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LR(0) Items and Sets

Definition (LR(0) items and sets)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ be start separated by S′ → S and
S′ ⇒∗

r αAw ⇒r αβ1β2w (i.e., A→ β1β2 ∈ P ).

[A→ β1 · β2] is called an LR(0) item for αβ1.
Given γ ∈ X∗, LR(0)(γ) denotes the set of all LR(0) items for γ,
called the LR(0) set (or: LR(0) information) of γ.
LR(0)(G) := {LR(0)(γ) | γ ∈ X∗}.

Corollary

1 For every γ ∈ X∗, LR(0)(γ) is finite.
2 LR(0)(G) is finite.
3 The item [A→ β·] ∈ LR(0)(γ) indicates the possible reduction

(w,αβ, z) ` (w,αA, zi) where πi = A→ β and γ = αβ.
4 The item [A→ β1 · Y β2] ∈ LR(0)(γ) indicates an incomplete

handle β1 (to be completed by shift operations or ε-reductions).
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LR(0) Conflicts

Definition (LR(0) conflicts)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ and I ∈ LR(0)(G).

I has a shift/reduce conflict if there exist A→ α1aα2, B → β ∈ P
such that

[A→ α1 · aα2], [B → β·] ∈ I.

I has a reduce/reduce conflict if there exist A→ α,B → β ∈ P
with A 6= B or α 6= β such that

[A→ α·], [B → β·] ∈ I.

Lemma

G ∈ LR(0) iff no I ∈ LR(0)(G) contains conflicting items.

Proof.

omitted

Compiler Construction Winter semester 2010/11 4



Computing LR(0) Sets I

Theorem (Computing LR(0) sets)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ be start separated by S′ → S and
reduced.

1 LR(0)(ε) is the least set such that

[S′ → ·S] ∈ LR(0)(ε) and
if [A→ ·Bγ] ∈ LR(0)(ε) and B → β ∈ P ,
then [B → ·β] ∈ LR(0)(ε).

2 LR(0)(αY ) (α ∈ X∗, Y ∈ X) is the least set such that

if [A→ γ1 · Y γ2] ∈ LR(0)(α),
then [A→ γ1Y · γ2] ∈ LR(0)(αY ) and
if [A→ γ1 · Bγ2] ∈ LR(0)(αY ) and B → β ∈ P ,
then [B → ·β] ∈ LR(0)(αY ).
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Computing LR(0) Sets II

Example (cf. Example 11.2)

G : S′ → S
S → B | C
B → aB | b
C → aC | c

[S′ → ·S] ∈

LR(0)(ε)
[A→ ·Bγ] ∈ LR(0)(ε), B → β ∈ P
=⇒ [B → ·β] ∈ LR(0)(ε)

[A→ γ1 · Y γ2] ∈ LR(0)(α)
=⇒ [A→ γ1Y · γ2] ∈ LR(0)(αY )

I0 := LR(0)(ε) : [S′ → ·S] [S → ·B] [S → ·C] [B → ·aB]
[B → ·b] [C → ·aC] [C → ·c]

I1 := LR(0)(S) : [S′ → S·]
I2 := LR(0)(B) : [S → B·]
I3 := LR(0)(C) : [S → C·]
I4 := LR(0)(a) : [B → a · B] [C → a · C] [B → ·aB] [B → ·b]

[C → ·aC] [C → ·c]
I5 := LR(0)(b) : [B → b·]
I6 := LR(0)(c) : [C → c·]
I7 := LR(0)(aB) : [B → aB·]
I8 := LR(0)(aC) : [C → aC·]

(LR(0)(aa) = LR(0)(a) = I4, LR(0)(ab) = LR(0)(b) = I5,
LR(0)(ac) = LR(0)(c) = I6, I9 := LR(0)(γ) = ∅ in all remaining cases)

no conflicts =⇒ G ∈ LR(0)
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The goto Function

Example (continued)

Representation of goto funtion as finite automaton:

[S′ → ·S]
[S → ·B] [S → ·C]
[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

[S′ → S·]

[S → B·] [S → C·]

[B → a · B] [C → a · C]
[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

[B → b·] [C → c·]

[B → aB·] [C → aC·]

I0

I1

I2 I3

I4
I5 I6

I7 I8

S

B

C

ab

c

b

c

B

C

a

(omitted: sink state I9 = ∅) Compiler Construction Winter semester 2010/11 7
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Reduce/Reduce Conflicts

Example 12.1

G : S′ → S
S → Aa | Bb
A → a
B → a

LR(0)(ε) : [S′ → ·S] [S → ·Aa] [S → ·Bb] [A→ ·a] [B → ·a]
LR(0)(S) : [S′ → S·]
LR(0)(A) : [S → A · a]
LR(0)(B) : [S → B · a]
LR(0)(a) : [A→ a·] [B → a·]
LR(0)(Aa) : [S → Aa·]
LR(0)(Ba) : [S → Ba·]

Note: G is unambiguous
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Shift/Reduce Conflicts

Example 12.2

G : S′ → S
S → aS | a

LR(0)(ε) : [S′ → ·S] [S → ·aS] [S → ·a]
LR(0)(S) : [S′ → S·]
LR(0)(a) : [S → a · S] [S → ·aS] [S → ·a] [S → a·]
LR(0)(aS) : [S → aS·]

Note: G is unambiguous
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The LR(0) Action Function

The automaton will be defined using another table, the action
function, which determines the shift/reduce decision.
(Reminder: π0 = S′ → S)

Definition 12.3 (LR(0) action function)

The LR(0) action function
act : LR(0)(G) → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I) :=











red i if πi = A→ α and [A→ α·] ∈ I (i 6= 0)
shift if [A→ α1 · aα2] ∈ I
accept if [S′ → S·] ∈ I
error if I = ∅

Corollary 12.4

For every G ∈ CFGΣ, G ∈ LR(0) iff act is well defined.

Together, act and goto form the LR(0) parsing table of G.
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The LR(0) Parsing Table

Example 12.5 (cf. Example 11.10)

G : S′ → S (0)
S → B | C (1, 2)
B → aB | b (3, 4)
C → aC | c (5, 6)

LR(0)(G) act goto
S B C a b c

I0 shift I1 I2 I3 I4 I5 I6

I1 accept
I2 red 1
I3 red 2
I4 shift I7 I8 I4 I5 I6

I5 red 4
I6 red 6
I7 red 3
I8 red 5
I9 error

(empty = I9)

I0 := LR(0)(ε) : [S′ → ·S]
[S → ·B] [S → ·C]
[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

I1 := LR(0)(S) : [S′ → S·]
I2 := LR(0)(B) : [S → B·]
I3 := LR(0)(C) : [S → C·]
I4 := LR(0)(a) : [B → a · B] [C → a · C]

[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

I5 := LR(0)(b) : [B → b·]
I6 := LR(0)(c) : [C → c·]
I7 := LR(0)(aB) : [B → aB·]
I8 := LR(0)(aC) : [C → aC·]
I9 := ∅
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The LR(0) Parsing Automaton I

Definition 12.6 (LR(0) parsing automaton)

Let G = 〈N, Σ, P, S〉 ∈ LR(0). The (deterministic) LR(0) parsing automaton
of G is defined by the following components.

Input alphabet Σ

Pushdown alphabet Γ := LR(0)(G)

Output alphabet ∆ := [p] ∪ {0, error}

Configurations Σ∗ × Γ∗ ×∆∗

Initial configuration (w, I0, ε) where I0 := LR(0)(ε)

Final configurations {ε} × {ε} ×∆∗

Transitions:

shift: (aw, αI, z) ` (w, αII ′, z) if act(I) = shift and goto(I, a) = I ′

reduce: (w, αII1 . . . In, z) ` (w, αII ′, zi) if act(In) = red i,
πi = A→ Y1 . . . Yn, and goto(I, A) = I ′

accept: (ε, I0I, z) ` (ε, ε, z 0) if act(I) = accept

error: (w, αI, z) ` (ε, ε, z error) if act(I) = error
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The LR(0) Parsing Automaton II

Example 12.7 (cf. Example 12.5)

G : S′ → S (0)
S → B | C (1, 2)
B → aB | b (3, 4)
C → aC | c (5, 6)

LR(0)(G) act goto
S B C a b c

I0 shift I1 I2 I3 I4 I5 I6

I1 accept
I2 red 1
I3 red 2
I4 shift I7 I8 I4 I5 I6

I5 red 4
I6 red 6
I7 red 3
I8 red 5
I9 error

(empty = I9)

LR(0) parsing of aac:

(aac, I0 , ε )
` ( ac, I0I4 , ε )
` ( c, I0I4I4 , ε )
` ( ε, I0I4I4I6, ε )
` ( ε, I0I4I4I8, 6 )
(∗)

` ( ε, I0I4I8 , 65 )
` ( ε, I0I3 , 655 )
` ( ε, I0I1 , 6552 )
` ( ε, ε , 65520)

Check by rightmost derivation
(on the board)

Remark: in the corresponding
computation of NBA(G), (∗) is
nondeterministic
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The LR(0) Parsing Automaton III

Theorem 12.8 (Correctness of LR(0) Parsing Automaton)

If G ∈ LR(0), then the LR(0) parsing automaton of G is deterministic,
and for every w ∈ Σ∗ and z ∈ {0, . . . , p}∗:

(w, I0, ε) `
∗ (ε, ε, z) iff ←−z is a rightmost analysis of w

Proof.

omitted
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Removing Conflicts in LR(0) Parsing

In practice: often G /∈ LR(0)

Example 12.9

GAE : E′ → E E → E+T | T
T → T*F | F F → (E) | a | b

LR(0)(GAE) with conflicts:

I0 : [E′ → ·E] [E → ·E+T ] I1 : [E′ → E·] [E → E · +T ]
[E → ·T ] [T → ·T*F ] I2 : [E → T ·] [T → T · *F ]
[T → ·F ] [F → ·(E)] I3 : [T → F ·]
[F → ·a] [F → ·b]

I4 : [F → ( · E)] [E → ·E+T ] I5 : [F → a·]
[E → ·T ] [T → ·T*F ] I6 : [F → b·]
[T → ·F ] [F → ·(E)] I7 : [E → E+ · T ] [T → ·T*F ]
[F → ·a] [F → ·b] [T → ·F ] [F → ·(E)]

[F → ·a] [F → ·b]
I8 : [T → T* · F ] [F → ·(E)] I9 : [F → (E · )] [E → E · +T ]

[F → ·a] [F → ·b] I10 : [E → E+T ·] [T → T · *F ]
I11 : [T → T*F ·] I12 : [F → (E)·]
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Adding Lookahead I

Goal: resolving conflicts by considering first input symbol

Observations:

[A→ β1 · aβ2] ∈ LR(0)(αβ1)
=⇒ S′ ⇒∗

r αAw ⇒r αβ1

↗
pushdown

aβ2w
↖
next input symbol

Thus: shift only on lookahead a

[A→ β·] ∈ LR(0)(αβ)
=⇒ S′ ⇒∗

r αAxw ⇒r αβ
↗

pushdown

xw
↖
input

=⇒ x ∈ fo(A) ⊆ Σε (x = ε only if w = ε)

Thus: reduce with A→ β only if lookahead x ∈ fo(A)
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Adding Lookahead II

Example 12.10 (cf. Example 12.9)

GAE : E′ → E (0)
E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

A ∈ N fo(A)
E′ {ε}
E {+, ), ε}

I1 = {[E′ → E·], [E → E · +T ]}:
accept on lookahead ε
shift on lookahead +

I2 = {[E → T ·], [T → T · *F ]}:

red 2 on lookahead +/)/ε
shift on lookahead *

I10 = {[E → E+T ·], [T → T · *F ]}:
red 1 on lookahead +/)/ε
shift on lookahead *

=⇒ SLR(1) parsing (Simple LR(1))
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The SLR(1) Action Function

Definition 12.11 (SLR(1) action function)

The SLR(1) action function
act : LR(0)(G) × Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I, x) :=



















red i if πi = A→ α, [A→ α·] ∈ I (i 6= 0),
and x ∈ fo(A)

shift if [A→ α1 · xα2] ∈ I and x ∈ Σ
accept if [S′ → S·] ∈ I and x = ε
error otherwise

Definition 12.12 (SLR(1) grammar)

A grammar G ∈ CFGΣ has the SLR(1) property (notation:
G ∈ SLR(1)) if its SLR(1) action function is well defined.

Together, act and the LR(0) goto function (cf. Definition 11.9) form
the SLR(1) parsing table of G.
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The SLR(1) Parsing Table

Example 12.13 (cf. Example 12.9)

I0 : [E′ → ·E] [E → ·E+T ] I1 : [E′ → E·] [E → E · +T ]
[E → ·T ] [T → ·T*F ] I2 : [E → T ·] [T → T · *F ]
[T → ·F ] [F → ·(E)] I3 : [T → F ·]
[F → ·a] [F → ·b]

I4 : [F → ( · E)] [E → ·E+T ] I5 : [F → a·]
[E → ·T ] [T → ·T*F ] I6 : [F → b·]
[T → ·F ] [F → ·(E)] I7 : [E → E+ · T ] [T → ·T*F ]
[F → ·a] [F → ·b] [T → ·F ] [F → ·(E)]

[F → ·a] [F → ·b]
I8 : [T → T* · F ] [F → ·(E)] I9 : [F → (E · )] [E → E · +T ]

[F → ·a] [F → ·b] I10 : [E → E+T ·] [T → T · *F ]
I11 : [T → T*F ·] I12 : [F → (E)·]

A ∈ N fo(A)
E′ {ε}
E {+, ), ε}
T {+, *, ), ε}
F {+, *, ), ε}

LR(0)(GAE ) act goto
+ * ( ) a b ε E T F + * ( ) a b

I0 shift shift shift I1 I2 I3 I4 I5 I6
I1 shift accept I7
I2 red 2 shift red 2 red 2 I8
I3 red 4 red 4 red 4 red 4
I4 shift shift shift I9 I2 I3 I4 I5 I6
I5 red 6 red 6 red 6 red 6
I6 red 7 red 7 red 7 red 7
I7 shift shift shift I10 I3 I4 I5 I6
I8 shift shift shift I11 I4 I5 I6
I9 shift shift I7 I12
I10 red 1 shift red 1 red 1 I8
I11 red 3 red 3 red 3 red 3
I12 red 5 red 5 red 5 red 5
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The SLR(1) Parsing Automaton

Definition 12.14 (SLR(1) parsing automaton)

The SLR(1) parsing automaton is defined as in the LR(0) case (see
Definition 12.6), except for the transition relation:

shift: (aw,αI, z) ` (w,αII ′, z) if act(I, a) = shift and
goto(I, a) = I ′

reducea: (aw,αII1 . . . In, z) ` (aw,αII ′, zi) if act(In, a) = red i,
πi = A→ Y1 . . . Yn, and goto(I,A) = I ′

reduceε: (ε, αII1 . . . In, z) ` (ε, αII ′, zi) if act(In, ε) = red i,
πi = A→ Y1 . . . Yn, and goto(I,A) = I ′

accept: (ε, I0I, z) ` (ε, ε, z 0) if act(I, ε) = accept

errora: (aw,αI, z) ` (ε, ε, z error) if act(I, a) = error

errorε: (ε, αI, z) ` (ε, ε, z error) if act(I, ε) = error
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