aS] [S—-a] [S—a]
LR(0)(aS): [S — aS]

Compiler Construction Winter semester 2010/11 10

Shift /Reduce Conflicts

Example 12.2

G: -8
S —aS|a

e): [§9—=-S] [S—-aS] [S— -q]

[S—a -iS] [S—-aS] [S—-d [S— a]

Note: G is unambiguous

Compiler Construction Winter semester 2010/11 10

© The LR(0) Parsing Automaton

Rm Compiler Construction ter semester 2010/11 11

The LR(0) Action Function

The automaton will be defined using another table, the action
function, which determines the shift /reduce decision.
(Reminder: my = 5" — 5)

Rm Compiler Construction Winter semester 2010/11 12

The LR(0) Action Function

The automaton will be defined using another table, the action
function, which determines the shift/reduce decision.
(Reminder: my = 5" — 5)

Definition 12.3 (LR(0) action function)

The LR(0) action function

act : LR(0)(G) — {redi | i € [p]} U {shift, accept, error}
is defined by
redi ifm=A—aand[A—a]el (i#0)
shift if [A— a1 -aag] €1
accept if [§'— S| el
error if I =10

act(I) :=

m Compiler Construction Winter semester 2010/11 12

The LR(0) Action Function

The automaton will be defined using another table, the action
function, which determines the shift/reduce decision.
(Reminder: my = 5" — 5)

Definition 12.3 (LR(0) action function)

The LR(0) action function

act : LR(0)(G) — {redi | i € [p]} U {shift, accept, error}
is defined by
redi ifm=A—aand[A—a]el (i#0)
shift if [A— a1 -aag] €1
accept if [§'— S| el
error if I =10

act(I) :=

For every G € CFGyx, G € LR(0) iff act is well defined.

m Compiler Construction Winter semester 2010/11 12

The LR(0) Action Function

The automaton will be defined using another table, the action
function, which determines the shift/reduce decision.
(Reminder: my = 5" — 5)

Definition 12.3 (LR(0) action function)

The LR(0) action function

act : LR(0)(G) — {redi | i € [p]} U {shift, accept, error}
is defined by
redi ifm=A—aand[A—a]el (i#0)
shift if [A— a1 -aag] €1
accept if [§'— S| el
error if I =10

act(I) :=

For every G € CFGyx, G € LR(0) iff act is well defined.

Together, act and goto form the LR(0) parsing table of G.

m Compiler Construction Winter semester 2010/11 12

The LR(0) Parsing Table

Example 12.5 (cf. Example 11.10)

S - B|C (1,2 ,
B —>aB| |b E3,4§ Io = LR(0)(e) : g —>§‘] ‘o
C —aClc (56) B:-.ag] {B:-.b]]
C — -aC] [C—]
I ;== LR(0O)(S): [S' — S
I, := LR(0)(B): [S— B
Is .= LR(0)(C) : [S— C]
I, := LR(0)(a): [B—a-B][C—a-C]
B — -aB] [B — b]
C — -aC] [C—]
Is := LR(0)(b) : [B — b/
Is .= LR(0)(c) : [C — ¢]
I; .= LR(0)(aB) : [B — aB]
Is := LR(0)(aC) : [C — aC"]
Ig = @

m Compiler Construction Winter semester 2010/11 13

The LR(0) Parsing Table

Example 12.5 (cf. Example 11.10)

G: § -8 (0)
S —- B | C (1,2 /
B aB|b (34) Io :== LR(0)(e) : g:g}] S - €]
C —aClc (5,6) B—>~aB] [B—>~b]
C —-aC] [C—-c
LRO)(G)] act goto I == LR(0)(S) : [$" — S-]] []
_ S BC ab c| p.— LR(0)(B): [S — B
To shift |1 Ip Is Ia Is Te| ,.— LR(0)(C): [S— C]
I |accept Is:= LR(0)(a): [B—a-B][C—a-C]
? rej% B —-aB] [B — -b]
3 red C—.aC] [C—-
n shift I7 Is Iy Is Ie Is := LR(0O)(b) : [B — b(%] . o
Is red 4 Is :== LR(0)(c): [C — c]
-[6 red 6 17 o= LR(O)((LB) :|B — CLB]
I red 3 Is := LR(O)(QC) : OHUJC]
-[8 red 5 Ig = @
Iy error
(empty = Io)

m Compiler Construction Winter semester 2010/11 13

The LR(0) Parsing Automaton I

Definition 12.6 (LR(0) parsing automaton)

Let G = (N,X, P,S) € LR(0). The (deterministic) LR(0) parsing automaton
of G is defined by the following components.

@ Input alphabet ¥

o Pushdown alphabet I' := LR(0)(G)

@ Output alphabet A := [p] U {0, error}

@ Configurations X* x I'* x A*

@ Initial configuration (w, Iy, &) where Iy := LR(0)(¢)
@ Final configurations {e} x {e} x A*

@ Transitions:

shift: (aw,al,z) b (w,all’, 2) if act(I) = shift and goto(I,a) = I’
reduce: (w,all ... IL,,2) ¢ (w,all’, zi) if act(I,) = red,
m=A—Y...Y,, and goto(I,A) =TI’
accept: (g,1p1,2) F (g,g,20) if act(l) = accept
error: (w,al, z) F (e,€, zerror) if act() = error

m Compiler Construction Winter semester 2010/11

The LR(0) Parsing Automaton II

Example 12.7 (cf. Example 12.5)

LR(0)(G)]| act goto
S BC a b c
Iy shift |1 Iy I3 Iy I5 Ig
I accept
I red 1
I3 red 2
1 shift I; Ig 1y Is Ig
I red 4
I red 6
I red 3
Ig red 5
Iy error
(empty = Ig

Compiler Construction Winter semester 2010/11 15

The LR(0) Parsing Automaton II

Example 12.7 (cf. Example 12.5)

G: 8-S (0) : .
s - B|C (1,2) LR(0) parsing of aac:
B —aB|b (3,4) (aac, Iy €)
C —aClc (5,6)
LR(0)(G)]| act goto
S BC ab c
Iy shift |1 Iy I3 Iy Is Ig
I accept
I red 1
I3 red 2
1 shift I; Ig 1y Is Ig
I red 4
I red 6
I red 3
Ig red 5
Iy error
(empty = I

Compiler Construction Winter semester 2010/11 15

The LR(0) Parsing Automaton II

Example 12.7 (cf. Example 12.5)

G: 8-S (0) : .
s - B|C (1,2) LR(0) parsing of aac:
B —aB|b (3,4) (aac, Iy e)
C —aClec (5,6) F(ac loly e)
LR(0)(G)]| act goto
S BC ab c
Iy shift |1 Iy I3 Iy I5 Ig
I accept
I red 1
I3 red 2
1 shift I; Ig Iy Is Ig
I red 4
I red 6
I red 3
Ig red 5
Iy error
(empty = I

Compiler Construction Winter semester 2010/11

The LR(0) Parsing Automaton II

Example 12.7 (cf. Example 12.5)

G: 8-S (0) : .
s - B|C (1,2) LR(0) parsing of aac:
B —aB|b (3,4) (aac, Iy €)
C —aClec (5,6) F(ac lols e)
(e Iolyly ;e)
LR(0)(G)]| act goto
S BC ab c
Iy shift |1 Iy I3 Iy I5 Ig
I accept
I red 1
I3 red 2
1 shift I; Ig 1y Is Ig
I red 4
I red 6
I red 3
Ig red 5
Iy error
(empty = Ig

Compiler Construction Winter semester 2010/11

The LR(0) Parsing Automaton II

Example 12.7 (cf. Example 12.5)

G: 8-S (0) : .
s - B|C (1,2) LR(0) parsing of aac:
B —aB|b (3,4) (aac, Iy €)
C —aC|c (5,6) E(ac Iols ¢)
(e Iolydly e)
LR(0)(G) | act goto (e Iolilyls, e)
S BC ab c
Iy shift |1 Iy I3 Iy I5 Ig
I accept
I red 1
I3 red 2
1 shift I; Ig Iy Is Ig
I red 4
I red 6
I red 3
Ig red 5
Iy error
(empty = Ig

Compiler Construction Winter semester 2010/11 15

The LR(0) Parsing Automaton II

Example 12.7 (cf. Example 12.5)

G: -8 (0) : .
s SBlC (12 LR(0) parsing of aac:
B —aB|b (3,4) (aac, Lo e)
C —aCle (56) Lbeabl e
F(¢ Iolyly ¢)
LR(0)(G)]| act goto F (e, Iolylyls, €)
S BCab cl v (glLLk6)
Iy shift | I, Is Iy I5 Ig
L accept
Iy red 1
I3 red 2
1, shift I; Iy Iy I5 Ig
I red 4
I red 6
I red 3
Ig red 5
Iy error
(empty = Iy

Compiler Construction Winter semester 2010/11 15

The LR(0) Parsing Automaton II

Example 12.7 (cf. Example 12.5)

G: -8 (0) : .
s SBlC (12 LR(0) parsing of aac:
B —aB|b (3,4) (aac, Lo e)
C —aCle (56) Lbeabl e
F(¢ Iolyly ¢)
LR(0)(G)]| act goto F (e, Iolylyls, €)
S BCab cl v (gLk 6)
Iy shift [I} Iy I3 I I5 Ig ()
I accept (& Ioluls ,65)
Iy red 1
I3 red 2
1, shift I; Is Iy I5 Ig
I red 4
I red 6
I red 3
Ig red 5
Iy error
(empty = Iy

Compiler Construction Winter semester 2010/11 15

The LR(0) Parsing Automaton II

Example 12.7 (cf. Example 12.5)

G: §—-8 (0) i :
s ZBlC (12 LR(0) parsing of aac:
B —aB|b (3.4) (aac, Iy , €)
C—>CLC‘C (5,6) F (CLC,I()I4 5 €)
F(¢ Iolyly ¢)
LR(0)(G)]| act goto F (e, Iolylyls, €)
SBCalb c I—(e, IoIsluls, 6)
I shift |11 Iy I3 Iy I5 Ig (*)
I accept F(e loluls ,65)
I red 1 E(e lols , 655)
I red 2
1, shift I; Is Iy I5 Ig
I red 4
I red 6
17 red 3
Ig red 5
Iy error
(empty = Iy

Compiler Construction Winter semester 2010/11 15

The LR(0) Parsing Automaton II

Example 12.7 (cf. Example 12.5)

G: 9 —8 (0) : .
s SBlC (12 LR(0) parsing of aac:
B —aB|b (3,4) T
C—>CLC‘C (5,6) = (CLC,I()I4 5 €)
F(¢ Iolyly ¢)
LR(0)(G)] act goto E (e Tolululs, e)
S BCab cl v (glLLk6)
Iy shift [I} Iy I3 I, I5 I ()
I accept F(e Iolylg ,65)
I red 1 (e lols ; 655)
I3 red 2 E(& Ioh , 6552)
1, shift I; Is Iy I5 Ig
I red 4
I red 6
I red 3
Ig red 5
Iy error
(empty = Iy

Compiler Construction Winter semester 2010/11 15

The LR(0) Parsing Automaton II

Example 12.7 (cf. Example 12.5)

G: 8-S (0) : .
s - B|C (1,2) LR(0) parsing of aac:
B —aB|b (3,4) (aac, Iy €)
C — aC ‘ C (5,6) F (ac, IOI4 , €)
F(e lolady ;e)
LR(O)(G) act goto F (g, IOI4I4167 €)
S BCab el +(ellilis,6)
Iy shift |1 Iy I3 Iy I5 Ig (*)
L accept F(e lolyly ,65)
I red 1 F(e lols , 655)
I3 red 2 F(e Iph , 6552)
1 shift I; Ig 1y Is Ig F (€, € ,65520)
I red 4
I red 6
I red 3
Ig red 5
Iy error
(empty = Ig

Compiler Construction Winter semester 2010/11 15

The LR(0) Parsing Automaton II

Example 12.7 (cf. Example 12.5)

G: gl : g c 5(1))2) LR(0) parsing of aac:
B —aB|b (3,4) (aac, Iy e)
C —aClc (5,6) F(ac, oy ,e)
= (C, 10[414 g €)
LR(0)(G)| act goto Fo(e, Ioldyds, e)
S BCab c F (e Iolylydg, 6)
Iy shift |1 Iy I3 Iy I5 Ig (*)
I accept F(e lolyly ,65)
I red 1 F(e lols , 655)
I3 red 2 F(e Iph , 6552)
1 shift I; Ig 1y Is Ig F (€, € ,65520)
I red 4
T red 6 Check by rightmost derivation
I e (on the board)
Ig red 5
Iy error
(empty = Ig

Compiler Construction Winter semester 2010/11 15

The LR(0) Parsing Automaton II

Example 12.7 (cf. Example 12.5)

G: g’ : g @ 5(1332) LR(0) parsing of aac:
B —aB|b (3,4) (aac, Iy e)
C — aC ‘ C (5,6) F (ac, IOI4 , €)
= (C, 10[414 g €)
LR(0)(G)| act goto F (e, Iolidudg, €)
SBCabcl +(¢lhLhl6)
Iy shift |1 Iy I3 Iy I5 Ig (*)
L accept F(e lolyly ,65)
I red 1 F(e lols , 655)
I3 red 2 F(e Iph , 6552)
1 shift I; Ig 1y Is Ig F (€, € ,65520)
I red 4
T red 6 Check by rightmost derivation
I e (on the board)
I red 5 Remark: in the corresponding
Iy error computation of NBA(G), () is
(empty = Iy nondeterministic

Compiler Construction Winter semester 2010/11

The LR(0) Parsing Automaton III

Theorem 12.8 (Correctness of LR(0) Parsing Automaton)

If G € LR(0), then the LR(0) parsing automaton of G is deterministic,
and for every w € ¥* and z € {0,...,p}*:

(w, I, e) F* (e,e,2) iff Z is a rightmost analysis of w

omitted

m' Compiler Construction Winter semester 2010/11 16

@ SLR(1) Parsing

Rm Compiler Construction ter semester 2010/11 17

Removing Conflicts in LR(0) Parsing

In practice: often G ¢ LR(0)

Example 12.9

Gap: E — E E— E+T|T
T -T*F|F F— (E)|a|b

Removing Conflicts in LR(0) Parsing

In practice: often G ¢ LR(0)
Example 12.9

Gup: E — E E — B+T | T
T ~T+F|F F— (E)|a|b

LR(0)(G ag) with conflicts:

Iy: [F'—--E] [EFE—-E+T] I,: [EfE—FE] [E— E-+T|
[E — T [T — TxF| I,: [E— T [T — T -*F]
[T—>-F] [F—>(E)] I3 : [T—>F]

[F' — -a] [F' — -b]
L: [F> (-B)]|E— E+T] I: [F—a]
[E — T] [T — TxF] Is: [F — b
[T — -F] [F— -(E)] I;: [E— E+-T] [T — ‘TxF]
[F — -a] [F — -b] [T — -F] [F — -(B)]
[F' — -a [F' — -b]

Iy: [T > T* - F|[F—(E)] I: [F—o(E)] [E—E-+T]
[F — -a] [F — -b] Ly: [E— E+T] [T — T -*F]

I : [T—> T*F‘] 1o : [F — (E)]

Compiler Construction Winter semester 2010/11 18

Adding Lookahead 1

Goal: resolving conflicts by considering first input symbol

Rm Compiler Construction Winter semester 2010/11 19

Adding Lookahead 1

Goal: resolving conflicts by considering first input symbol

Observations:
o [A — ﬁl . aﬁg] S LR(O)(OLﬁl)
= S =} aAw =, afrafaw
7N
pushdown next input symbol

Thus: shift only on lookahead a

m' Compiler Construction Winter semester 2010/11

Adding Lookahead 1

Goal: resolving conflicts by considering first input symbol

Observations:
o [A — ﬁl . aﬁg] S LR(O)(OLﬁl)
= S =} aAw =, afrafaw
7N
pushdown next input symbol

Thus: shift only on lookahead a
o [A— B] € LR(0)(af)
= S’ = adrw =, afrw

7N

pushdown input
— z€fo(A) CX. (r =conlyifw=c¢)

Thus: reduce with A — [only if lookahead z € fo(A)

m' Compiler Construction Winter semester 2010/11

Adding Lookahead 11

Example 12.10 (cf. Example 12.9)

Gug: E' — F (0)
E SE+T|T (1,2 AE,N f(éf}l)
T S T«F|F (3,4) A A
F - (E)|a|b (5,6,7))

m Compiler Construction Winter semester 2010/11 20

Adding Lookahead 11

Example 12.10 (cf. Example 12.9)

Gug: E' — F (0)
E SE+T|T (1,2 AE,N f(éf}l)
T S T«F|F (3,4) A A
F - (E)|a|b (5,6,7))

o I, ={[E' - E|,[E— E-+T]}:
@ accept on lookahead e
@ shift on lookahead +

m Compiler Construction Winter semester 2010/11 20

Adding Lookahead 11

Example 12.10 (cf. Example 12.9)

Gug: E' — F (0)

E SE+T|T (1,2 AE,N fé{if}l)
T S T«F|F (3,4) B |5
F - (E)|a|b (5,6,7))

o I = {[B' - B, [E — B-+T):
@ accept on lookahead ¢
o shift on lookahead +

o I, = {[E — T[T — T-+F]}:
o red 2 on lookahead +/) /e
@ shift on lookahead *

m Compiler Construction Winter semester 2010/11 20

Adding Lookahead 11

Example 12.10 (cf. Example 12.9)

Gug: E' — F (0)

E SE+T|T (1,2 AE,N fé{if}l)
T S T«F|F (3,4) B |5
F - (E)|a|b (5,6,7))

o I = {[E' - B,[E — E-+T]}:
@ accept on lookahead ¢
o shift on lookahead +
o I, ={[E — T[T — T - *F]}:
o red 2 on lookahead +/) /e
@ shift on lookahead *
o Iip = {[E — B+T'], [T — T - *Fl}:
o red 1 on lookahead +/) /e
e shift on lookahead *

m Compiler Construction Winter semester 2010/11 20

Adding Lookahead 11

Example 12.10 (cf. Example 12.9)

Gug: E' — F (0)

E SE+T|T (1,2 AE,N fé{if}l)
T S T«F|F (3,4) B |5
F - (E)|a|b (5,6,7))

o I = {[E' - B,[E — E-+T]}:
@ accept on lookahead ¢
o shift on lookahead +
o I, ={[E — T[T — T - *F]}:
o red 2 on lookahead +/) /e
@ shift on lookahead *
o Iip = {[E — B+T'], [T — T - *Fl}:
o red 1 on lookahead +/) /e
e shift on lookahead *

= SLR(1) parsing (Simple LR(1))

m Compiler Construction Winter semester 2010/11 20

The SLR(1) Action Function

Definition 12.11 (SLR(1) action function)

The SLR(1) action function
act : LR(0)(G) x X. — {redi | i € [p]} U {shift, accept, error}
is defined by

red s

act(l,z) := ¢ shift
accept
error

ifm=A—a,[A—a]el (i#0),
and z € fo(A)

if [A— aj-zag) €l and z € 3

if [— S]elandx=c¢
otherwise

Compiler Construction Winter semester 2010/11

The SLR(1) Action Function

Definition 12.11 (SLR(1) action function)

The SLR(1) action function
act : LR(0)(G) x X. — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifm=A—a[A—-a]lel(i#0),
and z € fo(A)
act(I,r) := ¢ shift if [A— ay-zag] €l and z € ¥
accept if [S'— S:]elandx=¢
error otherwise

Definition 12.12 (SLR(1) grammar)

A grammar G € CFGx has the SLR(1) property (notation:
G € SLR(1)) if its SLR(1) action function is well defined.

m Compiler Construction Winter semester 2010/11 21

The SLR(1) Action Function

Definition 12.11 (SLR(1) action function)

The SLR(1) action function
act : LR(0)(G) x X. — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifm=A—a[A—-a]lel(i#0),
and z € fo(A)
act(I,r) := ¢ shift if [A— ay-zag] €l and z € ¥
accept if [S'— S:]elandx=¢
error otherwise

Definition 12.12 (SLR(1) grammar)

A grammar G € CFGx has the SLR(1) property (notation:
G € SLR(1)) if its SLR(1) action function is well defined.

Together, act and the LR(0) goto function (cf. Definition 11.9) form
the SLR(1) parsing table of G.

m Compiler Construction Winter semester 2010/11 21

The SLR(1) Parsing Table

Example 12.13 (cf. Example 12.9)

Iy: [E' — -E] [E— -E+T) I,: [E' — E] [E — E - +T]
E — T T — -T*F| Ir: [E— T [T — T -*F]
T—>~F} [F—»(E)] I3 : T—>F~]
F — .a F— b
L: [Fo (-B)] [E— -E+qT] Is: [F— a] Ag,N f?(e’?)
E — T [T — -T*F| Is: [F — b E (+,),¢}
T — -F| [F—-(B)] Ir: |[E— E+-T| [T — -T*F| T {+;S o
F — a] [F—»b} T — F] [F—> (E)} F {+’*’)’E}
F — -a] [F — b r 22
Is: [T —>T*-F|[F—-(E)] Is: [F— (E:)] |[E— E-+T)]
F — -a] [F — b Iio: [E— E+T] [T — T - *F|
I : T—>T*F} Iio: [F — (E)}

m Compiler Construction Winter semester 2010/11

The SLR(1) Parsing Table

Example 12.13 (cf. Example 12.9)

Iy: [E' — -E] [E— -E+T) I,: [E' — E] [E — E - +T]
E — T T — -T*F| Ir: [E— T [T — T -*F]
T—>~F} [F—-(BE)] I3: [T — F
F — [F — b
Li: [Fo C B [Fo BeT] Is: [F—al Ag,N Y]
E — T [T — -T*F| Is: [F — b I +{§}
T —-F] [F—-(B)] Ir: [E— E+-T|[T — -T*F| = {;{f B} 35}}
F —] [F—>b} T—>-F] [F—> (E)} P {+7*7)7E}
F — -a] [F — b sl
Is: [T —>T*-F|[F—-(E)] Is: [F— (E:)] |[E— E-+T)]
F — -a] [F — b Iio: [E— E+T] [T — T - *F|
I : [T — T*F} Iio: [F — (E)}
R(0)(GaEr) act goto
+ * () a b 5 E T F + * () a b
Iy shift shift shift I Io I3 I Is Ig
I shift accept Iz
I red 2 shift red 2 red 2 Is
I3 red4 red4 red 4 red 4
Iy shift shift shift Ig Is I3 Iy Is Ig
Is red6 red 6 red 6 red 6
Is red7 red7 red 7 red 7
I7 shift shift shift Lo I3 Iy Is Ig
Is shift shift shift I11 I Is Ig
Ig shift shift I 112
Io red1 shift red 1 red 1 Is
I11 red3 red3 red 3 red 3
T2 red5 red 5 red 5 red 5

m Compiler Construction Winter semester 2010/11

The SLR(1) Parsing Automaton

Definition 12.14 (SLR(1) parsing automaton)

The SLR(1) parsing automaton is defined as in the LR(0) case (see
Definition 12.6), except for the transition relation:

shift: (aw,al, z) F (w,all’, z) if act(I,a) = shift and
goto(I,a) =1
reduce,: (aw,ally...I,,2)F (aw,all’, i) if act(I,,a) = red s,
mi=A—Y1...Y,, and goto(I,A) = I

reduce.: (e,ally ... I, 2) b (e,all’, i) if act(l,,c) = red 1,
m=A—>Y,...Y,, and goto(I,A) =TI’

accept: (e,Ipl,2) F (g,¢,20) if act([,c) = accept

errory: (aw,al, z) F (g,¢e, z error) if act(l,a) = error

error.: (g,al,z) b (g,¢, zerror) if act([,e) = error

m Compiler Construction Winter semester 2010/11

	Repetition: LR(0) Parsing
	Examples of LR(0) Conflicts
	The LR(0) Parsing Automaton
	SLR(1) Parsing

